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Radiative Corrections to High-Energy Inelastic Electron Scattering*
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A method for calculating radiative corrections to high-energy inelastic electron-nucleus scattering is
presented. Thc method is Rpplicablc to thc CRsc %'herc only thc scattcrcd clcctron is detected at a given angle
and energy. As an example of this procedure, vie have calculated the radiative corrections to inelastic
electron-deutcron scattering.

I. INTROBUCTION may be quite large. In addition to this complication,
the matrix element for inelastic scattering is usuaBy a
rapidly varying function of the momentum transfer,
and one must consider the change in the momentum
transferred to the nucleus due to the emission of a
photon in either process 2(c) or 2(d). This is in contrast
to the elastic-scattering case @&herc the matrix element
is a rather slow&]y varying function of the momentum
tI'RDSf CI'.

''N this paper, @re present a general method for
1 ul tngradativecor ectio st '

cl teel ct
nucleus scattering. Thc experimental sltuRtlon thRt %'e

consider is that of a beam of electrons vrith a vrell-

de6ned energy being scattered through an angle 8, the
energy spectrum of the 6nal electrons being measured.

D addltloll to thc clRstlc peak» R coQtlnuous spectrum
of inelastic electrons is observed. , Rs shovrn in Fig. 1.

Thc dlagrRIns %'hich coDtI'lbutc to thc 1'Rdlatlvc

correction are shown in Fig. 2. Figure 2(a) represents
the basic process vrithout radiative corrections, Fig.
2(b) is the electron vertex modification, Figs. 2(c)
and 2(d) represent the emission of a real photon, and.

Fig. 2(e) gives the contribution due to vacuum polari-
zation. The "blob" in each of the figures represents the
interaction of a virtual photon vrith the target nucleus.

Since for elastic scattering the kinematics are
determined, the maximum energy of a photon @which

may be emitted in process 2(c) or 2(d) is limited by
the experimental quantity 3E, shovrn in Fig. 1. Several
authors'~ have calculated radiative corrections to
clastic electron scattering, the results being expressed
in terms of the initial and Anal electron energies, the
scattcrlng Rnglc, and thc cxpcx'1IQcntRl I'csolutloll AE.

For the continuous inelastic spectrum shovrn in

Fig. 1, one cannot dcdne experimentally a quantity
analogous to dL, hence the maximum energy of R

photon which may be emitted in process 2(c) or 2(d)

FIG. 2. DIagrams
contributing to the
radiative correction.

FIG. 1 Typical
energy spectrum of
6nal electrons, shovr-
ing the elastic peak
Rnd thc Inelastic coll-
tinuuIn.
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Bi

IQ order to simplify the CRlculRtlon of tlM radiRtlvc

corrections to the inelastic spectrum, @re have made an
artificial division of the photons emitted in 2(c) and

2(d) into soft and hard photons. Soft photons have an

energy less than 58 vrhilc hard photons have an energy
greater than 68, 68 being an arbitrary cutoff. This
division simpli6cs greatly the calculation sin,cc one may
ncglcct thc IGomcntuxn dcpcndeDcc of tlM IQRtlix

element for the basic process in calculating the soft-

photon contribution, %'hilc thc contribution froIQ hRrd

photons may bc cvaluRted caslly by assuming that
photons are emitted only in taro directions: namely,
thc dllcctlons of incoming Rnd outgoing clcctroDS.

Thc contribution of the soft photons is treated. in the
usual manner' vrhile the contribution of the hard

photons is calculated numericall, taking into account
the dependence of the matrix element for the process
on the momentum transfer.

IQ order that the calculation be valid, it must bc
possible to 6Dd a rRQgc of A5 %'herc thc I'csults of thc
calculation are insensitive to hb. %e have found that
it is possible to do this for the case of inelastic electron-

dcutcroD scattcrlng.

'D. R. Vcnnie, S. C. Prautschi, and H. Suura, Ann. Phys.
(N. V.) 13, 379 (1961).
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Fio. 3. Diagrmn representing the basic
electrodisintegration process.

