
A970 S H I N —R L I N

TAsLE XIV. Same as caption for Table XIII except copper is replaced by gold.

a (deg)

30
60
90

120
150

do/dQDs

7.493X10'
5.351X10
1.148X10'
3.961X 102
1.953X10'

T=200 keg
da/d~s

6.236X 104
6.653X 103
1.965X10'
8.504X 10'
4.886X 10~

Z=79

do/d~a

6.996X10'
6.738X10'
1.940X 10'
8.241X10'
4.653X 102

do/done

2.611X105
1.910X104
4.339X10'
1.649X 10'
9.144X 10'

T=100 keV
d0/dos

1.787X10'
1.970X104
6.381X10'
3.236X19'
2.227 X10'

d0/doc

2.250X 10'
2.059X10
6.267X10'
3.032X 103
2.016X10'

S would not change more than 10'Po even if we changed
the potential from the one-term exponential to the
three-term exponential potential or to the Hartree
potential.
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A numerical calculation has been carried out to evaluate the 3X3 cross-section matrix involved in the
electron impact excitation of the ground state of H atom to the 2s and 2p levels. The method of solution
is that of atomic eigenstates expansion. In this paper, instead of the iterative technique used by other
authors, the de6nite integral terms in the coupled radial differential equations are eliminated through some
linear transformation of the radial functions, thus avoiding iteration of these equations. The accuracy of
the numerical integration is tested by satisfying the equation of reciprocity and the equation of continuity
of currents with an error-to-value ratio less than 1 per 1000 on the average; and the maximum of this ratio,
except for a few cases, has been kept below 5%.The results are in agreement with the results of an iterative
technique. To evaluate the effect of the long range and the centrifugal potential, a simple perturbation
theory is developed. The six cross sections 1s~2s, 1s~2p, 1s~1s, 2s —+2s, 2s —+2p, and 2p —+2p are
tabulated elsewhere, only the 2s ~ 2p and the 2p ~ 2p cross sections are reported here. The 2p —+ 2p cross
section requires the solution of the sets of differential equations with different parities. Assuming the validity
of the eigenstates expansion, it is found by comparison with the eigenstates expansion calculation that the
Born approximation, despite its simplicity, gives meaningful results for low and close-to-the-threshold
energies of the bombarding electrons. The effect of the exchange potentials on the cross sections is also
investigated. Finally, an interesting structure of the 1s ~ 2s excitation cross section above threshold is found.

I. INTRODUCTION

1

CALCULATION of the excitation cross sections in~ atomic hydrogen by electron impact corresponds
to the solution of the problem of three interacting
bodies: one proton and two electrons. By taking the

position of the proton as the center of mass, the problem

will reduce to the task of 6nding the nonseparable wave

function of the system of the two electrons with an
attractive center of force. Such solution has not been

found. However, if this wave function is expanded in

terms of the eigenstates of the hydrogen atom, the

coefficients of the expansion, which are functions of the
position vector of the free electron, can be found through
numerical integration. When an infinite number of terms
are included in the expansion, the solution to the prob-
lem is exact. Furthermore, the expansion has the
advantage that the asymptotic form of its coefficients
are automatically the asymptotic form of the free-elec-
tron wave function scattered from diferent atomic
states, which are simply related to the excitation cross
sections.

In this paper atomic states 1s, 2s, 2p are included in
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the expansion and, by antisymmetrizing the two elec-
tron wave functions according to the exclusion principle,
some contribution from the continuum in the expansion
is also taken into account. The first calculation of this
type was performed by Marriot, ' whose expansion con-
sisted of the 1s and the 2s states in order to calculate
the 1s —+2s transition cross section. This calculation
was extended by Smith' to higher total orbital angular
momenta of the system. Percival and Seaton' have
formulated the eigenstate expansion technique in
general, and have tabulated the coefBcients of the
integrodifferential equations for s, p, and d atomic
electrons. Burke, Smith, and Schey, 4 using the equations
of Percival and Seaton for the three states 1s, 2s, 2p,
have integrated the resulting integrodifferential equa-
tions. In this paper we solve the same differential
equations by a linear transformation of the differential
equations in order to avoid the need for iteration of
these equations. '

The numerical integrations were carried out for all
partial waves, while in higher partial waves the Born
approximation were used. The transition between the
eigenstates expansion calculation and the Born approxi-
mation takes place when the results of the two calcula-
tions agree closely.

PE—E7&(rt,r,)=0, (2.1)

where r~ and r2 are the position vectors of the bound
and the free electrons and, in atomic units,

1 1
H E= ——,

' Vts —-', Vss ——+
~1 ~2 ~12

E, (2.2)

' R. Marriott, Proc. Phys. Soc. (London) 72, 121 (1958).
' K. Smith, Phys. Rev. 120, 845 (1960).
3 I. C. Percival and M. J. Seaton, Proc. Cambridge Phil. Soc.

53, 654 (1957).' (a) P. G. Burke and K. Smith, Rev. Mod. Phys. 34, 458 (1962).
(b) P. G. Burke, H. M. Schey, and K. Smith, Phys. Rev. 129, 1258
(1963).' Similar calculation has been carried out by R. Damburg and
R. Peterkop, Proc. Phys. Soc. (I ondon) 80, 563 and 1073 (1962).
Here the 1.=0, 1 cases have been solved by noniterative, and all
other cases by iterative, methods.

II. FORMULATION

A. Derivation of the Differential Equations

Since spin-orbit interaction of the electrons are
neglected, the total orbital angular momentum I. and
the total spin angular momentum S are separately
conserved. We can then divide the interactions into
antiparallel spin states, where 5=0, and parallel spin
states, where S=1. In this way we deal with spatial
wave functions of the electrons only, and for brevity
we call the orbital angular momentum the angular
mon&em)Nm.

Neglecting the motion of the proton and taking its
position as the origin of the coordinate system, the
Schrodinger equation for the system can be written

where E is the total energy of the system and r~2 is the
distance between the two electrons. We expand the total
wave function it (rt, rs) in terms of the eigenfunctions of
the total angular momentum L,

(2 3)

Since these eigenfunctions are orthogonal, substitution
of Eq. (2.3) in Eq. (2.1) gives

E34'L {rl rs)

The explicit form of f&(rt, rs) is given by

(2.4)

tpL(rl r2) = (1+pP12) Q Q C at p(Slllttsl rl)
&1~1~2 ~1~2

Xrs-'N(k„,ls, r,)I"t, ,(Q,), (2.5)

(p(%1/lttsl rl) =rt 'P (erat, rt) Ft (Qt) ~ (2.6)

Here q (tstltmtrt) is the hydrogen atom wave function
with radial part rt 'P(ntlt, rt) and angular part Ft,„,(Qt)
and quantum numbers nltmt, rs 'I (k„,ls, rs) is the radial
part, and Yt,„,(Qs) is the angular part of the free-
electron wave function with quantum numbers k„,l2m2.
The relation between the wave number k„,and n~ is
given by

k, '=2i E+( 1

2tsts
(2.7)

Finally the constants Cm 2M' "n——(lt4ttstttts
~
LM), with

M representing the total magnetic quantum number,
are vector coupling coeKcients which make the linear
combination of the products of the one-electron wave
functions in Eq. (2.5) the eigenfunction of the total
angular momentum I.. In the problem under considera-
tion et ——1, 2; lt ——0, 1; la= ~L—/t~, ~, (L+lt(;
m~= —l~, , l~ and m2= —l2, , l2. To make the
total wave function symmetric for antiparallel spins or
antisymmetric for parallel spins, the operator 8~2 inter-
changes rt and rs while P is +1 for the 6rst case and is—1 for the second.

