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SHIN-R LIN

TaBLE XIV. Same as caption for Table XIII except copper is replaced by gold.

Z=19
T=200 keV T=100 keV
0 (deg) do/dQps do/dQs do/dQ0 do/dQps do/dQg do/dQc
30 7.493X10¢ 6.236X 104 6.996X 104 2.611X108 1.787%105 2.250%X 108
60 5.351 X103 6.653 X103 6.738X 103 1.910X10* 1970 104 2.059X10¢
90 1.148X103 1.965X 108 1.940X 103 4.339X103 6.381 X103 6.267X103
120 3.961X102 8.504X102 8.241X102 1.649X103 3.236X193 3.032X103
150 1.953X102 4.886 102 4.653X102 9.144X102 2.227X108 2.016X103

S would not change more than 109, even if we changed
the potential from the one-term exponential to the
three-term exponential potential or to the Hartree
potential.
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A numerical calculation has been carried out to evaluate the 3)X3 cross-section matrix involved in the
electron impact excitation of the ground state of H atom to the 2s and 2p levels. The method of solution
is that of atomic eigenstates expansion. In this paper, instead of the iterative technique used by other
authors, the definite integral terms in the coupled radial differential equations are eliminated through some
linear transformation of the radial functions, thus avoiding iteration of these equations. The accuracy of
the numerical integration is tested by satisfying the equation of reciprocity and the equation of continuity
of currents with an error-to-value ratio less than 1 per 1000 on the average; and the maximum of this ratio,
except for a few cases, has been kept below 5%. The results are in agreement with the results of an iterative
technique. To evaluate the effect of the long range and the centrifugal potential, a simple perturbation
theory is developed. The six cross sections 1s — 25, 1s — 2p, 1s — 15, 25 — 25, 25 — 2p, and 2p — 29 are
tabulated elsewhere, only the 2s — 2p and the 2p — 2p cross sections are reported here. The 2p — 25 cross
section requires the solution of the sets of differential equations with different parities. Assuming the validity
of the eigenstates expansion, it is found by comparison with the eigenstates expansion calculation that the
Born approximation, despite its simplicity, gives meaningful results for low and close-to-the-threshold
energies of the bombarding electrons. The effect of the exchange potentials on the cross sections is also
investigated. Finally, an interesting structure of the 1s — 25 excitation cross section above threshold is found.
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I. INTRODUCTION

ALCULATION of the excitation cross sections in
atomic hydrogen by electron impact corresponds

to the solution of the problem of three interacting
bodies: one proton and two electrons. By taking the
position of the proton as the center of mass, the problem
will reduce to the task of finding the nonseparable wave
function of the system of the two electrons with an
attractive center of force. Such solution has not been
found. However, if this wave function is expanded in
terms of the eigenstates of the hydrogen atom, the

coefficients of the expansion, which are functions of the
position vector of the free electron, can be found through
numerical integration. When an infinite number of terms
are included in the expansion, the solution to the prob-
lem is exact. Furthermore, the expansion has the
advantage that the asymptotic form of its coefficients
are automatically the asymptotic form of the free-elec-
tron wave function scattered from different atomic
states, which are simply related to the excitation cross
sections.

In this paper atomic states 1s, 2s, 2p are included in
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the expansion and, by antisymmetrizing the two elec-
tron wave functions according to the exclusion principle,
some contribution from the continuum in the expansion
is also taken into account. The first calculation of this
type was performed by Marriot,! whose expansion con-
sisted of the 1s and the 2s states in order to calculate
the 1s— 2s transition cross section. This calculation
was extended by Smith? to higher total orbital angular
momenta of the system. Percival and Seaton® have
formulated the eigenstate expansion technique in
general, and have tabulated the coefficients of the
integrodifferential equations for s, p, and d atomic
electrons. Burke, Smith, and Schey,* using the equations
of Percival and Seaton for the three states 1s, 2s, 2p,
have integrated the resulting integrodifferential equa-
tions. In this paper we solve the same differential
equations by a linear transformation of the differential
equations in order to avoid the need for iteration of
these equations.’

The numerical integrations were carried out for all
partial waves, while in higher partial waves the Born
approximation were used. The transition between the
eigenstates expansion calculation and the Born approxi-
mation takes place when the results of the two calcula-
tions agree closely.

II. FORMULATION
A. Derivation of the Differential Equations

Since spin-orbit interaction of the electrons are
neglected, the total orbital angular momentum L and
the total spin angular momentum S are separately
conserved. We can then divide the interactions into
antiparallel spin states, where S=0, and parallel spin
states, where S=1. In this way we deal with spatial
wave functions of the electrons only, and for brevity
we call the orbital angular momentum the angular
momentum.

Neglecting the motion of the proton and taking its
position as the origin of the coordinate system, the
Schrodinger equation for the system can be written

[H—E}(r1,1r:)=0, (2.1)

where r; and r; are the position vectors of the bound
and the free electrons and, in atomic units,

1 1 1
H—E=—3}V¢—}Vi————+——E,
Y1 r2 712

(2.2)

1 R. Marriott, Proc. Phys. Soc. (London) 72, 121 (1958).

2 K. Smith, Phys. Rev. 120, 845 (1960).

31. C. Percival and M. J. Seaton, Proc. Cambridge Phil. Soc.
53, 654 (1957).

4 (a) P. G. Burke and K. Smith, Rev. Mod. Phys. 34, 458 (1962).
gb%;;) G. Burke, H. M. Schey, and K. Smith, Phys. Rev. 129, 1258

1 .

