
81036 N. T. MEISTER AND T. A. GRIFFY

of the same degree of accuracy as the calculations of
radiative corrections for elastic-scattering processes.
%e have, however, throughout this treatment neglected
the emission of photons by the heavy particles. This
process may become important for very energetic
electrons; further calculations would be necessary in
that situation.
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The fundamental statement of relativistic invariance for scattering amplitudes is that the amplitude re-
mains invariant when the momentum and spin variables of each particle are transformed according to the
corresponding irreducible, unitary representation of the inhomogeneous Lorentz group. To "construct an
amplitude" is to 6nd the most general function that has the required transformation properties. This con-
struction, which had been previously eGected for any number of massive particles of arbitrary spin, is
extended here to include massless particles of arbitrary spin as well. In the case of photons, the resulting
formalism is compared with the usual one that makes use of transverse polarization vectors and a gauge-
invariance condition. The two formalisms are proven to be equivalent. It is concluded that the gauge condi-
tion is superRuous as an independent physical principle for the purpose of constructing amplitudes. Its use
in the conventional formalism is simply a way of imposing the Lorentz-transformation properties appropriate
to massless particles. In an Appendix, the known analogous construction for massive spin-one particles is
shown to be equivalent to the usual formalism, and the requirement of Lorentz invariance is shown to be
equivalent to the usual prescription for virtual photons as well.

I. INTRODUCTION

N the analysis of scattering phenomena, the funda-
& ~ mental quantity is the scattering amplitude. It is a
function of the momenta of the various incoming and
outgong particles and a 6nite dimensional matrix in the
spin space of the various particles. The total dimension-

ahty of the amplitude is the product of the dimension-
alities of the spin space of each particle, so that a partide
of finite mass and spin j (j=O, 2,1 . .) contributes a
factor 2j+1 to the total dimensionality, while a mass-
less particle contributes a factor 1.Massless particles of
opposite helicity are counted as diferent particles, since
no proper I.orentz transformation, which is what relates
diferent physical observers, mixes these states.

Each particle corresponds to an irreducible unitary
representation of the inhomogeneous Lorentz group.
Under a Lorentz transformation, the amplitude remains
invariant when the momentum and spin variables of
each particle are transformed according to the corre-
sponding representation. This is the fundamental state-
ment of Lorentz invariance for scattering phenomena
and is expressed mathematically below. BP "construct-
ing a scattering amplitude" is meant finding the most

~ Present address: Centre O'Etudes Nucleaires de Saclay,
Gif-sur-Yvette, Seine et Oise, France.

general matrix of given dimensionality that has the
correct transformation properties. In practice, this is
accomplished by expressing the amphtude as a finite
sum over a minimum number of spin matrices multiplied

by I orentz scalal coeKclents. It ls these spin Inatllces
with the correct transformation properties, that are
actually constructed.

The reasons for basing the construction on I.orentz
invariance alone are twofold. On the one hand, the
method is direct and provides a uni6ed treatment for
all spins. On the other hand, it is important in the con-
frontation of theory with experiment to lay bare the
logical foundations of the theory so that it is clear when

a general postulate, such as Lorentz invariance, is being
tested, rather than more-particular assumptions. In the
literature, one 6nds most commonly an alternative
method. Namely, the most general invariant operator is
constructed that may be sandwiched between eigen-
functions of the free-6eld equations corresponding to
the various scattered particles. This method is perhaps
more cumbersome, since the number of 6eld components
is in general larger than the number of spin states,
particularly for large spin. Also, the free 6eld corre-
sponding to a given spin is not unique. ' More im-

E. P. Vhgner, Theoretical I'bye s (International Atomic
Energy Agency, Vienna, 1963), p. 60.
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portantly, it may not be clear by this method when
additional assumptions, besides Lorentz invariance,
are used.

A main result of the present investigation is that, for
the limited purpose of constructing amplitudes and
reducing the number of invariants, the principle of
gauge invariance is superQuous. It will be shown that
Lorentz invariance alone is equivalent to the usual
prescription that includes gauge invariance and that
says to form the photon-scattering amplitude by con-
tracting a transverse polarization vector ~„, ~ k=0 with

3„the most general scattering operator, and requiring
that the result ~ A be invariant under the gauge trans-
formation e —p e+V. The result applies to scattering
amplitudes proper, so that each particle is physical and
on its mass shell, as for example in photo-pion produc-
tion or proton Compton scattering, and also when the
photon is virtual, as in measurements of the proton
vertex function via the exchange of a virtual photon to
an electron. Nothing is said about gauge invariance in
fieM theory nor in particular about the cause of the
universality of electromagnetic coupling.

The idea of constructing amplitudes directly from
their transformation properties was vigorously advo-
cated by Stapp, ' who carried this out in the case of
spin--,' particles and indicated the procedure for general
spin. Subsequently, Barut, Muzinich, and Williams
eGected the construction for massive particles of arbi-
trary spin by making use of the elegant theory of
e-dimensional spinor calculus, which we also adopt here.
In a previous work, 4 it was pointed out that the con-
struction of Ref. 3 applies equally well to unstable
particles.