By taking L perpendicular to the s axis M=O and
ms —— tnt, Eq. (2.5) can t—hen be written

8 4n*(rt, rs)LH —E]pr, (rr, rs)dsrtd'rs ——0. (2.9)

Percival and Seatons have evaluated Eq. (2.9) and
have derived the differential equations for the scattering

Pr, (rt, rs) = (1+PPts) P Q C„, ,s"" p(tstltttst, rt)
+1~1~2 ~1

Xra 'u(k„,ls,rs) Ft,„,(Q,) . (2.8)

In order that itn(rt, rs) closely approximates the exact
wave function, we minimize the expectation value of the
energy operator with respect to the radial parts of the
free-electron wave functions
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of free electrons by atomic s, p, and d electrons in
hydrogen atom, using the theory of the irreducible
tensor operators in order to evaluate the interaction
terms between the two electrons. The result is a set of
coupled second-order differential equations which are
functions of thc ladlal cooldinatc of thc flcc clcctlon.
We have evaluated Eq. (2.9) independently using
ordinary methods, and have veri6ed the results of
Percival and Seaton. '

%hen the integrals representing the direct potentials
in the coupled set of differential equations are evaluated
and some change is made in the limits of the exchange
potential integrals, these equations can be written in the
following matrix form:

If' l„(l„+1)
+k '— — u(k E„,r) =2Vu(k„l„,r). (2.10}

dr'

The components of u are the radial functions of the free
electron, and V is the potential matrix. u has four
components when I.—/1 —/~ is even and one component
when this is odd. Similarly V is a 4&4 matrix when

I—/1 —/2 is even and it has one component when this
quantity is odd. The case 1.=0 is an exception. Here
wllc11 I—/I —ls ls cvcll Il has thicc conlpo11ellts aIld V 1s

a 3&(3matrix, and the case 1.—/1 —/2 odd does not occur.
V can be written as the sum of three matrices,

Vy=D;, +E;;,

&;;=F;;+g g;;" k;;"dr,
pc=1 0

(2.11)

vrhere D;y is the direct potential and E;; is the exchange
potential and both are functions of r. The matrix E;;
contains in addition integrals with respect to r, and for
the purpose of numerical integration it can be written
as the sum of two matrices. The explicit forms of D;;,
E;;, g;;", and h;;" are given in Appendix I. The value of
0 is 2 for i= j=3 and i= j=4, and is 1 for all other
values of i and j.It is understood that for the exchange
terms the components of u on the right-hand side of
Eq. (2.10) are inside the integrals of the exchange terins.

Below we discuss the general solution of Eq. (2.10)
when it has four components.

3. Decomposition of the Dififerential Equations

If it were not for the definite integrals appearing in
the potential matrix V, the set of the four coupled
differential. equations (2.10) could be integrated by any
standard technique. The presence of these unknown

constants whose integrand involve the unknown func-

tions makes it necessary to solve these equations by
iteration or by transformation of u into other vectors,
whose differential equations do not contain de6nitc

6 K. Omidvar, Technical Note 6-419, Goddard Space Flight
Center, National Aeronautics and Space Administration, 1963
(unpublished}.

integrals. Since the terms containing de6nite integrals
are small as compared with the direct potentials, the
iteration method can be used by assuming that the
values of these integrals are zero. The differential equa-
tions are then integrated, the values of the definite
integrals that are subsequently obtained are substituted
in the di6'erential equations, and the integration is
repeated. The process is repeated until suQiciently con-
sistent values of these integrals are obtained. This
method is useful if the convergences of the constants
are fast enough and the cross section is not very sensitive
to the values of these constants.

In the second method, the transformation of u Axes
the values of the constants and thus avoids iteration,
whereby the computation is reduced considerably. %C
have used the second method and the description of the
method will be given here. ~ '

By making use of Eq. (2.11), Eq. (2.10) can be
wl'lttcn

ds i;(f;+1)
+k;s-

dr'

= 2 E 5(D;;+F;;)I;+g g,; C;; ), (2.12)

where

kgv(r)e; (r)dr, (2.13}

d' l;(f;+1)
+k,s-

dr

4

v; =2 Q AD;;+ F;;gw;,

+kP—
dr'

f;(f;+1)- 4

I;s'=2 g $D;,+F;;5m;"

+28(s,k)gsi". (2.15)

Then I; is given by the following expression:

4 4 e

I;=e;+p p p Csi"I,".
k~1 /~l v~1

(2.16)

Equation (2.16) can be verified by multiplying Eq.
(2.15) by Csi", summing over k, l and v, and adding to
Eq. (2.14), whereupon Eq. (2.12) results. Substitution

"I K. Omidvar, Research Report No. CX-37, p. 22, Inst. Math.
Sci., ¹m York University, 1959 (unpublished).

See Ref. 1.This description di8ers from the description of Ref.
7 and the present paper. In Ref, l„e;in Eq. (2.16) is set to zero;
this makes 8,;&=0. Eq. (2.17} then reduces to a set of homoge-
neous equations a&hose determinant must be zero. Since the ampli-
tude of any of the 4 components of u can be left arbitrary, one
of the Cqp is set to 1 and the rest of the constants are found
subsequently.

Qle introduce the functions e; and u;~' that are solutions
of the following diAerential equations:
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of Kq. (2.16) in Eq. (2.13) gives

4 4 sg

Q P P $8(ijp„klo) A;—,o"']Csi"=B; o

k~1 l~l v~1

pow'er series in r,

is . .vr8j+v
ZJ .

p

gs~0
(3.3)

i, j=1, 2, 3, 4;

fs=1, 2 for i= j=3 and i= j=4; (2 17)

p, = 1 otherwise,

where A; I"~' and J3; & are defined by

where e;;"are the coeScients of the expansion and s; are
given integers for each component of u and are 6xed by
the behavior of Eq. (2.10) at the origin. Equation (3.2)
is satisfied near the origin if

By choosing suitable values of u;;0, subject to the re-
striction (3.4), four independent solutions are obtained.

g . .P|f:l— h;;&m;~'dr,

(2.18) B. Solution at Larger r

5;;I'e;dr.