§ Similar calculation has been carried out by R. Damburg and
R. Peterkop, Proc. Phys. Soc. (London) 80, 563 and 1073 (1962).
Here the L=0, 1 cases have been solved by noniterative, and all
other cases by iterative, methods.
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where E is the total energy of the system and 71 is the
distance between the two electrons. We expand the total
wave function ¢ (ry,re) in terms of the eigenfunctions of
the total angular momentum L,

Yl = 3 Yulrr). 2.3)
L=0

Since these eigenfunctions are orthogonal, substitution
of Eq. (2.3) in Eq. (2.1) gives
[H—E]%L (1’1,1‘2) =0,
The explicit form of ¥ (ry,r,) is given by
Yr(ryr)=(148P12) = X Conymyu"2L o (nilymy,ry)

n1lilz mimg
Xrsu (kﬂllz)rz) lemz (92) )
(%] (n1llml,l'1) = 1’1—1P (ﬂlll,l'l) Y11m1 (Ql) .

(2.4)

(2.5)
(2.6)

Here @(nidymry) is the hydrogen atom wave function
with radial part ;2P (ny,71) and angular part ¥ m, (Q1)
and quantum numbers nlim; ; 75w (ky lo,72) is the radial
part, and ¥;,m,(Q) is the angular part of the free-
electron wave function with quantum numbers kn lams.
The relation between the wave number k,, and #; is

given by
1
kn?= 2<E+————) .
2%12

Finally the constants Cmmpar'*2E= (Ifomims| LM), with
M representing the total magnetic quantum number,
are vector coupling coefficients which make the linear
combination of the products of the one-electron wave
functions in Eq. (2.5) the eigenfunction of the total
angular momentum L. In the problem under considera-
tion n1=1, 2; l1=0, 1; ly= IL—Z1|, tey, |L+l1[ ;
my=—b, -+, Iy and me=—1Iy, ---, l5. To make the
total wave function symmetric for antiparallel spins or
antisymmetric for parallel spins, the operator P;, inter-
changes r; and r; while 8 is 41 for the first case and is
—1 for the second.

By taking L perpendicular to the z axis M=0 and
my=—my, Eq. (2.5) can then be written

Yi(ryre)=(14+8Pw) > X Comi—my0" 22 o (n1lymy,11)

nililz my

X 72_lu (k nllz,?’z) lemz (92) . (28)

In order that ¥ (ry,re) closely approximates the exact
wave function, we minimize the expectation value of the
energy operator with respect to the radial parts of the
free-electron wave functions

2.7

5/¢L* (1’1,1'2) EH“‘ E:I‘/JL (rl,rz)d3r1d3r2= 0. (29)

Percival and Seaton® have evaluated Eq. (2.9) and
have derived the differential equations for the scattering
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of free electrons by atomic s, p, and d electrons in
hydrogen atom, using the theory of the irreducible
tensor operators in order to evaluate the interaction
terms between the two electrons. The result is a set of
coupled second-order differential equations which are
functions of the radial coordinate of the free electron.
We have evaluated Eq. (2.9) independently using
ordinary methods, and have verified the results of
Percival and Seaton.®

When the integrals representing the direct potentials
in the coupled set of differential equations are evaluated
and some change is made in the limits of the exchange
potential integrals, these equations can be written in the
following matrix form:

& Lo (a+1)
[_+kn2'—_‘_—]u (knln,f) = ZVu (knln,r) . (2. 10)
dr? 7’

The components of u are the radial functions of the free
electron, and V is the potential matrix. u has four
components when L—1I;—1, is even and one component
when this is odd. Similarly V is a 4X4 matrix when
L—1,—1, is even and it has one component when this
quantity is odd. The case L=0 is an exception. Here
when L—1I;—1; is even u has three components and V is
a 3X 3 matrix, and the case L—/;—/; odd does not occur.
V can be written as the sum of three matrices,
Viij=Dij+Ei;,
la © (2.11)
Ey=Fy+ Zl & / hiydr,
ve= 0

where D;; is the direct potential and E;; is the exchange
potential and both are functions of 7. The matrix E;;
contains in addition integrals with respect to 7, and for
the purpose of numerical integration it can be written
as the sum of two matrices. The explicit forms of Dy;,
Fij, gi7, and ki are given in Appendix I. The value of
o is 2 for =j=3 and 4=j=4, and is 1 for all other
values of 7 and 7. I't is understood that for the exchange
terms the components of u on the right-hand side of
Eq. (2.10) are inside the integrals of the exchange terms.
Below we discuss the general solution of Eq. (2.10)

when it has four components.

B. Decomposition of the Differential Equations

If it were not for the definite integrals appearing in
the potential matrix V, the set of the four coupled
differential equations (2.10) could be integrated by any
standard technique. The presence of these unknown
constants whose integrand involve the unknown func-
tions makes it necessary to solve these equations by
iteration or by transformation of u into other vectors,
whose differential equations do not contain definite

6 K. Omidvar, Technical Note G-419, Goddard Space Flight
Center, National Aeronautics and Space Administration, 1963
(unpublished).
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integrals. Since the terms containing definite integrals
are small as compared with the direct potentials, the
iteration method can be used by assuming that the
values of these integrals are zero. The differential equa-
tions are then integrated, the values of the definite
integrals that are subsequently obtained are substituted
in the differential equations, and the integration is
repeated. The process is repeated until sufficiently con-
sistent values of these integrals are obtained. This
method is useful if the convergences of the constants
are fast enough and the cross section is not very sensitive
to the values of these constants.

In the second method, the transformation of u fixes
the values of the constants and thus avoids iteration,
whereby the computation is reduced considerably. We
have used the second method and the description of the
method will be given here.?-8

By making use of Eq. (2.11), Eq. (2.10) can be
written

& L1
[____+ ki2— _E_._):Iu_‘

dr? 72
4 o
=2 Zl [DitFipui+ 3 gi*Ciy*], (2.12)
i= u=1

where

C;j“=/m hij“(f)'uj(f)df. (2.13)
0

We introduce the functions v; and ##* that are solutions
of the following differential equations:

d? l.' (l,+ 1) 4
[——-+k¢2— ]?},‘z 2 Z [D;j"l"F,‘jJ‘l}j , (214)
dr? r? =1
a2 li (l,“{- 1) 4
[ b= =2 T [0+ P
ar? r? =1
+26(,k)gw’.  (2.15)
Then #; is given by the following expression:
4 4 o0
wi=vi+ 2 2 2 Cuut. (2.16)

k=1 l=1 y=1

Equation (2.16) can be verified by multiplying Eq.
(2.15) by Cy’, summing over %, ! and », and adding to
Eq. (2.14), whereupon Eq. (2.12) results. Substitution

7K. Omidvar, Research Report No. Cx-37, p. 22, Inst. Math.
Sci., New York University, 1959 (unpublished).