We propose here to extend the construction to mass-
less particles of arbitrary spin. Of course, experiment
only provides an upper limit on the masses of the parti-
cles, which are generally thought to be massless, and it
is conceivable that in the future all particles will be
found to have a finite mass. On the other hand, the
zero-mass case should be a good approximation in any
calculation where the rest mass of a particle is negligible
compared to other energies involved.

In Sec. II, we 6rst recall the representations of the
inhomogeneous Lorentz group corresponding to physical
particles of zero mass. Then, we present some mathe-
matical preliminaries on n-dimensional spinor calculus.
Two theorems are established concerning certain kinds
of spinors, which we have called lightlike spinors, and
for which a new kind of Lorentz-invariant inner product
ls found.

In Sec. III, the problem of constructing an amplitude
for arbitrary numbers of massive and massless particles
is reduced to the problem of constructing invariant

2 H. Stapp, Phys. Rev. 125, 2139 (1962).
A. O. Barut, I. Mizinich, D. N. Williams, Phys. Rev. 136, 442

(1963).Sections I-IV of this paper are relevant for present purposes.
D. Zwanziger, Phys. Rev. 131, 2818 (1963).

spinors for which the solution is indicated. The uni-
tarity condition is expressed in invariant form.

In Sec. IV, the construction of the preceding section
is applied to the case of photons and the result is shown
to be equivalent to the usual formalism that invokes
gauge invariance.

Section V contains some concluding remarks and in
an appendix the requirement of Lorentz invariance is
shown to be equivalent to the usual prescription for the
case of massive spin-one particles, and virtual photons.

II. MATHEMATICAL I'RE? IMINARIES

We first recall the representations of the inhomo-
geneous Lorentz group corresponding to massless parti-
cles. This is the group of elements (A,a), where A is a
unimodular two-dimensional matrix, and a is a Her-
mitian two-dimensional matrix, obtainable from a real
4-vector a by a—= (y a=a'+e a. The law of multiplica-
tion is

(A2 a2)(A1 al) (A2A1, A2a1A2 +a2) ~

This is, strictly speaking, not the inhomogeneous
Lorentz group, but the group whose true representations
are representations up to a factor of the inhomogeneous
Lorentz group. '

Mass-zero particles correspond to irreducible repre-
sentations' labeled by @=0, &—',, +1, . Each such
representation is given by unitary operators in a Hilbert
space for which ke/ vectors ~k, /2) form a basis, lr being
an arbitrary 3 vector, with the law of transformation

II(A,a)
~
k, /1) = exp( ik' a) e—xp(i/20(k, A))

~

lr', /2), (1)

where
(r 4'=Acr. kdt

with k = (co,k), cu =
~

lr ~, and similarly for k'. The element

B(k,A) of the little group corresponding to A and k
determines 0(k,A) according to

exp((e/2) (e+(y) exp( —(e/2))
B(k,A) =

0 exp( ig/2)—
(2)

where x and y are arbitrary real numbers; U&

=exp(i22(2 n/2), with cos2p=k s and B=kX&~kXi~
is the unitary transformation taking 9 into k,

L go RUg~=e k;
a,nd

—1 (~1/2+~—1/2)+ 1 (~1/2 ~—1/2)~. k

is the Lorentz transformation parallel to k taking k
into k,

a k=cu+a k=H2(1+e k)H2.

This completes the specification of the representations
of the Lorentz group corresponding to massless particles.

~ E. Wigner, Annals of Math. 40, 149 (1939).
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n„„'(A)=C(j——',;,',j; jtiijji,m)

XSm, », ' "'(A)Am, »,C(g —s,2,$'4 t'ai, S2,tj) y (5)

where the C's are Clebsch-Gordan coefFicients.
I et the recursion relations, Eq. (5), constitute the

definition of Sj(Q) where Q is any two-dimensional
matrix, not necessarily unimodular. It is easily shown

by induction from Eq. (5) that

&j(oQ) =o"&j(Q), (6)

where c is any number. Let A and 8 be elements of C2
and let u and b be numbers. Then from

Sj(aA) I)j(bB)= (ab) 2jS'(A B)= »4jj(aA bB),

it follows that the 5)& constitute a representation of the
group of two dimensional nonsingular matrices. Further-
more, by continuity, the S&' constitute a representation
of the semigroup of all two dimensional matrices:

&j(Q2)&j(Qi) = &j(QiQi),

where Qi and Q2 are any two-by-two matrices. It is
trivial to show that X)', X)j ~ and S' '~ also constitute
representations. From Eq. (5) and the reality and ortho-
gonality properties of the Clebsch-Gordan coefBcients,
we obtain

(A*) x)j (A) x)j(A—i) &~i(A),
nj(Ar)= X)i~(A).

Let us now turn our attention back to the unimodular

group C2. Column vectors of dimension I=2j+1which
transform according to X)j(A), S"(A), 5)j '~(A), and
Sj 't(A) under A p C2 are called "tj-dimensional spinors"
and are written, respectively, with lower undotted and
dotted, upper undotted and dotted indices:

5 "=&p'b'

f. "=&-p'*4'

~.»' 40 jiT~p-
p.»' —g) j-it) p

For typographical reasons, here and in the following,
spinors will be printed with the superscript appearing
immediately after the associated subscript instead of in
alignment with it.