III. NUMERICAL INTEGRATION

A. Solution at the Origin

Equation (2.10) or its equivalent, Kqs. (2.14) and
(2.15), constitute a set of four coupled, second order,
differential equations. Three components of u can be
eliminated from these equations, resulting in an 8th
order differential equation for the remaining component.
Therefore there are eight sets of solutions to Eq. (2.10).
However, only half of these solutions are regular at the
origin. Each of the four regular solutions corresponds to
a de6nite vector u. The four vectors can properly be
represented by a 4X4 matrix I;;,i, j=1, 2, 3, 4, where i
corresponds to a particular component and j corre-
sponds to a particular solution of u. In order that the
four solutions of u be independent of each other, we
must have

P Cm;;HO, i=1, 2, 3, 4, (3.1)

where C; are some constants. A necessary condition for
this to be satisfied is that the determinant of Eq. (3.1)
be nonzero,

(3.2)

It is not difBcult to see that this also is a suKcient condi-
tion. At the origin the solution e;; can be expressed as

The numerical integration is carried out by integrat-
ing Eqs. (2.14) and (2.15) by any standard method,
calculating A;;&s' and 8;;& by Eqs. (2.18) and, 6nally,
solving the system of 18 algebraic equations given by
Kqs. (2.17) to find C&i". With the known values of
these constants the integration of Eqs. (2.12) is
straightforward.

The determinant of Eqs. (2.17) becomes singular for
1.=0 and 1. To remove the singularity, some of the
C~l" are chosen arbitrarily, and the rest of the CI,l" are
found in terms of the chosen ones (cf. Appendix II).

With the solution found at the origin, the solution of
Eq. (2.10) or its equivalent, Eqs. (2.14) and (2.15), can
be extended from origin through numerical integration
to any desired value of r. In order to obtain the asymp-
totic amplitudes and the phase shifts, the presence of the
centrifugal and the long-range potentials, which fall o6'

as r—', make it necessary to extend the solution to
infinity. This is undesirable because of the time con-
sumption on the computer, and the acapnulated errors
due to the long-range integration. Seaton' has solved
the problem of r ' long-range potentials occuring in the
off-diagonal elements of the potential matrix V by
diagonalizing the asymptotic form of the di6'erential
equations (2.10) and the corresponding 8 matrix. By an
inverse transformation the elements of the original S
matrix are found. Burke, Schey, and Smith have used a
different method. "

Instead, we develop here a perturbation theory which
is based on the method described by Mott and Massey. "
The error in the resulting solution is inversely propor-
tional to the square of the distance from the origin.

Equation (2.10) for large distances of r can be written

d2

+k ' u(k f,r)=2Vu(k„l„,r),
dr'

(3.5)

where V is the sum of the centrifugal potential matrix
and the asymptotic form of the V matrix. The elements
of V are given in Appendix III. A component of Kq.
(3.5) is of the following form:
—d'2

+k' ss(r) =g(r),
dr'

g(r)«k'ss(r), g(r) -+ 0 as

(3.()

The perturbation theory is applied between some large
distance E and infinity. Let Ivanish at E; then we have

' M. J. Seaton, Proc. Phys. Soc. (London) 77, 1'N {1961}."P.G. Burke and H. M. Schey, Phys. Rev. 126, 147 (1962);
see also Ref. 4(a).

»N. F. Mott and H. S. %V. Massey, The Theory of Atomic
Co/ lsssoas (Oxford Press, Oxford, England, 1949), 2nd ed. ,
Chap. II.
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Eq (3.14) givesthe following boundaryr condition:

u(R) =0. (3 7)

us solution of Eq. (3.6)e re resent the homogeneous so
by y(r), at infinity we m

y (r) = a sin(kr —kR),
(3.8)= a+ha) sin(kr —kR+rj),u(r) (

( ) if (r) were identically
d. b ().R

litudeofur i gr '
ll

nd Da and g are generate

3.9)
small, we can write

39 inw ere
'

ction. Substitution of Eq. 3.where f is a small function. u s i
Eq. (3.6) gives

d df')—y'—
I =g(r)y,

dr dr)

i

1
+ cos(kr kR) ———

s. i3.8 and Eq. (3.13)f the second of Eqs. . aComparison o e s
shows that

g(r) sin(kr —kR)dr . (3.13

00

aa=- g(r) cos(kr —kR)dr,k. '

we obtaindouble integration, wwhere, upon ou e

r' dr'. (3.11)
zP

nts o i
'

fixed by the conditionnts of integrations are xe

F dr F I'

en
'

io
'

ct to y is carried ou,
E (3.9), ob

ion with respec o
and the resu isan lt substituted in q.

g(r) cos(kr —kR)dru(r)=sin(kr —kR) a+- g r

Rs

ha;= —P—
7 k'

RsJ

R dr,cos k,r k&—,)U;, sin(k, r—k;R;

(3.17)

in k r k;R. ;—)U;; sin(k, r k;R;—)dr.

easi d b substituting theeasi e calcu ate y s
va u;; A endix III, integrating the resu-

the leading terms.
d d h h ifts areThe asymptotic amplitu es an

given by

a;(~)=a;(R;)+ha;,

L—b(i,3)+b(i,4)js/2,
(3.18)

b'(-)-b, (R,)+~,+L

litudes and totalnd b, R;) are the ampli u l
b h hi, dhifts calculated at E; y e m ', w erephaseshi s c

b(i,3) and b(i,4) are e

l,~
u,;(r) a;, sin (3.19)

are related tocattering matrix „a
"Th o to" throu h linear relations.

' '
n is then given by'2for t emth m —+ e transition is

(3.20)
k '(2l,+1)

(3.21)T„„=s„„—S„„,
num erin '

elflande
'

number in the initial channeh k is e wave
entum uan uml& is the angular momen q

atom in the initial state ns.

D. A Useful Relation

he Cross SectionC. Derivation of the
'

n of the long-range poteotentials to
h' t are added to thesethe amplitudes an

l integration, we 6nvalues calculate yd b the numerica in
the asymptotic form of u;;,

(3.14) f the interactionn the symmetry o

. (2.10) i bof the ith component of u by Eq.
d' (l,+1)+k' —l uji ——;,u;i,

t&

00

g(r) sin(kr kR)dr, —

r) in the four differentiato first or er.d The functions g(r in e
equations (3.5) are given by

gs;(r) =2 P U,;u;. (3.15)
(3.22)

d r this can be written by

g'(r =)= 2 ~ a'Ujj sill(kjr j j

or the last time~ has become zero orw ere; has
f hi tiowith positive slope. u . IIB. See also Refs. 4."See Ref. 6, Sec.

d' (l~+1)-
+k,2—l, u;j, ——;,u;„.

2 r2 7

nd b u )7

3.16)
rst b u;I, and the second yM ltiplying the 6r y

subtracting t e wo ansu r h two expressions, an s
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g;s—g;&—g, ~
—g;s ——Q V;;[g,sg;~ —g, tg;s] (.3.23)

t& Gr

Qo $2

g;&—g;& g;& dr=0.
dr' dr'

(3.24)

By integrating the above equation by parts and apply-
ing Eq. (3.19), we obtain

%=1

k, l= 1, 2, 3, 4, k@l.
(3.25)

Although the terms containing the exchange potentials
do not cancel out on the right-hand side of Eq. (3.23),
the cancellation does take place after the integration
is carried out in Eq. (3.24).

Since V;,=V;;, the interchange of the summation
indices changes the sign on the right-hand side of the
equation, the right-hand side must therefore be zero.
By integrating the left-hand side from zero to in6nity,
wc obtain

6nal increment of integration. In some exceptional cases,
different values were used.

hi= iX10 ',
hf =0.05,

~= 1X10-4,

Rj =30,
Rg ——200.