8 See Ref. 1. This description differs from the description of Ref,
7 and the present paper. In Ref. 1, 7; in Eq. (2.16) is set to zero;
this makes B;j#=0. Eq. (2.17) then reduces to a set of homoge-
neous equations whose determinant must be zero. Since the ampli-
tude of any of the 4 components of u can be left arbitrary, one
of the Ci” is set to 1 and the rest of the constants are found
subsequently.
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of Eq. (2.16) in Eq. (2.13) gives

4 e

4
2 X 3 [8Giju,kiv)— Ai#*¥]Ch’ = Byi*,

k=1 l=1 y=ml
i, j=1,2,3,4;

w=1,2 for i=37=3 and i=j=4; (2.17)

p=1 otherwise,

where 4 ;;#* and B;;* are defined by

A;j“kl = [ h;,-“u,-"’dr ,
° (2.18)
Bij"':/ h,'j""l)jdf .
0

The numerical integration is carried out by integrat-
ing Egs. (2.14) and (2.15) by any standard method,
calculating 4:;#* and B;;* by Egs. (2.18) and, finally,
solving the system of 18 algebraic equations given by
Egs. (2.17) to find Cixy. With the known values of
these constants the integration of Egs. (2.12) is
straightforward.

The determinant of Eqs. (2.17) becomes singular for
L=0 and 1. To remove the singularity, some of the
Cyt® are chosen arbitrarily, and the rest of the Cy” are
found in terms of the chosen ones (cf. Appendix IT).

III. NUMERICAL INTEGRATION
A. Solution at the Origin

Equation (2.10) or its equivalent, Egs. (2.14) and
(2.15), constitute a set of four coupled, second order,
differential equations. Three components of u can be
eliminated from these equations, resulting in an 8th
order differential equation for the remaining component.
Therefore there are eight sets of solutions to Eq. (2.10).
However, only half of these solutions are regular at the
origin. Each of the four regular solutions corresponds to
a definite vector u. The four vectors can properly be
represented by a 4X4 matrix u.;, 1, j=1, 2, 3, 4, where ¢
corresponds to a particular component and j corre-
sponds to a particular solution of u. In order that the
four solutions of u be independent of each other, we
must have

4
> Cuii#0, i=1,2,3, 4,

=1

3.1

where C; are some constants. A necessary condition for
this to be satisfied is that the determinant of Eq. (3.1)
be nonzero,

lwis|| 0. (3.2)

It is not difficult to see that this also is a sufficient condi-
tion. At the origin the solution #,; can be expressed as
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power series in 7,

e
ui =3, ai'rv,

ya=(0

(3.3

where a;;” are the coefficients of the expansion and s; are
given integers for each component of u and are fixed by
the behavior of Eq. (2.10) at the origin. Equation (3.2)
is satisfied near the origin if

[la:l|=0. (3.4)

By choosing suitable values of a;;° subject to the re-
striction (3.4), four independent solutions are obtained.

B. Solution at Larger r

With the solution found at the origin, the solution of
Eq. (2.10) or its equivalent, Egs. (2.14) and (2.15), can
be extended from origin through numerical integration
to any desired value of 7. In order to obtain the asymp-
totic amplitudes and the phase shifts, the presence of the
centrifugal and the long-range potentials, which fall off
as % make it necessary to extend the solution to
infinity. This is undesirable because of the time con-
sumption on the computer, and the accumulated errors
due to the long-range integration. Seaton? has solved
the problem of 2 long-range potentials occuring in the
off-diagonal elements of the potential matrix V by
diagonalizing the asymptotic form of the differential
equations (2.10) and the corresponding S matrix. By an
inverse transformation the elements of the original .S
matrix are found. Burke, Schey, and Smith have used a
different method.1?

Instead, we develop here a perturbation theory which
is based on the method described by Mott and Massey.!!
The error in the resulting solution is inversely propor-
tional to the square of the distance from the origin.

Equation (2.10) for large distances of 7 can be written

d2
[——l—k,.{]u (Bulnyr)=2Uu(kulnyr), (3.5)
dr?

where U is the sum of the centrifugal potential matrix
and the asymptotic form of the V matrix. The elements
of U are given in Appendix III. A component of Eq.
(3.5) is of the following form:

[£+k2:|u (=g, (3.6)

g(N<KLku(r), glr)—>0 as r—w,

The perturbation theory is applied between some large
distance R and infinity. Let # vanish at R; then we have

® M. J. Seaton, Proc. Phys. Soc. (London) 77, 174 (1961).