We may form tensor products of spinors $ "p&'&j4&;4...P"

We now turn our attention to n dimensional spinor
calculus for which we want to establish notational con-
ventions and some results. If A is an element of the
two dimensional unimodular group C2, then a repre-
sentation of this group of dimension 2j+1,j=0, -„1
is given by the recursion relations

XP(A) =1,
S'j'(A) =A

Wigner's three- j symbols constitute invariant tensors:

g»2 jul j'n p

kn p «& Ej, j, ji&

p «l (ji ja ja'l

&j, j, ji& kn p

=(2j~+1) "'(—1)" ' "C(ai,&2,&8 n, P —«)4 (11)

which transform according to

/A j2 jA . . . fbi j2

jan%

i4+pp i4+ t "I
I

etc. (12)
En p p& kn' p' 7')

Of particular interest in physics are invariant spinor
functions. These are spinor functions of momentum
4-vectors pi, p2, ,p;, with the transformation
property

4j'pj'. 'j.- '- (P;')= ~.. (A)~pp '(A)~„-'"(A)
Xg„,i4 it(A). . .(,—jip,is t'. i' "(.p4) (13)

where o"p;= Ao" p;At. Examples of such invariant
spinor functions are

and
&j( p)o-p= (o p)-'p'= —(o p)-pj-

&j( p)o-p= (o p)"=(—o p)"—
(14)

where o"P—=Po—n y=(o"P)ij&hP. In the following we
will frequently omit the dimensionality index j on a
(o"p) when j=-', . The problem of constructing scatter-
ing amplitudes will be reduced to the construction of
invariant spinor functions.

The preceding material is standard and has only been
introduced for notational completeness. Let us now
define a new quantity which we eall a "light-like spinor"

6 E. P. Wigner, Group Theory and its A pp/ication to the Quantum
Mechanics of Atomic Spectra (Academic Press Inc., New York,
1959), Chap. 24. (This material is not present in the original
German language edition. ) We adopt the notation of this chapter.
Wigner's work deals with unitary matrices for which S*=S '~.
However, his results are immediately applicable to the present case
by making the substitution S for X) and L) I~ for S*, or S*for
S and S '&;for S*, since they depend only on the properties of
equivalent contrayedient representations,

which transform according to

n n. v. p. ~ .j'~ ~

a p j3 j4 ~ ~

, i440pp, j4Q, j4—iT40, j4 it—. . .) j4pj4. t . j
It is clear that quantities of the form $ tl and $,tt»

are invariant. In general one may not perform contrac-
tions between dotted and undotted indices. However if
A is unitary than $ and $' transform alike, as do $
and & . Indices may be raised and lowered' by the
invariant tensors

S p
'(C' ') = C p'= C; = (—1)"Cj.

=(—1)"C p'=(-1)-»--p. (1o)
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belonging to the light-like vector k. It is an n-dimen-
sional spinor, ddined for n) 0, satisfying the invariant
equation

1—0, 0 0

or

2.
(o"k)'P

(o k)-pl,
(P

(16 )
so that

(16b)

t'1+o, 0
S p'] =b;, 8p= 0

E 2
' '

0
(20a)

For j=~ these are Acyl's equations and, as shown in
the Appendix, for j= j. they are Maxwell's equations.
To see the content of these equation, let us write them
for a coordinate system in which k points in the s
direction. Then (o"k) P=2&ob, i~28p, imam and (o"k) p

=2co8 «&8p, &&&, so that Eqs. (16) take the form

(
(2) (j 2)—

$ /=0
(j)

~

~

(j))
(&,'=0.

(2) (j-k)
Since the mixed three- j symbols vanish unless P+z= p
and ~ varies between —(j——',) and (j—2), we have

$,'=0 for pA j, (17a)

y, &=0 for pW —j. (17b)

VVe may surmise that these two null spinors will corre-
spond to massless particles of opposite helicity.

We now prove the theorem: g
' and ibo are null

splnol's belonging to k lf and only lf they satisfy

(p~ k/2~) &'= 4'
n p'(o" k/2')it P=it "'

These equations may be written

(2~) "(o k)-p'b'=. 4'
(») "(~ k)i"~ P=~'.

(18a)

(18b)

They do not have a relativistically invariant form which
is what gives the theorem its content. However, they
are invariant under three-dimensional space rotations,
for which A p C2 is unitary, because then $ transforms
like a $ ', iso like an it, and &o is constant. Consequently,
we may choose k to point in the s direction. Equations
(18) then take the form

$1—og

2
0, (20b)
0
0
I.

n p'(a k'/2 ')oigp"= P„&',

&-p'(~ k'/2~')ni"= ~~",

(22a)

(22b)

where 0"k —Ao'kit
Finally we prove a second theorem: If g & and it, p'

are light-like spinors belonging to k, then

(23)

is a relativistically invariant form. VVe Grst note that
from

S'(o k/2io) pit P=it'
it follows that

it;~Sp '(o ~.k/2co) = italo,

it 'C.i Sp &(o k/2oi)=it &C P~

[C(o'k/2~)C-'j= g

it S„'(o"k/2&v)=it &'.