All quantities are in units of Bohr radius except e, which
is dimensionless.

IV. RESULTS AND DISCUSSION

The four differential equations listed in Appendix I
were integrated numerically by the methods described
in Sec. III. By choosing diferent values for the deter-
minant (3.4) different sets of independent solutions can
be generated. The cross sections reported in this paper
have been obtained by averaging the cross sections
obtained from two independent sets of solutions. To test
the accuracy of the numerical integration we de6ne the
three quantities D „,D „'and D "given by

D„„=
I g k,a;„a;„sin(b;„—8;„)I/

E. Details of the Numerical Integration

Milne's" method with variable mesh size and
Simpson's" rule were used for the integration of the
differential equations and evaluations of the integrals,
respectively. As the solution advances from the origin,
the differential equations become less sensitive to the
size of the increment, and the error of integration falls
below certain small number ~. At each value of r the
value of the function is found, first with the given value
of the increment, and second with the value of the
increment divided in half. The error of integration is
de6ncd as the difference between these two solutions.
%hen the error becomes small, the increment is doubled
until a maximum value is reached. At some distance Rl
all the exchange potentials and, similarly, all the direct
potentials except those representing optically allowed
transitions and the 2p-+ 2p elastic scattering potential
become vanishingly small (see Appendix III). At this
distRncc thc sct of thc differential cquRtlons ls lcplRccd
by the simpIer set containing only these potentials. The
integration is continued until some distance R2, where
the 6rst-ordcr solution of the rest of the range of inte-
gration is obtained by the method developed in Sec.
IIIB. No attempt was: made to solve any set of linear
cquRtlons or Rny matrix cquRtlons, -as thcsc cquRtlons
are solvable by the computer in their original form.

The values of the constants-of the numerical integra-
tion are given below; hi and hj are the initial and the

"W. E. Milne, 1VNmerical Calculus (Princeton University
Press, Princeton, ¹w Jersey, 1949), See. 40.

'4 See Ref. 13, Sec. 33.

Q k;u; u;„lsin(8;„—8;„)I,
ns, n=1, 2, 3, 4, nsWn, (4.1)

D '=, rn, n=1, 2, 3, 4, nrWn, (4.2)
I5'-I+I5'-I

D-"=
I 2 I5'-I' —ll/215'-I'+1,

1 1

(4.3)

Based on Eqs. (3.25), the symmetry, and the unitary
property of the 5 matrix, in an exact solution of the four
differential equations the right-hand side of these
equations would vanish; they can therefore be used to
test the accuracy of the numerical integration. As an
illustration the numerical values of D „,D „',and D "
for the case of 1s—2s—2p coupling, p=+1, kr ——2.0, and
I.=3 are given below:

D„=1.4X10-3, D,3=2.6X10-4, D,4=1.3X10-3,
D23= 5.1X10 4, D24= 2.2X 10—', D34= 1.8X10 ',
Drs'=7. 6X10 ', Drs'=5. 1X10-, Dr4'=5. 6X10 ',
D23'=5.4X10 ') D24'=5.7X10 ', D34'=1.3X10 ',

Dg"=1.8X10 ', D "=7.6X10 ',
D,"=2.5X10-4, D,"=4.4X10-6.

To compare the results of the numerical integration
by noniterative method as we have carried out here
with those of iteIg, tive method of Refs. 2 and 4 we have
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TABLE L Comparison of the iterative and the noniterative re-
sults for the singlet, I=0, 1; k1 ——0.9, 1.0, is ~ 2s excitation cross
section. I and II refer to interative and noniterative methods,
respectively. D is the maximum of the error to value ratios in
the reciprocity relationships.

A. is-2s coupling
Q1a 2. D, (percent)

I III II
0.90
1.00
0.90
1.00

0.0384 0.0375
0.0714 0.0725
0.008 0.0017
0.051 0.0583

7.1 0.72
unknown 0.53

386 0.91
55 0.75

0.90
1.00
0.90
1.00

B. 1s—2s—2p coupling
Ql @~2' D~ (percent)

I II
0.40 0.40
0.12 0.60
2.3 10
0.33 1.3

Ib . II
0.0529. 0.523
0.0766 0.0/68
0.0045 0.0048
0.0145 0.0147

a See Ref. 2.
b See Refs. 4(a), 4(b).

0.8

0.7—

0.6—

cuo
g~ 0,5—

O
1- 0.4—
UJ
CP

CO

CO

~ 0.5—CO

0.2—

0.1—

provided Table I."The 1s —+ 2s excitation cross section
is given by the two methods. Methods I and II refer
to the iterative and noniterative methods, respectively,
and D is the maximum of the error to value ratios in
the reciprocity relations (4.2). In the 1s—2s eigenstates
coupling approximation the noniterative method is far
more accurate than the iterative method, and as is seen
the cross sections by the two methods dier from each
other sometimes in their 6rst signi6cant 6gure. In the
1s—2s—2p eigenstates coupling approximation, on the
other hand, the results by the iterative method seems
to be somewhat more accurate. The reason is contri-

buted to the eGect of the r-' long-range potential which

appear in the differential equations when in the eigen-
states coupling approximation the 2p state is included.
Two diferent methods are used in Refs. 4 and the
present paper to estimate the effect of this potential for
large distances, and it may be that in Refs. 4 this eGect
is better accounted for. Nevertheless the cross sections
are the same in thy'r 6rst three decimal places.

In Fig. 1 we present the theoretical and the experi-
mental estimate of the 1s -+ 2s excitation cross section.
The calculated curves are Born, 1s—2s coupling,
is—2s—2p coupling exchange neglected, and 1s—2s —2p
coupling exchange included, approximation. The first
three of these curves are the same as Refs. 4(a) and
4(b). The experimental curves are those of Lichten and
Schultz, '6 and Stebbings, Fite, and Hummer. '~ The
various calculated results agrees better with the results
of Lichten and Schultz. However, recent calculations of
Taylor and Burke" have shown that, in an eigenstates
expansion calculation where 1s, 2s, 2p, 3s, and 3p are
included, the cross section at the peak of the 1s—2s—2p
curve is reduced by 30%. This suggests that, within
eigenstates expansion approximation, more states
should be included to insure that the convergence has
been achieved; and the discrepancy between the two
experimental results is still an unresolved problem. As
another theoretical approach to the problem, H. L. Kyle
and A. Temkin" have extended the nonadiabatic theory
of scattering developed by A. Temkin" to the 1.=0,
1s~ 2s inelastic scattering of electrons by the hydrogen
atom. They 6nd a 30% decrease in the 1s~ 2s cross
section as calculated by the 1s—2s close coupling
approximation.

Comparison of the exchange neglected and exchange
included 1s—2s —2p coupling shows that exchange is

mostly important at threshold, and its eGect d'oes not
extend beyond 20 eV.