10 P, G. Burke and H. M. Schey, Phys. Rev. 126, 147 (1962);
see also Ref. 4(a).

UN., F. Mott and H. S. W. Massey, The Theory of Atomic
Cz}'lllisialtis (Oxford Press, Oxford, England, 1949), 2nd ed.,
Chap. II.
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the following boundary condition:
#(R)=0. 3.7
If we represent the homogeneous solution of Eq. (3.6)
by y(r), at infinity we must have
y(r)=asin(kr—kR) ,

(3.8)
u(r)= (a+Aa) sin(kr—kR+1),

where @ is the amplitude of () if g(r) were identically
zero and Ac and 5 are generated by g(7). Since g(r) is
small, we can write

u=y(1+7), 3.9)

where { is a small function. Substitution of Eq. (3.9) in
Eq. (3.6) gives

d( Degr (3.10)
- — )=8\)y, .
dr ¢ dr §
where, upon double integration, we obtain
r dr r
&= ———/ g(r)ydr' . (3.11)
R y2 R

The constants of integrations are fixed by the condition
(3.7) and the fact that #'(R)=9'(R).
We now integrate Eq. (3.11) by parts,

o= f “sonir || [ j—]— [ g (r)yir [ 5— (3.12)

When the integration with respect to y is carried out,
and the result is substituted in Eq. (3.9), we obtain

r

1
wu(r)=sin(kr— kR)[a—}—; / g(r) cos(kr— kR)dr:l

R

1 r
—l—cos(kr—kR)[—; / g(r) sin(kr—kR)dr]. (3.13)

R

Comparison of the second of Egs. (3.8) and Eq. (3.13)
shows that

1 0
Aa= ; / g(r) cos(kr—EkR)dr,
f (3.14)
n=—— / g(7) sin(kr—kR)dr,
ak R

to first order. The functions g(r) in the four differential
equations (3.5) are given by

gi(r)=2 Z Uiuj. (3.15)
7
To first order this can be written by
g,(?’) =2 Z de,'j Sil’l(kﬂ‘—ijj) ’ (316)
i

where R; is where #; has become zero for the last time
with positive slope. Substitution of this equation in
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Eq. (3.14) gives

a; R;
Aa;=—>" k—J / cos(kir—kiR;) U, sin(kr— k;R;)dr,
i Rs
(3.17)
SiIl (k,f— k,Rz) Uij sin (kjr— ij,-)dr.

a; [F
ni=2 —
i Giki

Aa; and 7; can easily be calculated by substituting the
values of U;; from Appendix ITI, integrating the result-
ing integrals by parts and retaining the leading terms.

The asymptotic amplitudes and phase shifts are
given by :

a;(0)=a;(R;)+Aa;,
6:()=26:(R)+n+[L—08(;,3)+8(,4) /2,

where a;(R;) and 8;(R;) are the amplitudes and total
phase shifts calculated at R; by the machine, and where
6(4,3) and 8(4,4) are the § functions.

(3.18)

C. Derivation of the Cross Section

When contribution of the long-range potentials to
the amplitudes and the phase shifts are added to these
values calculated by the numerical integration, we find
the asymptotic form of u;,

lar
uij(r)~ai; sin(k;r - —2“+ 51’,') . (3.19)

The elements of the scattering matrix Sy, are related to
a;; and 8;; through linear relations.’? The cross section
for the m — # transition is then given by

*(2L+1)
" k(21
Tmnzsmn_smn, (321)

where &, is the wave number in the initial channel 7 and
b is the angular momentum quantum number of the
atom in the initial state .

| Tmn?,

(3.20)

D. A Useful Relation

A relation based on the symmetry of the interaction
potentials, which serves as a test on the accuracy of the
solutions, can be derived. The /th and the kth solutions
of the ith component of u by Eq. (2.10) are given by

dz g @41

az Li+1
I: +ki2""l@( + )

dr? r?

Multiplying the first by i and the second by ug,
subtracting the two expressions, and summing over

(3.22)

:Iuik =2 Vi .
i

12 See Ref. 6, Sec. IIB. See also Refs. 4.
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gives

dz dz
> [“ik_uil—uil—uik]':z Vil waui—uani]. (3.23)
dr? dr? 4,7

i 7 s

Since V=V, the interchange of the summation
indices changes the sign on the right-hand side of the
equation, the right-hand side must therefore be zero.
By integrating the left-hand side from zero to infinity,
we obtain

0 d2 d2
> / I:uz-k——u,»z—ui,-—uik]dmo. (3.24)
i Jo dr? dr?

By integrating the above equation by parts and apply-
ing Eq. (3.19), we obtain

4
Z kiaika,-l sin (&uk— 3”) =0 ’
i=1 (3.25)

ki=1,2 34, ksl

Although the terms containing the exchange potentials
do not cancel out on the right-hand side of Eq. (3.23),
the cancellation does take place after the integration
is carried out in Eq. (3.24).

E. Details of the Numerical Integration

Milne’s® method with variable mesh size and
Simpson’s* rule were used for the integration of the
differential equations and evaluations of the integrals,
respectively. As the solution advances from the origin,
the differential equations become less sensitive to the
size of the increment, and the error of integration falls
below certain small number e. At each value of r the
value of the function is found, first with the given value
of the increment, and second with the value of the
increment divided in half. The error of integration is
defined as the difference between these two solutions.
When the error becomes small, the increment is doubled
until a maximum value is reached. At some distance R,
all the exchange potentials and, similarly, all the direct
potentials except those representing optically allowed
transitions and the 2p — 2p elastic scattering potential
become vanishingly small (see Appendix III). At this
distance the set of the differential equations is replaced
by the simpler set containing only these potentials. The
integration is continued until some distance R,, where
the first-order solution of the rest of the range of inte-
gration is obtained by the method developed in Sec.
IIIB. No attempt was made to solve any set of linear
equations or any matrix equations, as these equations
are solvable by the computer in their original form.

The values of the constants of the numerical integra-
tion are given below; %; and %; are the initial and the

13W. E. Milne, Numerical Caleulus (Princeton University

Press, Princeton, New Jersey, 1949), Sec. 40.
14 See Ref. 13, Sec. 33.
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final increment of integration. In some exceptional cases,
different values were used.

ki =1X1075,
hy=0.05,
e=1X10"4,
R;=30,
R,=200.

All quantities are in units of Bohr radius except ¢, which
is dimensionless.