as may be obtained from the recursion relations, Eq. (5),
by induction. The solutions to Eq. (19)are consequently
given by Eq. (17), which proves the theorem. We ob-
serve that S'(o"k/2oi) and 5)'(o"k/2a&) are projection
operators onto the one-dimensional subspace of light-like
spinors belonging to k. Since the light-like spinors are
defined by the relativistically invariant Eqs. (16), we
conclude that, despite their noninvariant form, Eqs.
(18) are in fact relativistically invariant, as may be
veritied by explicit transformation. Thus, if $ and it

satisfy Eqs. (18), then

j' —g) pj(A)]pi and it.a' —g) alt(A) —it,p (21)

satisfy

t'1+o,
6'= 4'

2

(1—o,)
2 )

1+o, (1 0

&00'

Let $ and ito satisfy Eqs. (18) and let $
' and it~ be

(1») given by Eqs. (21). Then

oi' "q "$ '=oi' "y S'( AAt) pfp&

=co' "itg'S'[(o"k/2oi)A tA (o"k/2a&) j pPp&'

= ' "it.'&'[A '( k'/2 )( k'/2 )A'-'j
=a)' "it '&[A '(o"k'/2')(2''/2')At —'g p(p&'

= -"~-'~'( k/2 ).p&p'= -"~.'S.'.
Q.E.D.
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We will find that the unitary condition for massless
particles takes the form (23).

III. CONSTRUCTION OF AMPLITUDES WITH
MASSLESS PARTICLES

After the preceding preparatory section we now take
up the physical problem of constructing amplitudes that
satisfy Lorentz in variance. Let us denote the probability
amplitude for a scattering process by F(p;,j;,a;; k&,p&)

such that the probability for the process is proportional
to !F!'. The index i runs over the time-like momenta
pP=m, ')0, and the index / runs over the light-like
momenta k~' ——0, corresponding to the massive and
massless particles, respectively. The arguments j and 0-

refer to the total spin of the massive particles and a spin
component, whereas the argument p, carries the signi6-
cance it has in Eq. (1).To avoid confusion we emphasize
that the massless particles correspond to a one-dimen-
sional representation in the spin variables; for a given
particle. the value of p is fixed, whereas the value of 0.

varies from —j to j.The arguments thus label irreduci-
ble unitary representations of the Lorentz group and
the rows of the representation space.

Under a Lorentz transformation (A,a) the F trans-
forms according to

F'(p;,j, ;; ki', p )
=expL —ia. (Z'p''+tiki')]ll'&; '(p'A)

Xg& exp[ip&8(ki, A)]F(P;,j;,a, ; kui&),

where a p =Aa p;A~"a" ki' ——
, Aa" kiAt, 8(ki,A) is de-

fined below Eq. (1), and S'(p;,A) is known. ' ' The
Lorentz-invariance condition is

F (p;,J,',0'', ki,pi) =F(p;,J;,0'ki pi), '

or

F(p~ ~26&~i ki i@&)

=exp[—i(P; p, '+Pi k,') a] g; n...,. ''(p, A)

Xgi exp[i'&8(k&, A)]F(p;,j;a; ki,p&) . (24)

This is the formal statement of Lorentz invariance.
Our object is to 6nd the most general function F which
satisfies this equation as an identity for arbitrary (A,a).

The identity in a is satisfied by requiring g; p;
+Pi ki =0, which is conservation of momentum energy.
From now on we assume that this equation holds. Ac-
cording to Stapp's convention' the 4 vectors in and on
the future light cone are the momenta of the particles
in the 6nal state, whereas the negative of the 4 vectors
in and on the past light cone are the momenta of the
particles in the initial state. Since we will not be con-
cerned with crossing relations, we do not need this
general notation and in the following our convention
will be that all 4-vector arguments, p, k, are physical.
In Refs. 2 and 3 [see particularly Eqs. (2.1)—(2.7) of
Ref. 3], it was shown how to simplify Eq. (24) for the
indices referring to the massive particles by making a
linear transformation on them, the transformation from

E to M functions, in Stapp's notation. We assume that
this linear transformation has been e6'ected so that the
invariance condition takes the form

F(p'' j', "k ' )=II' &.;.,""*'(A)
Xp& exp[ip&8(k&, A)]F(p;,j;,a, ki,pi) (25)

The asterisk on the S appears or does not appear, de-
pending on the value of i. We see that with respect to
the indices of the massive particles, Ji transforms like
an invariant spinor function.

We propose now to similarly simplify the invariance
condition on the massless particles. The values of p~ are
p~=0, +—,', &1 . For pal=0 there is no problem. It
will be su%cient to suppress all indices except two, one
for p&= j&&0 and another for p&= —j2&0. The general
case may be obtained from our result by simple tensor
product. We thus consider the condition

F(ki', ji, k2', —jg) =exp[i ji8(ki,A) —i j28(k2,A)]
XF(ki, ji, k2, —j2). (26)

The di%culty with it is that the exponential factors are
not produced by a simple mathematical operation such
as matrix multiplication, but each is dered as a
quantity appearing. in a given matrix, according to
Eq. (2).