The 1s=+2s excitation cross section in the singlet
state has an interesting behavior irronediately above
threshold. In Fig. 2 this cross section for a range of 600
meV above threshold is plotted. In the 1s—2s coupling
approximation a maximum appears at 34 meV while in
the 1s—2s—2p coupling approximation there are three
maxima of approximately the same magnitudes at 17,
34, and 87 meV, respectively. In the singlet case the
cross section rises sharply within a range of 17 meV
above threshold to a value of about 0.0kruo'. It then
rises with an approximately constant and small slope.
The contribution of the triplet case is seen to be almost

1

0 5 10 15 20 25 50 &5 40 45 50 55
ELECTRON ENERGY teV)

FIG. 1. is ~ 2s total excitation cross section. 1s—2s refers to
is—2s eigenstates coupling approximation. is—2s—2p has similar
meaning. EX. NEGL. refers to exchange neglected case. BORN is
the Born approximation. EXP. refers to experiment.

"I am indebted to Dr. K. Smith for sending me some of the
data in this table.

"W. Lichten snd S. Schultz, Phys. Rev. 116, 1132 (1939).
'7 R. F. Stebbings, Wade L. Fite, David G. Hummer, and R. T.

Brackmann, Phys. Rev. 119, 1939 (1960).
' A. J. Taylor and P. G. Burke, in Bulletin of the Third Inter-

national Conference on the Physics of Electronic and Atomic Colli-
sions, University College, London, July 1963 (unpublished).

~9 H. L. Kyle and A. Temkin, in Bulletin of the Third inter-
national Conference on the Physics of Electronic and Atomic Colli-
sions, University College, London, July 1963 (unpublished).

"A. Temkin, Phys. Rev. 126, 130 (1962),



2s AN 0 2p ELECTRON I M PACT EXCITATION IN ATOMIC H
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0.04-

FM. 2. L=O, 1s —+2s excitation
cross section above threshold. The
cross sections are given for the two
spin states singlet and triplet, and for
the two approximations 1s—2s and
1s—2s—2p. The total cross section is
the sum of the singlet and the triplet
cross sections.
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FIG. 3. 2s —+ 2s total elastic cross section. Curves
are designated as in Fig. 1.

1000 ".

negligible at the threshold, and it has no maximum in
this region (see Table II). It should be noted that the
principal maximum in the is —+ 2s excitation cross sec-
tion appears at about 3 eV with a value of about 0.35,
and has contribution from higher angular momentum
than L=o. Although no study has been made to re-
late the existence of the maxima above threshold to
any physical phenomena, it may be said that, similar to
resonances below threshold in the elastic scattering of
electrons by the hydrogen atom, these maxima are due
to formation of some unstable states of the negative
hydrogen ion, Damburg and Peterkop, ' and Gailitis and
Damburg" have made an extensive study of the be-
havior of different cross sections near threshold in the
1s—2s, and the 1s—2s —2p eigenstates coupling
approximations.

In Fig. 3 we have shown the 2s —+ 2s elastic cross

100-

es 0

FzG. 4. L=O, 2s —+ 2s elastic cross
section. Curves are designated as in
Flg. 2.

10-0
I
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84
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~fl
Itl0
os
U

0.1

100-

es o
0

10-
X0
V
IS
Ul

1-
Vl
0
V

0.1

Oo01

0 Ol ———
0,001

~. -E

0.01 0.1 100

ELECTRON ENERGY IeV)

+ M. Gailitis and R. Damburg, Proc. Phys. Soc. (London) S2, 192 (1963). (Note added iN proof: When the energy difference be-
tween the 2s and the 2P states are neglected in the 1s—2s—'2p couplings Gailitis and Damburg have shown that at the threshold
the 1s~ 2s excitation cross section does not go to zero (cf.Fig. 2).g
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Tax,z II.The singlet L=0, 1S~ 2s excitation cross section near threshold. k2 is the @rave number of the inelastically scattered @rave,
and E is the corresponding energy in meV. Q~ and Q2 are the cross sections according to the is—2s and the is—2s—2p couplings,
respectively,

k2
E (mev)
Qi
Q2

0
0
0
0

0.045
27.5

0.01
1.36
0.0168

0.050
34.0
0.0446
0.0405

0.02
5.44
0.0298
0.0149

0.060
49.0
0.0441
0,0391

0.025
8.50

Q.0259

0.070
66.6
0.0435
0.0361

0.030
12.2
0.0377
0.0349

0.080
87.0

0,0423
0.0395

0.035
16.7

0.0405

0.090
110

0.0412
0.0392

0.04
21.8
0.0423
0.0353

0.100
136

0.0405
0.0385

TALK III. 2p —2p elastic cross secuons.