IV. RESULTS AND DISCUSSION

The four differential equations listed in Appendix I
were integrated numerically by the methods described
in Sec. III. By choosing different values for the deter-
minant (3.4) different sets of independent solutions can
be generated. The cross sections reported in this paper
have been obtained by averaging the cross sections
obtained from two independent sets of solutions. To test
the accuracy of the numerical integration we define the
three quantities Dma, Dm,” and D, given by

4
Dpn= l Z k,;a,;mai,, sin (Bzm_ 6zn) l/

i=1

4
2 RitimGin|SIN(Sim—8in) | ,
i=1

m,yn=1,23 4, m#n, (4.1)
, |Smu—Sunl
e s ™ n=1,2,3,4, m#n, (42)
4 4
pm"—_-|nz=1|sm,,|2—1{/§l|smn|2+l,
m=1,2,3,4. (43)

Based on Egs. (3.25), the symmetry, and the unitary
property of the S matrix, in an exact solution of the four
differential equations the right-hand side of these
equations would vanish; they can therefore be used to
test the accuracy of the numerical integration. As an
illustration the numerical values of Dy, Dms', and D"
for the case of 1s— 25— 25 coupling, 8=+1, k1=2.0, and
L=3 are given below:

Dyy=1.4X10"3, Dy3=2.6X10"*, Dy;,=1.3X1073,
Dy3=35.1X10"%, Dy=2.2X10"3, D3=18X1073,
Dy'=7.6X10*, D1’=5.1X10"3, Dy/=5.6X1073,
Dy’ =5.4X10"3, Doy/=5.7X107%, D;3/=1.3X1073,
D,"=1.8X10"%, D,”"=7.6X107%,
Dy"=2.5X10"%, D,'=4.4X107¢,
To compare the results of the numerical integration

by noniterative method as we have carried out here
with those of iterative method of Refs. 2 and 4 we have
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TasiLE 1. Comparison of the iterative and the noniterative re-
sults for the singlet, L=0, 1; £,=0.9, 1.0, 15 — 25 excitation cross
section. I and II refer to interative and noniterative methods,
respectively. Dmax is the maximum of the error to value ratios in
the reciprocity relationships.

A. 15s—2s coupling

Qre-2s Dumax (percent)
k1 L Is I I II
0.90 0 0.0384 0.0375 7.1 0.72
1.00 0 0.0714  0.0725 unknown 0.53
0.90 1 0.008 0.0017 386 091
1.00 1 0.051 0.0583 55 0.75
B. 1s—2s—29 coupling
(07900 Dmax (percent)
10 I I I
0.90 0 0.0529. 0.523 - 040 040
1.00 0 0.0766  0.0768 012  0.60
0.90 1 0.0045 0.0048 2.3 10
1.00 1 0.0145  0.0147 0.33 1.3
a See

Ref. 2.
b See Refs, 4(a), 4(b).

provided Table 1.1* The 15 — 2s excitation cross section
is given by the two methods. Methods I and II refer
to the iterative and noniterative methods, respectively,
and Dix is the maximum of the error to value ratios in
the reciprocity relations (4.2). In the 1s—2s eigenstates
coupling approximation the noniterative method is far
more accurate than the iterative method, and as is seen
the cross sections by the two methods differ from each
other sometimes in their first significant figure. In the
1s—2s—2p eigenstates coupling approximation, on the
other hand, the results by the iterative method seems
to be somewhat more accurate. The reason is contri-

0.8

0.7

0.6
iy
g 0.5+
3 Is-25-2p
F 04| EX, NEGL.
<
w
w
0 ls-25-2
Bos ?
-3
S

Is-2s
0.2~
0.1+ EXP. (Lichten & Schultz)
EXP. (Stebbings Et Al)
0 I | 1 1 I | 1 1 1
O 5 10 15 20 25 30 35 40 45 50 55

ELECTRON ENERGY (ev)

FiG. 1. 1s — 25 total excitation cross section. 1s—2s refers to
15— 2s eigenstates coupling approximation. 1s—2s—2 has similar
meaning. EX. NEGL. refers to exchange neglected case. BORN is
the Born approximation. EXP. refers to experiment.

15T am indebted to Dr. K. Smith for sending me some of the
data in this table.
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buted to the effect of the »~2 long-range potential which
appear in the differential equations when in the eigen-
states coupling approximation the 2p state is included.
Two different methods are used in Refs. 4 and the
present paper to estimate the effect of this potential for
large distances, and it may be that in Refs. 4 this effect
is better accounted for. Nevertheless the cross sections
are the same in thgir first three decimal places.

In Fig. 1 we present the theoretical and the experi-
mental estimate of the 1s— 2s excitation cross section.
The calculated curves are Born, 1s—2s coupling,
15— 2s5—2p coupling exchange neglected, and 1s—2s—2p
coupling exchange included, approximation. The first
three of these curves are the same as Refs. 4(a) and
4(b). The experimental curves are those of Lichten and
Schultz,'® and Stebbings, Fite, and Hummer.!” The
various calculated results agrees better with the results
of Lichten and Schultz. However, recent calculations of
Taylor and Burke!® have shown that, in an eigenstates
expansion calculation where 1s, 2s, 2p, 3s, and 3p are
included, the cross section at the peak of the 1s—2s—2p
curve is reduced by 30%. This suggests that, within
eigenstates expansion approximation, more states
should be included to insure that the convergence has
been achieved; and the discrepancy between the two
experimental results is still an unresolved problem. As
another theoretical approach to the problem, H. L. Kyle
and A. Temkin!? have extended the nonadiabatic theory
of scattering developed by A. Temkin® to the L=0,
1s — 2s inelastic scattering of electrons by the hydrogen
atom. They find a 30%, decrease in the 1s — 2s cross
section as calculated by the 1s—2s close coupling
approximation.

Comparison of the exchange neglected and exchange
included 1s—2s5—2p coupling shows that exchange is
mostly important at threshold, and its effect does not
extend beyond 20 eV.