We now adopt an arti6ce. Berne the matrix

F(ki, ji, a i, k2, —j2, a 2)
=—F(ki, ji, k2, —j2)8.. .8... (27)

with —j&&0.&& j&', —j2&o.2& j2. It is a trivial observa-
tion that from the matrix F(ai,a2) on the left side of
Eq. (27) we can find the function F of the right-hand
side, by simply taking the upper left-hand element, all
others being zero. The purpose of this artifice is that
Eq. (26) may now be written

F(ki', ji,a i,k2', jm, ay)
= m..., &~[8(k,,A)]n..., ~~'[B(k,,A)]

XF(ki, ji, a,', k2, —j2, a 2'), (28)

where 8(k,A) is defined in Eq. (2), and we have ob-
tained a transformation law that is simple matrix multi-
plication, analogous to the one for massive particles.
Equation (28) is easily verified as follows. The identity

F(ki jl ai k2 j2 &2)

1+a, 1+a,l
n ,*22

~rrg tlI P/ 0 2 rr2

2 2

XF(ki, ji, ai', k2, —j2, a2') (29)

follows directly from Eqs. (27) and (20a). It is in fact
a necessary and sufficient condition for Eq. (27) to
hold. Consequently the right-hand side of Eq. (28) may
be written

1+a, 1+a,)&..., " &(ki,A) &;., "' &(k2,A)
2

'' '
2

XF(ki ji ai k2 j2 a2 ) ~
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Hut from Eq. (2) we have

(1+a,) (1+a,)
E2& E2&'

and consequently the right hand side of Eq. (28) is

exp(file(kl, A) —2j20(k2, A) jF(kl jl al, k2 j2 &2)

which is identical with Eq. (26).
We may now simplify Eq. (28) by following the same

procedure as for massive particles. %e make a linear
transformation on the spin variables from Ii to a new
function A

A(k4 24 a4 k» 2» a2)

(+2x~4)F(k4 24 al a k» 24 a2 ):
XS...,"t(P2,U2,), (30)

(e akl)
A (kl,k2) ai"~2"= Salas "~

&2~1 &

(o"k2)
XA., ~';,.~'(k„k2)S..., ~

I. (33)
E 2G)2 &

This relation is recognized as the statement that
A(kl, k2)„;2I»2 is light-like in each spinor index with
respect to the momentum vector corresponding to that
index. It is the necessary and sufBcient condition that
F(a l,o2) be Of the fOrm (27).

%e now restore the indices Of all massive and massless
particles. The problem of constructing the most general
solution to Eq. (25) has. been shown to be equivalent
to 6nding the most gener8, 1 invariant-spinor function

( pa p' kl. k)...„...;, ...., ...;„... ( )

and p r de d. bel E (2) Th n f tllat ls 11ght-11JM 111 tile splI101' Indices corresponding to

Fqs (2) and (28) we 6nd massless Particles, i.e.,

A(kl', jl, al, k2', —j2, o2)
=S..., ~I{A)(k„j„al',k„—j2, a2') S...,I21(A) .

. (2 (jI—2) P't
(a kI)'~

XA("k, "k ") " .' =o (35)This is recognized as the transformation law for an
invariant spinor function, so we adopt the appropriate
notatio n a P)

(a k-).ll,A(k„j„„k„—j„a,)=A(kl, k,),,;, '. (3l)
" '

(-; (j.——,) q„&

We note that an index corresponding to: positive (nega-
tive) p in Eq. (25) corresponds to an uridotted (dotted)
spinor. Equation (30) may be inverted, yielding

F(kl, jl, al, k2, —j2, a2)

(32)
Equation (29) takes the form

A (k„k2).,I~.212

(&+a,'I
'E 2 &

(I+aa)
XA(kl, k2)., "., "S...," P2, E2&

(I+e kl)
~&2, ' A(kl, k2).i "s2"

2

(1+e k2
X Sa2'a2 +22

~
+22

2

~ ~ ~ g $ ~ ~ ~ )AS ~ ~ ~

XA(" k," k ") . =0. (35b)

In Ref. (3) it was shown how to express a general m-

variant spinor function in terms of a minimum number
of scalar invariant functions. %hen this has been
carried out for the A of formula (34), the Eqs. (35) yield
a. set of linear relations that reduces the number of
independent scalar invariants. In the-following section
the. equivalence. of these- requirements to- the -conven-

tional formalism for -photons mull be deirionstrated
explicitly, so that the convention@I method of construc-
tion also becomes available in thi.s case.