A. L—/j —l2 odd, Born approximation

Q.24
0.50
0.68
0.83
1.23
1.80
2.87

L=i
26.562
14.210
8.8346
6.0065
2.5053
0.91169
0.23647

L=2
6.1961
S.2190
4.0761
3.2062.
1.7048
0.74615
0.22647

L=3
2.1260
2.1768
1.9476
1.6993
1.1013
0.56949
0.20035

L=4
0.92680
1.0526
1,0100
0.94122
0.70920
0.42475
0.17178

L=S
0.44497
0.55433
0.54983
0.53204
0.44518
0.30158
0.13878

L=6
0.22694
0.31476
0.31728
0.31331
0.28212
0,21122
0.10926

L=7
0.08105
0.18383
0.18718
0.18680
0.17577
0.14245
0.08177

Xg

36.56
23.71
16.923
12.8854
6.9237
3.30733
1.16488

B. L—/~ —l2 odd, exchange neglected 2p eigenstates couplings approximations

0.24
0.50
Q.68
0.83
1.23
1.80
2.87

L=i
61.12
15.292
8.008
5.108
2.0484
0.7640
0.2132

L=2
8.444
6.884
4.940
3.6364
1.7392
0.7220
0.2180

L=3
2.5808
2.5436
2.2S48
1.9292
1.1812
0.5816
0.2004

L=4
1.1408
1.1580
1.1160
1.0380
0.7652
0.4436
0.1776

L=S
0.6200
0.6216
0.6160
0.5968
0.4972
0.3312
0.1520

L=6
0.3720
0.3640
0.3640
0.3592
0.3236
0.2400
0.1272

L=7
0.2516
0.2352
0.2352
0.2340
0.2208
0.1784
0.1064

Zo

74.52
27.10
17.54
12.90
6.776
3.261
1.195

L—/q —l2 odd, 2P eigenstates couplings approximation

0.24
0.50
0.68
0.83
1.23
1.80
2.87

0.24
0.50
0.68
0.83
1.23
1.80
2.87

L=l
2.963
3.735
2.165
1.371
0.5280
0.1928
0.0534

L=i
49.22
7.791
4.720
3.373
1.484
0.5674
0.1596

L=2
4.161
3.182
1.728
1.107
0.4603
0.1831
0.0547

L=2
3.265
1.851
2.219
2.099
1.225 .
0.5337
0.1632

L=3
0.6725
0.7915
0.6851
0.5562
0.3115
0.1475
0.0503

L=B
1.850
1.504
1.361
1.237
0.8376
0.4295
0.1500

L=4
0.2861
0.3066
0.3025
0.2799
0.1991
0.1124
0.0445

I—4
0.8528
0.8193
0.7700
0.7198
0.5509
0.3283
0.1328

Singlet
L=S

0.1552
0.1576
0.1587
0.1547
0.1277
0.0837
Q.0381

Triplet
L=S

0.4650
0.4598
0.4481
0.4318
0.3630
0.2456
0.1136

L=6
0.0930
0.0913
0.0920
0.0913
0.0823
0.0605
0,0319

L=6
0.2788
0.2722
0.2700
0,2652
0.2384
0.1784
0.0951

L=7
0.0629
0.0589
0.0590
0.0589
0.0558
0,0449
0.0267

L=7
0.1886
0.1764
0.1756
0.1744
0.1639
0.1330
0.0797

&08
8.394
8.323
5.190
3.619
1.7647
0,8249
0.2996

&or
56.12
12,87
9.964
8.300
4.863
2.4159
0.8940

D. L—l~ —l2 even, Born approximation

0.24
0.50
0.68
0.83
1.23
1.80
2.87
3.91

L=O
12.488
Q.1758
0.07386
0.22032
0.25024
0.13477
0.04395
0.01868

L=1
230.42
74.475
36.478
21.559
7.3349
2.3518
0.55809
0.20876

L=2
4.0427
7.Q963
6.5573
5.4143
2.9703
1.3155
0.40443
0.17048

L=j
1.9014
0.92172
1.0156
1.1653
1.1453
0.74676
0.3Q267
0.14307

L=4
0.30797
0.48094
0.29902
0.26124
0.37750
0.39290
0.21866
0.11656

L=S
0.57480
0.45745
0.27895

. .0.15835
0.11091
0.18754
0.15188
0.09255

L=6
0.29675
0.30098
0.23113
0.15225
0.04377
0.07731
0.09753
0.06896

L=7
0.06128
O.Q5695
0.04364
0.02533
0.03572
0,02824
0.05832
0.04864

Z@
250.09
83.965
44.978
28.956
12.269
5.2348
1.8355
0.8677

Qr
290.69
109.714
63.742
43.572
20.571
9.6066
3.8272
2.1455
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T"LE III —(corbeled)

K. L—/~ —l2 even, exchange neglected is—2s —2p eigenstates couplings approximation

A979

0.24
0.50
0.68
0.83
1.23
1.80

L=O
31.96
9.371
4.156
2.542
1.208
0.5612

L=1
91.21
12.65
5.953
4.560
2.879
1.385

L=2
154.6
30.88
13.19
7.424
2.906
1.238

L=3
92.86
20.53
9.628
5.249
1.734
0.8299

L=4
55.86
12.99
6.563
3.811
1.106
0.5109

L=5
36.79
8.451
4.508
2.793
0.8438
0.3005

L=6
24.37
5.695
3.130
2.032
0.6912
0.2022

ZE
487.7
100.6
47.13
28.41
11.37
5.028

Qr
566.32
129.8
66.56
43.07
19.56
9.382

F. L—l~ —l2 even, is—2p eigenstates couplings approximation

0.24
0,50
0.68
0.83
1.23
1.80

0.24
0.50
0.68
0.83
1.23
1,80

L=O
1.964
0.5131
0.2346
0.1227
0.107i
0.0571

L=O
15.62
4.844
2.247
1.293
0.4842
0.1909

L=i
5.238
3.159
2.091
1.252
0.6796
0.3366

L=1
26.72
3.384
3.886
3.650
2.287
1.063

L=2
17.34
1.544
1.039
0.9930
0.6167
0.2926

L=2
32.44
19.97
10.33
6.287
2.424
0.9673

L=3
1.260
1.439
0.4944
0.1532
0.2249
0.1818

L=3
6.674

12.52
5.922
3.476
1.418
0.6659

Singlet
L=4

0.4896
0.4063
0.2539
0.1191
0.0635
0.0954

Triplet
L=4
1.252
0.8285
1.035
0.9248
0.6072
0.4001

L=S
0.2460
0.1906
0.1520
0.0990
0.0249
0.0426

L=5
0.7359
0.3266
0.2270
0.2097
0.2079
0.2024

0.1133
0.0984
0.0766
0.0217
0.0172

0.2754
0.1764
0.1162
0.0717
0.0962

L=7 &ES
26.54

7.365
4.363
2.816
1.7384
1.0233

&Er
83.44
42.15
23.82
15.957
7.500
3.586

Qr
178.89
72.80
45.22
32.45
17.28
8.943

G. L—l~ —l2 even, is—2s—2p eigenstates couplings approximation

0.24
0.50
0.68
0.83
1.23
1.80
2.87
3.91

0.24
0.50
0.68
0.83
1.23
1.80
2.87
3.91

L=O
7.852
2.470
1.344
0.7424
0.2813
0.1357
0.0513
0.0267

L=O
27.90
4.337
2.823
2.032
0.9741
0.4291
0.1564
0.0805

L=i
13.45
5.026
2.283
1.316
0.6752
0.3339
0.1053
0.0451

L=i
75.79
4.540
4.018
3.674
2.290
1.055
0.3217
0.1366

L=2
38.56

7.433
3.025
1.579
0.6254
0.2862
0.0930
0.0422

L=2
63.10
20.66
10.75
6.400
2.465
0.9303
0.2907
0.1285

L=3
21.41
4.900
2.683
1.518
0.3663
0.1816
0.0739
0.0373

L=3
87.21
21.62
8.986
4.796
1.599
0.6614
0.2330
0.1143

Singlet
L=4

15.44
3.201
1.756
1.079
0.2726
0.1065
0.0553
0.0318

Triplet
L=4

41.31
10.38
5.149
2.950
0.9568
0.4150
0.1780
0.0982

L=5
8.610
2.101
1 ~ 166
0.7580
0.2289
0.0659
0,0391
0.0261

L=5
26.12

6.373
3.337
2.013
0.6421
0.2540
0.1291
0.0810

L=6
6.432
1.417
0.7903
0.5313
0.1916
0.0471
0.0268
0.0212

L=6
17.13
4.255
2.302
1.468
0.4924
0.1639
0.0907
0.0655

0.0383
0.0181
0.01.66

L=7

0.1180
0.0623
0.0524

&ES
111.75
26.548
13.047

7,524
2.641
1.1952
0.4628
0.2470

&Er
338.56

72.17
37.37
23.333
9.419
4.027
1.4619
0.7570

Qr
518.92
122.01
67.46
44.54
20.11
9.531
3.945

section. The 1s—2s coupling approximation gives a
value of 944~ao' at zero-incident energy, while the
corresponding value in the Born approximation is
78&ruo'. The high value of this cross section at zero
energy is in sharp contrast with its geometrical cross
section. The zero energy 2s —+ 2s cross section in the
1s—2s—2P coupling approximation, because of the r '
potential, is dificult to find. The 2s ~ 2s cross section
has certain maxima and minima at low energy which is
not found in the 1s —+ 1s cross section. Figure 4 shows
the 1.=0, singlet and triplet 2s ~ 2s cross section in the
two approximations. While there is one minimum in the
1s—2s coupling approximation there are three minima
in the 1s—2s—2p coupling approximation. It is thought
that the existence of these minima is due to a wider

l.6
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1.2—
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O
+ 0.8—
LJ
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g) 0,6—
Cll
O
o 04-

0.2—

00
I I I I I I I I

IO I5 20 25 30 35 40 45 50 55
ELECTRON ENERGY(eV)

FIG. 5. is —+ 2p total excitation cross section. is—2p refers to
is—2p eigenstates coupling approximation. is—2s —2P has similar
meaning. EX. NEGL. refers to exchange neglected case. BORN is
the Born approximation. EXP. refers to experiment.
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TABLE Dt 2$—2p excltatlon cross sections.