P, PA

In the next section, we give the details of the method,
while in Sec. III an example of the application of this
method to the calculation of the radiative corrections
to inelastic electron-deuteron scattering is given.

II. METHOD OF CALCULATION

A general formula for the uncorrected inelastic
differential cross section has been given by Gourdin, 4

the result being expressed in terms of two inelastic
form factors Vo(q', W') and V&(q', W'). For simplicity,
Gourdin considered the case of electrodisintegration as
shown in I ig. 3.

We use the following notation: A=c=1, p; and pf
are the four momenta of the initial and Anal electrons.
Lp= (E,p) with p'=E' —p'j. p~ is the four momentum
of the target nucleus A, pe and po are the momenta
of the recoiling particles. q'= (P;—Pf)2, W~= (Pe+Pc)2
=q'+M~'+2M' (E; Ef). —

For relativistic electrons (E))m), Gourdin's result
for the diagram shown in Fig. 3 may be written in the
form

(
d'o n N~NeNo cos'(8/2) I'

dEfdQ o 2(2')3 M~ 4Ei2 sin4(8/2) W

XLVi(q, W )+2 tan (0/2) Vo(q, W )7 ~ (2.1)
I' is the magnitude of the three momentum of particle
8 in the center of momentum frame of the recoiling
particles. Ãg, E~, Eg are normalization coeKcients
defined by E;=M, for fermions of mass M;, E;= 2 for
boson s.

Although Gourdin's result is given explicitly for the
case in which the target nucleus breaks down in only
two particles, this form is valid for the general inelastic
cross section with an arbitrary number of particles in
the 6nal state.

As discussed in the introduction, in order to obtain
the radiative corrections to the inelastic cross section,
we divide the photons emitted into soft photons of
energy less than 68 and hard photons of energy greater
than 68. The radiative corrections due to the emission
of soft photons and the virtual photon contributions
shown in Fig. 2(b) and Fig. 2(c) may be obtained using

the results of Ref. 3. The result is

where
(

d'o ) d'o
— (1+6),

dEfdQ), .ii dEfdQ o

(2.2)

l—nl l
lnl ——1 —-', ln'l—

EE,Ef& Em2 EEf

13 f'q') 28
+—»l —

l

—. (2.3)
6 km') 9

The radiative corrections due to the emission of hard
photons are performed with the assumption that hard
photons are emitted in two directions: the direction of
incoming and outgoing electrons. The momentum
spectrum of the hard photons is folded into the mo-
mentum dependence of the matrix element; thus the
details of the interaction process are taken into account.

The T matrix for diagrams 2(c) and 2(d) is the
product of two matrix elements for the electromagnetic
current j„.

2'f'= (1/q') &pf»l jv I P'&&Pfipol j«I p~&. (2 4&

The first factor is
(Pf') (P")

&Pf» Ij.l Pi& =«"(Pf)v.g.(P')
(k pf) (k p,)

— sky„y„k�-
a+�,.(pf) + ii, (p,), (2.5)

2(k pf) 2(k p;)

where ii, (p) is a Dirac spinor describing an electron of
energy momentum p and spin s, and e is the photon
polarization.

We have to calculate lTf;l'. The summation on
electron spins is easily performed and the result can
be very much simplihed with the assumption that
photons are emitted only in the two directions pre-
viously discussed. This allows us to replace k„by
p;„(k/Ei) for a photon emitted in the direction of
incoming electrons, whenever k„occurs in the numerator
or in a scalar product not involving p;„ in the de-
nominator. LOne cannot, of course, make this approxi-
mation when k appears in the scalar product (k.p;) in
the denominator. ] Similarly, when the photon is
emitted in the direction of outgoing electrons, k„will be
replaced by Pf„(k/Ef) whenever possible. The result is

1. k//p;
e' tf eP 2(p,"pf) k km2

~=l & L&Pf»l j.lP &&Pf,kl j.lPi&*j= I
— + + +

2m' E (k pi)' (k p;)(k pf) E;(k p,) Ei(k p;)')