Ke will conclude this section by stating the unitarity
condition, 6rst in terms of the probabiHty amplitude Ii
and then in terms of the invariant spinor function A.
I et us separate the variables of the scattering amplitude
into a set of initial variables that appear on the right
and a set of final variables that appear on the left. The
unitarity condition then takes the form

(F2 .{k2,k,)—[F,2(k„k2)$*}/2i

d'k„
g4(Z„—Z.)[F„,,(k„,k2))'F. ..(k.,k.) (36)

I+e kl) (I+e k2)
in which we let one momentum and spin variable repre-

2 & ( 2 & sent the whole set that characterizes the initial or 6nal
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state. The variables for massive particles have been
suppressed since their properites are assumed known. H
we make R I orentz transformation, writing k fol k RDd

using Eq. (28), we obtain

{&bb'[8(kb A)]&- 'L8(k A)]

XFb {kb,k,)—$„&[8(k„A)]
X I)by "[8(kb,A)][F,b (k,k b)]*}/2i

= Sbb '*[8(kb,A)]$...'[8(k„A)]
d k~

X [F b (k,kb)]*8(E —E )
2M&

X X4~ r'[8(k„A)]$„-/[8(k„,A)]F„-;{k„.,k,),
in which wc have allowed for the possibility that the

n/[8(k, A)]= Xv*[8(k,A)], (3/)

so that the S's depending on the free variables may be
factored out, whereas the X)'s depending on the internal
variables cancel because they are unitary. Equation {3/)
simply states that initial and 6nal configurations trans-
form according to complex conjugate representations.
Sy crossing symmetry it follows that particle and anti-
particle in the same con6guration transform according
to complex conjugate representations.

We now substitute Eq.. (32) into the unltarity
coDdltlon:

same particle state may transform differently when it
is in the initial or 6nal con6guration, i.e., according to
Q' or Sf. For this equation to have the same form as
Eq. (36), we must take

{A(kb,k )b —[A(k,kb) b ]*}/2i

kid k2
~'(&—&.)[&-"(&~P&~, ')A(ki, kb; kb)""P "b &n "(&bb '~~~)]*

2coy 2c02

X[$ .-"(Ub,tBg, ')A(kgkb, k.). ";-,",S„-,"(Bg, 'Ug, )],
or

[A(kb, k,)b, .—A*(k„kb), , b]/2i=
d'k~ d'k2

h(E—E,)A ~(kg, km, kb)
2col 2cog

Xn...-~~(H&,-') n,",.~ (H&,-')A(k„km,.k,).-/~;-, /b. .

In this last equation wc have written

A*(k„kb), b=—[A(k,kb), y]~,
A*(k,k;kb) ', ,"b=—[A(kg, k2, kb) ";,"y]*;

which correctly indicates the transformation properties
of the indices. It is also trivial to verify that A* »,» is
light-like in i and r. For the initial and final states,
a and. h,we have continued the previous notation, but
for the intermediate state we have written out explicitly
the variables for two massless particles, k~ and k2 trans-
forming according to L}&' snd SJ2* respectively, and
note that the general case is easily obtained by simple
tensor product. Making use of the properties of the H's
of Eq. (4) and the light-like properties of the A' s
Eq. (33), one easily obtains

[A(kb, k.)b,.—A*(k.,kb), , b]/2i

d kid k2
8(F F,)A*(kg,km, kb) "—"b

2' y 2M g

X~z-'J~~b-"'A(kx, km, k.).;," (38)

This is the relation we have been seeking. The rela-
tivistic invariancc of the right-hand side is guaranteed
by the second theorem of the preceding section.

IV. EQUIVALENCE TO THE USUAL FORMALISM
IN THE CASE OF PHOTONS

It is customary to treat together the two-photon
states of opposite hehcity. Heretofore, wc have treated
them separately, as diferent particles, because a photon
state of given helicity corresponds to an irreducible
representation of the proper I.orentz group. It is the
proper Lorentz transformations, without space or time
re6ections, that relate diferent physically possible ob-
servers. Another wayof saying this is that if one observer
"sees" a photon of given helicity then all observers will

see a photon of that hclicity. In order to compare the
conventional formalism with the one obtained in the
preceding section we wiB make use of a matrix notation
that treats the two photon states together.

%e found previously that states of opposite helicity
in a given con6guration correspond to dotted andun-
dotted indices, namely A &'&(k) and A &'&(k) taking
j=1 for photons and suppressing all other arguments.
For convenience in the following we will make use of the
contravariant componants Ap~'(k), which have the
property that under rotations they transform like
A &"(k). Our matrix notation is obtained by joining
A &"{k)and A &'~(k) into a single vector,

[A "&(k),A($) '(k)],
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so that a single-photon leg corresponds to a spin index
that runs over six values and transforms according to
S&'&Q+ S&') '~. The light-like condition holds

But the Pauli spin matrices (op„); are simply the three-j
symbols (Clebsch-Gordan coeKcients) in mixed co-
variant-contravariant-Cartesian components, as may be
veri6ed from their transformation properties. Conse-
quently Maxwell's equations may be written

(P )( 1
(a"k).o~ A (()'(k) =0.

p

(40)