0.245
0.500
0.678
0.831
1.225
1.803
2.872
3.905

L 0
210.45

6,2469
0.92003
0.24580
0.02039
0.00187
0,00011
0.00002

L 1
465.14
30./29
6.6619
2.1480
Q.20887
0.01900
0.00107
0.00017

L~2
449.77
57.561
16.736
6.4066
0.78437
0.07823
0.00444
0.0006/

L~3
343.68
64.948
24.356
11.011
1.7481
0.20201
0.01211
0.00182

orn approximation

L~4 L 5
148.60 209.74
54.469 49.590
25.702 24.598
13.641 14.135
2.7859 3,6015
0.38645 0.59807
0.02545 0.04450
0.00389 0.00699

6
158.31
40.391
21.122
12.973
3.9501
0.78354
0.06688
0.01096

X
1985.69
303.935
120.096
60.560
13.099
2.0692
0.15456
0.02452

Q&a

13560
3465.0
1930.9
1308,4
620.51
294.95
120.26
66.509

0.245
0.500
0.678
0.831
1.225
1.803

L=O
5.311
0.8651
1.150
1.249
0.3847
0.0654

L=1
12.59
10.55
5.907
2.859
0.4266
0.0516

X
41.11
57.73
56.62
32,295
8.108
1.3824

18.92
7.168
3.158
0.4560
0.0553

26.25
12.28
6.664
1.403
0.1846

15.08
9,391
3.022
0.6183

14.46
8.591
2328
0.3930

C. is—2s—2p eigenstates coupHngs approximation

Exchange neglected is —2s—2p eigenstates couplings approximation

L=2 L=3 L=4 L=5 L=6
23.21

1.143
0.5760
0.3831
0.0881
0.0142

Qr
12476
3308.8
1867.4
1280.1
615.52
294.26

0.245
0.500
0.678
0.831
1.225
1.803
2.872
3.905

0.245
0.500
0.678
0.831
1.225
1.803
2.872
3.905

L=O
2.243
0.1241
O.Q362
0.1866
0.1048
0.0175
0.0014
0.0002

L=O
0.0000
2.322
1.590
0.9885
0.2648
0.0455
0.0040
0.0007

L=i
4.424
1.605
1.446
Q.9881
0.1516
0.015/
0.0010
0.0002

L=i
10.40
7.125
2.363
1.125
0.2173
0.0310
0.0024
0.0004

L=2
3.276
1.348
0.5518
0.2615
0.0384
0.0046
0.0004
0.0001

L=2
56.74
2.357
0.3333
0.1226
0.0402
0.0094
0.0009
0.0002

6,360
3.056
1.488
0.1639
0.0148
0.0010
0.0002

/. 159
3.693
2.144
0.4584
0.0530
0.0032
0.0005

Triplet
L=3 L=4

3.838
1.442
0 8AAA

0.2297
0.0383
0.0031
0.0005

1'/. 01
6.810
3.411
0.7623
0.1223
0.0095
0.0015

Singlet
L=3 L=4

3.911
2.433
0.7031
0,1108
0.0075
0.0012

9.868
5.518
1.423
0.2544
0.0208
0.0035

2.505
0.8529
0.1726
0.0133
0.0019

6.556
1.987
0.4070
0.0359
0.0063

~8
9.943

16.596
12.694
10.006
2.473
0.3890
0.0278
0.0043

Zp
67.14
32.652
22.406
18.566
4.924
0,9079
0.0766
0.0131

&8+&r
7/.083
49.248
35.100
28.572

/. 397
1.297
0.1044
0.0174

Qr
12512
33003
1867.0
12/6.4
614.8
294.18
120.21
66.520

potential range in the 2s ~ 2s scattering, a case which
does not exist in the is —+ is scattering. ""

In Fig, 5 the four calculated curves for the 1s~ 2p
excitation cross section are compared with the measure-
ment of Fite, Stebbings, and Brackmann. 22 ~ The
1s—2s—2p and the Born curves are the same as in
Refs. 4(a), 4(b), but the is —2s—2p exchange neglected,
and the 1s—2p curves are not calculated in these
references. As concluded before, the calculated curves
are higher than the experimental. Moreover, we notice
"'EAe added ~e proof. Figures 2 and 4 show that in the 1s—2s—2p couplings if E„I and E„represent the energy with respect to

the threshold of the two neighboring maxima or minima then
E„/E„I—const. This may be attributed to the r~ potential which
is due to the coupling between the 2s and the 2p states. For further
details see Ref. 21.

~ W. L.Fita and R.T.Brackmann, Phys. Rev. 112, 1151 (1958).
+ VF. L. Fite, R. F. Stebbings, and R. T. Brackmann, Phys. Rev.

116, 356 (1959).

that, similar to the 1s~ 2s excitation cross section, the
inclusion of the exchange lowers the value of the cross
section at threshold.

The calculation of the 2p ~ 2p elastic cross section is
more complicated than the cases so far considered. For
a given total angular momentum I,, the angular
momentum of the partial wave which is scattered from
the 2p state may be I. 1, I., and 1.+1.The 6r—st and
the third values correspond to a wave function which
has the same parity as the wave functions in the is and
the 2s channels. In this case I.—l1—lg is even. The
second value corresponds to a wave function with a dif-
ferent parity, and the only process that occurs with this
parity is the 2p elastic scattering. In this case L—l~—la is
odd. We have calculated the 2p ~ 2p cross sections for
the two cases, and they are listed in Table III. The
total cross section is shown in Fig. 6. Because of the r 2
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potential it is dificult to find the zero energy value of
this cross section.

The 2s-+ 2p transition cross section has application
in some plasma, and stellar atmosphere, calculations.
The total cross section using the Born approximation is

given by Seaton. '4 In Table IV we list the partial cross
section using the close couplings approximation. This
table may be found useful in problems in which plasma
shielding occurs; where only electrons with an impact
parameter within a given range can induce the 2s-+ 2p
transition.

It may be noted that the cross sections for the inverse
processes 2s-+ is, 2p-+ is, and 2p~2s may be cal-
culated by Eq. (3.20) and the symmetry of the T
matrix.

Tables for the processes is-+ 1s, is-+ 2s, is ~ 2p,
and 2s —+ 2s will not be given here as the most important
cases have been reported by Burke, Schey, and
Smith. '&'&' & These tables in various approximations are
given in Ref. 6.

In all tables listed here k~ is the wave number in the
is, and ks is the wave number in the 2s or the 2p chan-
nels. The energy, in electron volts, of the incident elec-
tron in each channel is given by E= 3.3.6k', where k
could be k~ or k2. All cross sections are in units of mao'.