X (PivPfv+PivPfv (Pi'Pf)gvv) (PivPfv+PivPfv 2(Pi'Pf)gvvv)
(k p,)

2P' P'. (P' Pf)+ (2p;„p;„—p;„pf„p—;„pf„) . (2.6a)—
(k p;) (k p;)(k pf) E;

4 M. Gourdin, Nuovo Cimento 21, 1094 (1961).
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2. k//yr

e' —( m' 2(p; pr) k km'
+ + I(p'.».+p;,pr. (p-; »)g.,)

1 2pf pr (p*"pf)+ (p;„pr„+p;„pr„2(p—; pr) g„.)+ +- (p~„p..+pf„p'~ 2p—r~pf ~) . (2.6b)
(k pf) (k pr) (k p~)(k pr) Ef

er integration on photon angle, in order to get rid of the angular dependence in the denominators of expressions
(2.6a) and (2.6b), we get the very simple result

1. k//p;

2~e'-1( k ( 2E; ) k 2E;)
-I 1—

I
2ln

'
1 I+ — ln

I Lp'~pf+p' p~. (p' pr—)g"j
km' kk E; ~ m l E,2 m~

(2.7a)

2. k//pe

2~e' 1( k ) ( 2Eq) q k 2Eq)

, -I 1+—II »n
I
—1 I+ ln

I t;p'.p~+p' Pf. (p' phg—"3.
km' k( Erl I, m) ) Erm m)

(2.7b)

This tensor is proportional to the well-known tensor appearing in the basic process when no photon is emitted.
Thus it enables us to give the contribution from hard-photon emission as a function of the same inelastic form
factors that appear in the uncorrected cross section given by Gourdin. The result for the hard-photon contribution
is the sum of two terms. For each case there corresponds a diferent momentum transfer and energy of the recoiling
particles in their center-of-momentum frame. Thus, we define the following quantities:

(p;—pr —k)'= qp= q'(1 —k/E;) for k//y;;

(P; Pr k)'=—qf2=
—q'(1+k/Er) for k//pr.

Similarly, we de6ne the corresponding quantities W;, P,, k, , for k//p, and Wr, Pr, k,„~for k//yr.
Our result for the hard photon contribution is

d'0 ) n' N~NsNo coP(8/2) " ' ' P; 1
dk LV&(qP, WP)+2 tan'(8/2) Vp(q, '-, WP)]

t dErdQI h»e (2')' Mg 4EP sm'(8/2) ~a W; (1—k/E;)'

(2.8a)

(2.8b)

-1( k) ( (2E;y q k 2E;
X -I1—II »nl I

—1 I+—-» +
kE, E;l& E, mJ ) EP m

k y p
dk

'—
~e Wg (1+k/Ef)'

1( k) ( (2Ef) q k 2Ey
X[V (qfjWf')+2 tan'(8/2) Vp(qf Wr )] —

I
1+—II 2 lnI I

—1 I+ ln . (2.9)
k& Erf & k mJ j EP m

The final result is given by

(
d'~ ) ( d'0. d20

. (2.10)
dErdQ) ~t,,g (dErdQ 80gg dEfdQ h„g

As pointed out by Tsai, Eq. (2.9) could, in principle,
be used to determine the factors Vo and V~ from the
experimental cross section by means of an iterative
procedure; i.e., one first neglects the radiative correc-
tions in determining Vo and V~. Then the radiative

5 Y. S. Tsai, Proceedings of the International Conference on
Nucleon Structure, Stanford, June 1963 (to be published).

corrections are calculated using Eq. (2.9) and a new
set of form factors is found. The iteration is continued
until a consistent set of form factors is determined. In
practice, we feel that it is more feasible to assume a
model for Vo and V~ in order to calculate the radiative
corrections.

It should be emphasized that the validity of this
procedure is dependent on being able to find a cutoff
hb such that the total cross section is practically
independent of d, h over a large range of values. This
is indeed the case in our numerical results obtained for
inelastic electron-deuteron scattering, given in the
following section.