Consequently, the Euclidean lengths of E+iB and
E—iB, namely

(E+iS)'= E'—8'+2iE 8,
are invariant, which shows that under a Lorentz trans-
formation E+iS and E—iS transform according to a
(complex) orthogonal matrix. lt is consequently appro-
priate for our purpose to write Maxwell's equations for
E&iS. Maxwell's equations in a vacuum, written in
terms of their Fourier transform, are

k E=k 8=0,
k&& E=(oB, kyB= —(aE,

with (a =
~
k ~. From the second pair we have

ol
k X(EaiS)=wi(a(EaiS),

io kX(EaiS)=a(ae (E+iS).
Making use of the 6rst pair we may write this as

e k(r (E+iB)= +(a(r. (E+iS),
or

(a"k)'o(op ) (8+iB) =0
(o"k) p(o p,);(F iB);=0. —

As is mell known, and as shall be verified below, an
antisymmetric tensor has six independent components
and transforms according to S('&Q+ S&'& 't. In addition,
Eqs. (40) look hke the Fourier transforms of linear
differential equations. All this is suggestive of Maxwell's
equations, which we now propose to write in spinor
form, that is, in terms of irreducible representations.
Let it be emphasized for clarity that we wish to study
equations that have the same form as Maxwell's
although the quantities appearing in them should not
be interpreted as electric and magnetic field strengths.
The quantities are, in fact, scattering amplitudes ex-
pressed in the invariant spinor basis. But we will use
the conventional electromagnetic notation so that the
equations have a familiar form.

Calling the space-time and space-space components
of F„„, E, and 8, respectively, F„„=(E,S), we may
form two invariants

F„„F~"=2(E'—8'),

(A-'"(k),A (»'(k)) =—((E+i&).,%—i&)'), (42)
2i

F„„=k„A„—k„A„=(E,S),
so that Eqs. (40) are automatically satisf(ed, provided
only that A is transverse. %e note that in forming Ii„„
from A no componant of A parallel to k contributes.

Ke have now obviously obtained the usual prescrip-
tion which says that a photon corresponds to a 4-vector
index p on the amplitude, A„, that will be contracted
with a transverse polarization vector e„, e k=o, such
that the product ~ A is invariant under a gauge trans-
formation o —& o+Xk. For the gauge condition is satisf(ed

by requiring that k A =0, which is Eq. (41) above, and
the transversality of e means that no componant of A
parallel to k will contribute.

For completeness we will translate the unitarity
condition, Eq. (38), into the conventional notation. For
this purpose it is sufEcient to consider the spin sum over
the intermediate states of a single photon and suppress
all other arguments. Namely we must consider the form

-2(A . (1)A .(1)+A o)A . ,0)) (43)

in which the two terms correspond to the tmo photon
states of opposite helicity. The star of Eq. (38) has not
been written on the A here so that no complex conjuga-
tion is eGected inadvertantly. The only properties to be
used here are the spinorial and light-like properties of
the indices that appear explicitly. %hen we substitute
Eq. (42) into this expression, recalling that A and A

The invariant form we have obtained con6rms our con-
clusion about how R&iS transforms. These last equa-
tions are identical with Eqs. (40), so that the condition

by which we have dered light-like spinors reduces„
for j=1, to Maxmell's equations in a vacuum.

The solutions to Maxwell's equations are of course
well known, namely we may write for k'=0,

F„,(k)=k„A,(k) —k,A „(k),
k A(k)=0.

Then the quantities (39) are given, with the normaHza-

tion factor chosen for convenience in the following, by
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Ag A;=Af„A;&. (44)

This is the usual diagonal, or Feynman, form of the
unitarity condition.

We have established what was claimed. For the
purpose of constructing amplitudes, the usual formahsm,
including gauge invariance, is no more than a way of
imposing the transformation properties appropriate to a
spin-one massless particle, and has no content beyond
the principle of Lorentz invariance. This may not be too
surprising since the cGcct of gauge invariance is to re-
duce the number of independent componants from three,
as for a massive spin-one particle, to the two helicity
states of a massless spin-one particle. But, as is well

known, the number of states is simply the dimen-
sionality of the representation of the Lorentz group
corresponding to the particle.

It may be of interest to carry out an analysis, similar
to the one of this section, for massless spin-two particles.

V. CONCLUDING REMARKS

A problem of current interest is to what extent do
Lorentz invariance, unitarity, and crossing symmetry
or analyticity determine the 5 matrix and how other
symmetries may be fit into this scheme. It has been
argued'~ that the yerturbative expansion of the 5
matrix can bc obtalncd by ltcrRtlng thc unltarlty condi-
tion to generate singularities, in a way that is now
familiar, beginning with amplitudes that are constant,
and working only with amplitudes on the mass and
energy shell, though analytically continued.

The only case where the perturbation expansion is of
practical interest is in the interaction of electrons and
photons. However, this case seemed to require the inde-
pendent principle of gauge invariance which did not 6t
naturally into the Lorcntz invariance-unitarity-ana-
lyticity scheme. To the extent that this scheme is suc-
cessful in generating the perturbation series, making use
only of amplitudes on the mass shell, the result of the
previous section Ineans that gauge invariance is not
required as an independent principle, being already
implied by Lorentz invariance. This should be encourag-

ing to those who hope to build Rn Independent 8-matrix
theory and suggests that electrodynamics may not re-

7 J. C. Polkinghorne, Nuovo Cimento 23, 360 (1962); 25, 90j.
(1962).

transform contragrediently under rotations, we obtain

—,'(o 2[(E)—2Br) (E;+2B;)+(Eg+2Bf).(E;—2B,)]
—$(o 2-(Ef E;+Br B;)

We now substitute E=—(oA+kAo and B=—kX A and
make use of k A=(ohio to obtain for the form (43)