The 1s— 2s excitation cross section in the singlet
state has an interesting behavior immediately above
threshold. In Fig. 2 this cross section for a range of 600
meV above threshold is plotted. In the 1s—25 coupling
approximation a maximum appears at 34 meV while in
the 1s—2s—2p coupling approximation there are three
maxima of approximately the same magnitudes at 17,
34, and 87 meV, respectively. In the singlet case the
cross section rises sharply within a range of 17 meV
above threshold to a value of about 0.04wa?. It then
rises with an approximately constant and small slope.
The contribution of the triplet case is seen to be almost

16 W, Lichten and S. Schultz, Phys. Rev. 116, 1132 (1959).

17 R, F. Stebbings, Wade L. Fite, David G. Hummer, and R. T.
Brackmann, Phys. Rev. 119, 1939 (1960).

18 A, J. Taylor and P. G. Burke, in Bulletin of the Third Inter-
national Conference on the Physics of Electronic and Atomic Colli-
sions, University College, London, July 1963 (unpublished).

19 H, L. Kyle and A. Temkin, in Bulletin of the Third Inter-
national Conference on the Physics of Electronic and Atomic Colli-
sions, University College, London, July 1963 (unpublished).

20 A, Temkin, Phys. Rev. 126, 130 (1962).
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F16. 3. 25 = 2s total elastic cross section. Curves
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ELECTRON ENERGY (milli eV)

negligible at the threshold, and it has no maximum in
this region (see Table II). It should be noted that the
principal maximum in the 1s — 2s excitation cross sec-
tion appears at about 3 eV with a value of about 0.35,
and has contribution from higher angular momentum
than L=0. Although no study has been made to re-
late the existence of the maxima above threshold to
any physical phenomena, it may be said that, similar to
resonances below threshold in the elastic scattering of
electrons by the hydrogen atom, these maxima are due
to formation of some unstable states of the negative
hydrogen ion. Damburg and Peterkop,’ and Gailitis and
Damburg? have made an extensive study of the be-
havior of different cross sections near threshold in the
1s—2s, and the 1s—25—2p eigenstates coupling
approximations.

In Fig. 3 we have shown the 25 — 2s elastic cross
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% M. Gailitis and R, Damburg, Proc. Phys. Soc. (London) 82, 192 (1963). [Note added in proof: When the energy difference be-
tween the 2s and the 2p states are neglected in the 1s-—2s—22p couplings, Gailitis and Damburg have shown that at the threshold

the 1s — 25 excitation cross section does not go to zero (cf. Fig. 2).]
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TasLE IL. The singlet L=0, 15 — 25 excitation cross section near threshold. % is the wave number of the inelastically scattered wave,
and E is 1l:he corresponding energy in meV. Q; and Q; are the cross sections according to the 1s—2s and the 1s—25—2p couplings,
respectively.

ko 0 0.01 0.02 0.025 0.030 0.035 0.04
E (meV) 0 1.36 5.44 8.50 12.2 16.7 21.8
() 0 0.0168 0.0298 0.0377 0.0423
Q2 0 0.0149 0.0259 0.0349 0.0405 0.0353
k2 0.045 0.050 0.060 0.070 0.080 0.090 0.100
E (meV) 27.5 34.0 49.0 66.6 87.0 110 136
O 0.0446 0.0441 0.0435 0.0423 0.0412 0.0405
Q2 0.0346 0.0405 0.0391 0.0361 0.0395 0.0392 0.0385
TasLE IIIL 2p—2p elastic cross sections.
ko A. L—I,—1, odd, Born approximation
L=1 L=2 L=3 L=4 L=5 L=6 L=7 2o
0.24 26.562 6.1961 2.1260 0.92680 0.44497 0.22694 0.08105 36.56
0.50 14.210 5.2190 2.1768 1.0526 0.55433 0.31476 0.18383 23.711
0.68 8.8346 4.0761 1.9476 1.0100 0.54983 0.31728 0.18718 16.923
0.83 6.0065 3.2062 1.6993 0.94122 0.53204 0.31331 0.18680 12.8854
1.23 2.5053 1.7048 1.1013 0.70920 0.44518 0.28212 0.17577 6.9237
1.80 0.91169 0.74615 0.56949 0.42475 0.30158 0.21122 0.14245 3.30733
2.87 0.23647 0.22647 0.20035 0.17178 0.13878 0.10926 0.08177 1.16488
B. L—1I,—I; odd, exchange neglected 2p eigenstates couplings approximations
L=1 L=2 L=3 L=4 L=35 L=6 L=7 =
0.24 61.12 8.444 2.5808 1.1408 0.6200 0.3720 0.2516 74.52
0.50 15.292 6.884 2.5436 1.1580 0.6216 0.3640 0.2352 27.10
0.68 8.008 4.940 2.2548 1.1160 0.6160 0.3640 0.2352 17.54
0.83 5.108 3.6364 1.9292 1.0380 0.5968 0.3592 0.2340 12.90
1.23 2.0484 1.7392 1.1812 0.7652 0.4972 0.3236 0.2208 6.776
1.80 0.7640 0.7220 0.5816 0.4436 0.3312 0.2400 0.1784 3.261
2.87 0.2132 0.2180 0.2004 0.1776 0.1520 0.1272 0.1064 1.195
C. L—I,—1, odd, 2 eigenstates couplings approximation
Singlet
L=1 L=2 L=3 L=4 L=5 L=6 L=7 Zos
0.24 2.963 4.161 0.6725 0.2861 0.1552 0.0930 0.0629 8.394
0.50 3.735 3.182 0.7915 0.3066 0.1576 0.0913 0.0589 8.323
0.68 2.165 1.728 0.6851 0.3025 0.1587 0.0920 0.0590 5.190
0.83 1.371 1.107 0.5562 0.2799 0.1547 0.0913 0.0589 3.619
1.23 0.5280 0.4603 0.3115 0.1991 0.1277 0.0823 0.0558 1.7647
1.80 0.1928 0.1831 0.1475 0.1124 0.0837 0.0605 0.0449 0.8249
2.87 0.0534 0.0547 0.0503 0.0445 0.0381 0.0319 0.0267 0.2996
Triplet
L=1 L=2 L=3 L=4 L=5 L=6 L=7 Sor
0.24 49.22 3.265 1.850 0.8528 0.4650 0.2788 0.1886 56.12
0.50 7.791 1.851 1.504 0.8193 0.4598 0.2722 0.1764 12.87
0.68 4.720 2.219 1.361 0.7700 0.4481 0.2700 0.1756 9.964
0.83 3.373 2.099 1.237 0.7198 0.4318 0.2652 0.1744 8.300
1.23 1.484 1.225 0.8376 0.5509 0.3630 0.2384 0.1639 4.863
1.80 0.5674 0.5337 0.4295 0.3283 0.2456 0.1784 0.1330 2.4159
2.87 0.1596 0.1632 0.1500 0.1328 0.1136 0.0951 0.0797 0.8940
D. L—I,—1; even, Born approximation
L=0 L=1 L=2 L=3 L=4 L=5 L=6 L=7 Zr Qr
0.24 12.488 230.42 40427 1.9014 0.30797 0.57480 0.29675  0.06128  250.09 290.69
0.50 0.1758 74.475 7.0963 0.92172 0.48094 0.45745 0.30098  0.05695 83.965 109.714
0.68 0.07386 36.478 6.5573 1.0156 0.29902 0.27895 0.23113  0.04364 44978 63.742
0.83 0.22032 21.559 5.4143 1.1653 0.26124 0.15835 0.15225  0.02533 28.956 43.572
1.23 0.25024 7.3349 2.9703 1.1453 0.37750 0.11091 0.04377  0.03572 12.269 20.571
1.80 0.13477 2.3518 1.3155 0.74676 0.39290 0.18754 0.07731  0.02824 5.2348 9.6066
2.87 0.04395 0.55809 0.40443 0.30267 0.21866 0.15188 0.09753  0.05832 1.8355 3.8272