RAD I AT I VE CORRECTIONS TO ELECTRON SCATTERING 81035

TABLE I. Radiative corrections to high-energy inelastic electron-deuteron scattering. The results were calculated using a cutoff
68=5 MeV. For simplicity of notation, we have written {d'0./dhfdQ) as simply 0-. The quantity 6 is dined by the relation «rt, tal
=a'0(1 —6). All differential cross sections are expressed in F' MeV

339
197
936
586

jvf

285
143
623
273

60
135
60

145

2.48
2.47

14.95
14.92

1.33 X10 '
2.195X10 '
2.86 Xio 8

7.2O X10-e

0 soft

1.11X10 '
1.90X10 7

2.15X10 8

5.70X10 '

&hard

01 X10 8

1.08 X10 '
3.675X10 '
8.72 Xio—10

&total

1.18xio e

2.01X10-7
2.52 X10—8

6.57X 10-&

0.11
0.08
0.12
0.087

TABLE II. Effect of the variation of 6 8 on the corrected cross section. The notation is the same as that of Table I.

475
401
352
283

Ff
377
302.5
254
185

60
75
90

135

4.59
4.61
4.58
4.58

68=3 MeV

3.80X10 7

2.37X10 '
1.66X10 7

8.11X10 8

b, 8=5 MeV

3.78X10-'
2.36X10 7

1.6SX1O-7

8.10X10 '

&total

we=10 MeV

3.78xio '
2.36X10 '
1.65X10 7

8.12X10 '

b, 8=15 MeV

3.80X10 7

2.37X10 '
1.66xio 7

8.17X10

III. ILLUSTRATIVE EXAMPLE

As an example of the application of this procedure,
we have calculated the radiative corrections to inelastic
electron-deuteron scattering. The model we take for
Vo and V~ in this case is that given by Durand. ' In
this model, the deuteron is assumed to be in a pure 5
state and to be adequately represented by a Hulthen
wave function. No anal-state interaction between the
Anal nucleons is taken into account. Although this
model is perhaps not the best available, it is sufhcient
to give a very good first approximation to the shape of
the inelastic electron spectrum, which is all that is
required for the calculation of the radiative corrections.
Neglecting the interference terms which give a negligible
contribution, Durand's result may be written in the
form

P's(P qs) —4(4rr)2~+2(2~ e) (qs/4~2)P(F ++ Fs )2

+(Fr +IF&s )']I( ,P)q, (3.1a)

Vr(P, q') =4(4s)'nlP(2M —e))F,„s+F, s+(qs/4Ãs)
)& (E 'Fs„'+It „'Fs„')7I(P,q'), (3.1b)

where

The neutron form factors F~„and F2„are obtained
from the inelastic electron-deuteron experiments and
in principle may be determined only after the radiative
corrections are known. However, the results for the
radiative corrections are quite insensitive to the exact
value of the nucleon form factors. In our calculation,
we have used the form factors given by DeVries
et al.'

Some typical results of the calculation are given in
Tables I and II. Note that, from the results of Table
II, a value of 3,8 can be found such that the total
corrected cross section is independent of this parameter
over a wide range.

Our method for calculating radiative corrections has
been employed to calculate the corrections to the shape
of the spectrum of inelastic electron-deuteron scatter-
ing. A typical result is shown in Fig. 4. Although it is
dificult to estimate the errors introduced by our
approximations, we believe that the over-all result is

4.0—

1 1 1
I(P,q') = +

P'q' (x' —1) (y' —1)

(*—1)(y+1)—
+— 1n

(y —*) (*+1)(y—1)-
x= (n'+P'+q'/4)/Pq; y= (P'+P'+q'/4)/Pq.

The Hulthen wave function of the deuteron is

g -~~a ~
—Pi-

FzG. 4. Energy
spectrum of Anal
electrons following
the electrodisintegra-
tion of deuterium.
The incident energy
is 475 MeV and the
scattering angle 60'.
The dashed curve
shows the uncorrect-
ed spectrum based on
the Durand's theory,
while the solid curve
shows the corrected
spectrum.