In Tables III and IV, P is the sum of the partial cross
sections calculated. The total cross section Qr is ob-
tained by adding the contribution of higher partial
waves than those calculated using the regular Born ap-
proximation. This could easily be done with the help of
the table of the Born approximation.

V. CONCLUSION

The noniterative technique employed here can be
applied to a large class of problems containing exchange
integrals. The method is particularly useful when ex-

600
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R
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300-O
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g
sos200-

'0 I I l l

2 4 6
ELECTRON ENERGY teY)

FlG. 6. 2P ~ 2p total elastic cross sections. Curves are desig-
nated as in Fig. 5. The cross section at zero energy is inite but is
not found here.

change potential is comparable to direct potential, in
which case the convergence of iteration is slow.
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APPENDIX I: ELEMENTS OF THE POTENTIAL MATRIX

(i) L—l, —ls Even

Dgg= —1 —~ 'r
r

/1 3 r r')
Dss= —

~
+ ++si

1 3 r r' 6(L—1) 1 1 1 1 1 r r'
Dss= — +++ e + —+ + ++ +

r 4 4 24 2L+1 rs r' r' 2r 6 24 144

1 3 r r' 6(L+2) 1 1 1 1 1 r r'
D&4= —-+ + +—e "+ +++++e

4 4 24 2L+1 r' r' r' 2r 6 24 144

~ M. J. Seaton, Proc. Phys. Soc. (London} A68, 457 (1955}.
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E42 E24[R20 ~R21] y

L (L+1) 'ts R21
X

r 0

E34= 3P-
(2L+1)'

g21y'L+1dr' —g21rL+1

g11=
2L+1

~34 ~43 ~

Elemersts of g 1 432sd h,;
PRsor~+' - 1 1+k12h„=R1p — h (I.,O) r

r 2
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1
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1 -'+k22
h22 ——Rso —— 8 (L,O)r

yL

~21
hss'=

yL

3p(L 1)R21r~'—
gsS =
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1 42+ kss
S(L,2)r,

2
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1—

(2L+3) (2L+1)'
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h44'= R21 — "o(L,O)r

yL
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h44
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'

g12 ~20r
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1 1+kss
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g13——43p
(2L+ 1)(2L—1)'

—1/2

E21f ) h13= 810
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1+k22
8(L,1)r
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g31 g13[R21~ Rlp] p

L+1
g14= —V3P
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(ii) L, —11—12 Odd

1 3 r r' 1 1 1 1 1 r r' )
Des +++ e"—6 —+ + ++ +

r 4 4 24

3P - 1 (R21r„=
2L+1 2L 1(r—~'

p

R21
R r'I+'dr —R2gr +'—R r~ dr' 21rR2 jr dr-

p r

3pR21»
) h55 21

(2L,+1)(2L—1) r

4'+—JS2'

S(L,1)»
Xr 1

3pR21» +2

(2L+1)(2L+3)
SS

2=
r~1

Rmp and Rgy accompanies the interchange of their argu-In I';; matrix the interchange of the functions Ryp, 2p, an
ments too.

APPENDIX II: SINGULARIGULARITY OF THE DETERMINANT OF Q. ( .E ~ 2.17) FOR L=O AND 1

(i) L=O Case

E . (2.18), the following relation can be denvedBy making use of the definition of D;; and Ii;; and Eq. ,2. , e o
from Eq. (2.14):

«Rsp +~1 Pl P» 10 2 2r sp
'

~

— R +k '
~ps dr= ——[t212824—passB14$,

dr' ) drs )0

where the superscript p, is suppressed when there yre is onl one value for p, and

4412 —— R10R21r'dr = [2"X3 ']"',
0

(II.2)

R R20« 2d1r2= —3&3'. (» 3)

of E s. 2.11 and (2.18), we obtainIntegrating the left-hand side o q.f E . (II.1) by parts, and making use of Eqs. ( .

d2

rR 1412 ps P«R, p +t'sss p—s dr= —2[B21—PB127 (11.4)

VVe conclude that
1

P 12 [4212B24 P4222B14j ~21 12

24 14.of four e uations of Eqs. (2.17) speci6ed by ij =21, 12, 24,( ) o g - o q

'1 . (II.S) ho ld o h 1"= 1, 122414. W o ld h o of hR o q .
Eqs. (2.17) is linearly dependent on others and the determ1nant o

(ii) L=1 Case

relation can be derived from Eqs. 2.i4:Similar to the previous case, the following rela ion

pd' 2
4212B11+P4222B12—4212Bss +~(12B24 sP ps-+&12——v, p»R10I +&—22

(d»2 4
2 adrs



2s AND 2p ELECTRON I M PACT EXCITATION IN ATOM I C H

where

R~~'r'dr =30. (II.7)

Integrating the left-hand side of Eq. (II.6) by parts, and making use of Eqs. (2.11) and (2.18), we obtain

(d2 2
rRq~~ +kg —vq ——PrRm +ku ~vs dr= —2[Bqq—PBqq].

Edr2 r'

Combining Eqs. (II.6) and (II.8), we get

Bfil p813 s[p+18811+0+23819 +13833 + /2(+13834 '++33814)]~

Finally, Eqs. (2.14) give the following relation:

(II.8)

(II.9)

2 d2

«21 +k2 v2 prR20 +k2 ~v3 dr 3[p~23822+p~13821 ~2@33'+~(~23834 Ijp~3P24)] (11.1&)
df t'

Integration by parts of the left-hand side gives as before

whereupon we get

fd' 2 (d'
rRmg~ +k2' ——

vm
—prR20~ +km' ~va dr = —

2[Bshe
—pBgg],

(dr' r'

832 p823= s[p82I82S+pg13821 823833 +VX(823834 spg38BR4)] ~

(II.11)

(II.12)

Similar to the case L=o, Eqs. (II.9, 12) indicate that two of the Eqs. (2.17) are linearly dependent on others and

the determinant of Kqs. (2.17) is singular.
To remove the singularity in L=0 case, one of the C&&" is chosen arbitrarily, and a degenerate equation is removed

from Eqs. (2.17). Similarly, in the L=1 case two of the C&P are chosen arbitrarily and two degenerate equations
are removed from Kqs. (2.17).

APPENDIX III: ELEMENTS OF THE MATRIX OF THE SUM OF THE ASYMPTOTIC COULOMB
AND CENTRIFUGAL POTENTIALS

U„=L(L+1)r',
Ug, ——(L 1)Lr-'+12(L——1)(2L+1) 'r ',
U12 U21 0 q

Uq4= U4q
———[25602/243][(L+ 1)/(2L+ 1)]'~2r ',

U24= U&g= 6[(L+1)/(2L+1)]'~'r ',

U2p=L(L+1)r ',
U44= (L+1)(L+2)r '+12(L+2) (2L+1)-'r '

Uqs= U3q= [25692/243][L/(2L+1)]'~'r ',
Umg= Ugm= —6[L/(2L+1)]'"r '
U34= U g= —36[L(L+1)]"'(2L+1)'r '