3.91 0.01868 0.20876 0.17048 0.14307 0.11656 0.09255 0.06896  0.04864 0.8677 2.1455
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TaBLE III—(continued)

E. L—I,—1, even, exchange neglected 1s—2s—2p eigenstates couplings approximation

L=0 L=1 L=2 L=3 L=4 L=35 L=6 L=7 2 Qr
0.24 31.96 91.21 154.6 92.86 55.86 36.79 24.37 487.7 566.32
0.50 9.371 12.65 30.88 20.53 12.99 8.451 5.695 100.6 129.8
0.68 4.156 5.953 13.19 9.628 6.563 4.508 3.130 47.13 66.56
0.83 2.542 4.560 7.424 5.249 3.811 2.793 2.032 28.41 43.07
1.23 1.208 2.879 2.906 1.734 1.106 0.8438 0.6912 11.37 19.56
1.80 0.5612 1.385 1.238 0.8299 0.5109 0.3005 0.2022 5.028 9.382
F. L—I,—I; even, 15s—2p eigenstates couplings approximation
Singlet
L=0 L=1 L=2 L=3 L=4 L=5 L=6 L=7 ZEs
0.24 1.964 5.238 17.34 1.260 0.4896 0.2460 26.54
0.50 0.5131 3.159 1.544 1.439 0.4063 0.1906 0.1133 7.365
0.68 0.2346 2.091 1.039 0.4944 0.2539 0.1520 0.0984 4.363
0.83 0.1227 1.252 0.9930 0.1532 0.1191 0.0990 0.0766 2.816
1.23 0.1071 0.6796 0.6167 0.2249 0.0635 0.0249 0.0217 1.7384
1.80 0.0571 0.3366 0.2926 0.1818 0.0954 0.0426 0.0172 1.0233
Triplet
L=0 L=1 L=2 L=3 L=4 L=5 L=6 L=T7 ZEr Qr
0.24 15.62 26.72 32.44 6.674 1.252 0.7359 83.44 178.89
0.50 4.844 3.384 19.97 12.52 0.8285 0.3266 0.2754 42.15 72.80
0.68 2.247 3.886 10.33 5.922 1.035 0.2270 0.1764 23.82 45.22
0.83 1.293 3.650 6.287 3.476 0.9248 0.2097 0.1162 15.957 32.45
1.23 0.4842 2.287 2.424 1.418 0.6072 0.2079 0.0717 7.500 17.28
1.80 0.1909 1.063 0.9673 0.6659 0.4001 0.2024 0.0962 3.586 8.943
G. L—I1—I, even, 1s—25—2p eigenstates couplings approximation
Singlet
L=0 L=1 L=2 L=3 L=4 L=5 L=6 L=7 ZEs
0.24 7.852 13.45 38.56 21.41 15.44 8.610 6.432 111.75
0.50 2.470 5.026 7.433 4.900 3.201 2.101 1.417 26.548
0.68 1.344 2.283 3.025 2.683 1.756 1.166 0.7903 13.047
0.83 0.7424 1.316 1.579 1.518 1.079 0.7580 0.5313 7.524
1.23 0.2813 0.6752 0.6254 0.3663 0.2726 0.2289 0.1916 2.641
1.80 0.1357 0.3339 0.2862 0.1816 0.1065 0.0659 0.0471 0.0383 1.1952
2.87 0.0513 0.1053 0.0930 0.0739 0.0553 0.0391 0.0268 0.0181 0.4628
3.91 0.0267 0.0451 0.0422 0.0373 0.0318 0.0261 0.0212 0.0166 0.2470
Triplet
L=0 L=1 L=2 L=3 L=4 L=5 L=6 L=7 ZEr QOr
0.24 27.90 75.79 63.10 87.21 41.31 26.12 17.13 338.56 518.92
0.50 4.337 4.540 20.66 21.62 10.38 6.373 4.255 7217 122.01
0.68 2.823 4.018 10.75 8.986 5.149 3.337 2.302 37.37 67.46
0.83 2.032 3.674 6.400 4.796 2.950 2.013 1.468 23.333 44.54
1.23 0.9741 2.290 2.465 1.599 0.9568 0.6421 0.4924 9.419 20.11
1.80 0.4291 1.055 0.9303 0.6614 0.4150 0.2540 0.1639 0.1180 4.027 9.531
2.87 0.1564 0.3217 0.2907 0.2330 0.1780 0.1291 0.0907 0.0623 1.4619 3.945
3.91 0.0805 0.1366 0.1285 0.1143 0.0982 0.0810 0.0655 0.0524 0.7570
1.6
Is-2s-2p
section. The 1s—2s coupling approximation gives a 141
value of 944ras® at zero-incident energy, while the el
corresponding value in the Born approximation is 4
786ma¢®. The high value of this cross section at zero 2 or
energy is in sharp contrast with its geometrical cross g 0.81-
section. The zero energy 2s — 2s cross section in the & L N—_Exr. (Fite Et AL)
1s—2s—2p coupling approximation, because of the 2 g
potential, is difficult to find. The 2s — 2s cross section 5 o4
has certain maxima and minima at low energy which is 0.2l
not found in the 1s — 1s cross section. Figure 4 shows 1 L
the L=0, singlet and triplet 2s — 2s cross section in the % 5 16 15 20 25 30 35 40 45 50 55