3,0

CU~ 2.0
+o

b

I.O

(4 ). / r

The proton form factors Fj„and F2„are determined
by the elastic electron-proton scattering experiments.

' L Durand, III, Phys. Rev. 123, 1393 (1961).

I I ~ I I I I

330 340 350 360 370 380 390 400
Ef (Mev)

'C. DeVries, R. Hofstadter, and R, Herman, Phys. Rev.
Letters 8, 381 (1962).
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of the same degree of accuracy as the calculations of
radiative corrections for elastic-scattering processes.
%e have, however, throughout this treatment neglected
the emission of photons by the heavy particles. This
process may become important for very energetic
electrons; further calculations would be necessary in
that situation.
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The fundamental statement of relativistic invariance for scattering amplitudes is that the amplitude re-
mains invariant when the momentum and spin variables of each particle are transformed according to the
corresponding irreducible, unitary representation of the inhomogeneous Lorentz group. To "construct an
amplitude" is to 6nd the most general function that has the required transformation properties. This con-
struction, which had been previously eGected for any number of massive particles of arbitrary spin, is
extended here to include massless particles of arbitrary spin as well. In the case of photons, the resulting
formalism is compared with the usual one that makes use of transverse polarization vectors and a gauge-
invariance condition. The two formalisms are proven to be equivalent. It is concluded that the gauge condi-
tion is superRuous as an independent physical principle for the purpose of constructing amplitudes. Its use
in the conventional formalism is simply a way of imposing the Lorentz-transformation properties appropriate
to massless particles. In an Appendix, the known analogous construction for massive spin-one particles is
shown to be equivalent to the usual formalism, and the requirement of Lorentz invariance is shown to be
equivalent to the usual prescription for virtual photons as well.

I. INTRODUCTION

N the analysis of scattering phenomena, the funda-
& ~ mental quantity is the scattering amplitude. It is a
function of the momenta of the various incoming and
outgong particles and a 6nite dimensional matrix in the
spin space of the various particles. The total dimension-

ahty of the amplitude is the product of the dimension-
alities of the spin space of each particle, so that a partide
of finite mass and spin j (j=O, 2,1 . .) contributes a
factor 2j+1 to the total dimensionality, while a mass-
less particle contributes a factor 1.Massless particles of
opposite helicity are counted as diferent particles, since
no proper I.orentz transformation, which is what relates
diferent physical observers, mixes these states.

Each particle corresponds to an irreducible unitary
representation of the inhomogeneous Lorentz group.
Under a Lorentz transformation, the amplitude remains
invariant when the momentum and spin variables of
each particle are transformed according to the corre-
sponding representation. This is the fundamental state-
ment of Lorentz invariance for scattering phenomena
and is expressed mathematically below. BP "construct-
ing a scattering amplitude" is meant finding the most

~ Present address: Centre O'Etudes Nucleaires de Saclay,
Gif-sur-Yvette, Seine et Oise, France.

general matrix of given dimensionality that has the
correct transformation properties. In practice, this is
accomplished by expressing the amphtude as a finite
sum over a minimum number of spin matrices multiplied

by I orentz scalal coeKclents. It ls these spin Inatllces
with the correct transformation properties, that are
actually constructed.

The reasons for basing the construction on I.orentz
invariance alone are twofold. On the one hand, the
method is direct and provides a uni6ed treatment for
all spins. On the other hand, it is important in the con-
frontation of theory with experiment to lay bare the
logical foundations of the theory so that it is clear when

a general postulate, such as Lorentz invariance, is being
tested, rather than more-particular assumptions. In the
literature, one 6nds most commonly an alternative
method. Namely, the most general invariant operator is
constructed that may be sandwiched between eigen-
functions of the free-6eld equations corresponding to
the various scattered particles. This method is perhaps
more cumbersome, since the number of 6eld components
is in general larger than the number of spin states,
particularly for large spin. Also, the free 6eld corre-
sponding to a given spin is not unique. ' More im-

E. P. Vhgner, Theoretical I'bye s (International Atomic
Energy Agency, Vienna, 1963), p. 60.