—(Ay A;—A) kk A~)

or, taking into account the transversality condition, APPENDIX: EQUIVALENCE TO THE USUAL
FORMALISM FOR MASSIVE SPIN-ONE
PARTICLES AND VIRTUAL PHOTONS

In Ref. 2 it was shown in the case of spin-~2 particles
that Lorentz invariance is equivalent to the usual
formalism that makes use of Dirac spinors. In Sec. IV
the analogous demonstration was CGected for photons.
The method of that section suggests how to do the same
for massive spin-one particles. The usual formalism
assocl'ates to a massive spin-one particle of momentum

p, p2=m2, a transverse polarization vector 2„, o.p=0,
which is to be contracted with a scattering amplitude
bearing a corresponding 4-vector index A„. The spinor
formalism, resulting from Lorentz invariance alone,
associates to a massive spin-one particle an undotted
spinor or a dotted spinor, 2 &'& or A «q)

~ related by

with

0)—( ~ p/m) oo)g ( ))t

(o"p/m) 2")(o"p/m)())o&=8 &.

We have seen in Sec.IV that the quantity (2„()),A (o ')
transforms like an antisymmetric tensor F„„=(E,B),
so that

Equation (A1) may then be written

(E+iB).=VS] )VS( .
(2 2 2 2 2

In the last line use has been made of the orthogonality

and symmetry and ant)symmetry o A
~

and
(2

1 (Ky c2j

(
2 1

~. Multiplying left and right by (o"p/m) 2'~',
0 (2) (22)

quire new principles not already present in the stronger
interactions.
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we obtain

(e P)"" l(~+i&)-
1 (xr Qs~

( P)""L (E+ E)j- - = ( P)- p'( (E—'&)y"

(e P)""Le (E+i&)3-"=Ee (E—i&)7'th(e P)'"

A„~A„'=A —P P 2/m', (A6)

to obtain a new amplitude A„' which is transverse,

P A'=0. (A/)

We may freely impose this condition and thereby
eliminate the arbitrariness in the amplitude. The sub-
stitution (A6) cannot of course be made in the massless
case, since it requires a division by m, so that in the
massless case the transversality condition on the ampli-
tude, which is the requirement of gauge invariance, is
an additional constraint reducing the number of inde-
pendent components from three to two. For a massive
particle, on the other hand, the transversality condition
on the amplitude may be achieved by the substitution
(A6) without reducing the number of independent
components.

or

(s—e p)e (E+iB)=e (E—i8)(s—e p),

where s=p = (p'+m')'~'. This reduces directly to

p =0; pXE=s8.

The solution to these equations is well known, namely

(E,B)=F„„=P„A. P„A„— (AS)

for A„an arbitrary four vector. We note that the com-
ponant of A„parallel it p„does not contribute. By
substituting Eq. (AS) into Eq. (A3,) Eq. (A1) is auto-
matically satisfied.

This result is equivalent to the usual prescription
since a spin-one particle now corresponds to a 4-vector
amplitude, of which the componant parallel to the
momentum does not contribute.

The componant parallel to P is consequently arbitrary
and we can exploit this arbitrariness by making the
substitution,

It is customary to make use of scattering amplitudes
for "virtual photons" that are off the mass shell, k'/0.
Such amplitudes, or particles, are not defined in a strict
S-matrix theory but have a meaning within the frame-
work of Lagrangian perturbation theory applied to the
electromagnetic interactions. Amplitudes with virtual
photons as external particles are, of course, of great
practical importance since they include the form factors
that are measured experimentally.

It is natural to ask what are the transformation
properties of such amplitudes. To answer this question,
let us recall the usual prescription for constructing
them: Each virtual photon corresponds to a 4-vector
index p on the amplitude A„, on which the transversality
condition k A =0 is imposed to satisfy gauge invariance.
For k' real, k'&0 this is the same as the prescription for
massive spin-one particles when condition (A7) is im-

posed, and we may say that for virtual photons of real
positive mass, the amplitude transforms as for a massive
spin-one particle. The virtual photon of real positive
mass consequently corresponds to the same representa-
tion of the Lorentz group as massive spin-one particles.

However, form factors are defined for negative mass
as well, which is, in fact, the value for which they are
measured experimentally, and they are also commonly
continued analytically in the photon mass to complex
values. It is immediately clear however that when the
photon has a real negative mass, frequently called a
space-like photon, the amplitude does not correspond
to the unitary representation of the Lorentz group for
real space-like momenta which is infinite dimensional
in the spin variable. ' The prescription for constructing
the amplitude is in fact the same for positive or negative,
real or complex values of the photon mass, i,e. the same
as for a massive spin-one particle. The corresponding
representations are, therefore, those previously found4
for arbitrary complex or negative mass values and that
are isomorphic to the real positive mass representation.
We conclude that for virtual photons with k'WO, the
prescription for constructing the amplitude is the same
as requiring that the amplitude be invariant when the
virtual photons are transformed according to the irre-
ducible representation of the Lorentz group for spin-one
nonmassless particles. The gauge invariance condition,
k A =0, introduces no additional constraint in this case,
as noted above.
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