two approximations. While there is one minimum in the
1s—2s coupling approximation there are three minima
in the 1s—2s—2p coupling approximation. It is thought
that the existence of these minima is due to a wider

ELECTRON ENERGY (eV)

F16. 5. 1s — 2p total excitation cross section. 1s—2p refers to
1s—2p eigenstates coupling approximation. 1s—2s—2p has similar
meaning. EX. NEGL. refers to exchange neglected case. BORN is
the Born approximation. EXP. refers to experiment.
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TasBLE IV. 25—2p excitation cross sections.
ks A. Born approximation

L=0 L=1 "~ L=2 L=3 L=4 L=5 L=6 = QOr®
0.245 21045 465.14 449.77 343.68 148.60 209.74 158.31 1985.69 13560
0.500 6.2469 30.729 57.561 64.948 54.469 49.590 40.391 303.935 3465.0
0.678 0.92003 6.6619 16.736 24.356 25.702 24.598 21.122 120.096 1930.9
0.831 0.24580 2.1480 6.4066 11.011 13.641 14.135 12.973 60.560 1308.4
1.225 0.02039 0.20887 0.78437 1.7481 2.7859 3.6015 3.9501 13.099 620.51
1.803 0.00187 0.01900 0.07823 0.20201 0.38645 0.59807 0.78354 2.0692 294.95
2.872 0.00011 0.00107 0.00444 0.01211 0.02545 0.04450 0.06688 0.15456 120.26 -
3.905 0.00002 0.00017 0.00067 0.00182 0.00389 0.00699 0.01096 0.02452 66.509

B. Exchange neglected 15s—2s—2p eigenstates couplings approximation

L=0 L=1 L=2 L=3 L=4 L=5 L=6 b Qr
0.245 5.311 12.59 23.21 41.11 12476
0.500 0.8651 10.55 1.143 18.92 26.25 571.73 3308.8
0.678 1.150 5.907 0.5760 7.168 12.28 14.46 15.08 56.62 1867.4
0.831 1.249 2.859 0.3831 3.158 6.664 8.591 9.391 32.295 1280.1
1.225 0.3847 0.4266 0.0881 0.4560 1.403 2.328 3.022 8.108 615.52
1.803 0.0654 0.0516 0.0142 0.0553 0.1846 0.3930 0.6183 1.3824 294.26

C. 1s—25—2p eigenstates couplings approximation
Singlet

L=0 L=1 L=2 L=3 L=4 L=5 L=6 Zg
0.245 2.243 4.424 3.276 9.943
0.500 0.1241 1.605 1.348 6.360 7.159 16.596
0.678 0.0362 1.446 0.5518 3.056 3.693 3.911 12.694
0.831 0.1866 0.9881 0.2615 1.488 2.144 2.433 2.505 10.006
1.225 0.1048 0.1516 0.0384 0.1639 0.4584 0.7031 0.8529 2.473
1.803 0.0175 0.0157 0.0046 0.0148 0.0530 0.1108 0.1726 0.3890
2.872 0.0014 0.0010 0.0004 0.0010 0.0032 0.0075 0.0133 0.0278
3.905 0.0002 0.0002 0.0001 0.0002 0.0005 0.0012 0.0019 0.0043

Triplet

L=0 L=1 L=2 L=3 L=4 L=5 L=6 Zr Zs+2r QOr
0.245 0.0000 10.40 56.74 67.14 77.083 12512
0.500 2.322 7.125 2.357 3.838 17.01 32.652 49.248 3300.3
0.678 1.590 2.363 0.3333 1.442 6.810 9.868 22.406 35.100 1867.0
0.831 0.9885 1.125 0.1226 0.8444 3.411 5.518 6.556 18.566 28.572 1276.4
1.225 0.2648 0.2173 0.0402 0.2297 0.7623 1.423 1.987 4.924 7.397 614.8
1.803 0.0455 0.0310 0.0094 0.0383 0.1223 0.2544 0.4070 0.9079 1.297 294.18
2.872 0.0040 0.0024 0.0009 0.0031 0.0095 0.0208 0.0359 0.0766 0.1044 120.21
3.905 0.0007 0.0004 0.0002 0.0005 0.0015 0.0035 0.0063 0.0131 0.0174 66.520

72 5
* Qr =75[14.8451 —u-+Ink2], u=% [1—#] +Z

1—yn
—n--}-} Inn, 7n=1-4ks2 (Ref. 24).

potential range in the 2s — 2s scattering, a case which
does not exist in the 1s — 1s scattering.?'s

In Fig. 5 the four calculated curves for the 1s — 2p
excitation cross section are compared with the measure-
ment of Fite, Stebbings, and Brackmann.?# The
1s—2s—2p and the Born curves are the same as in
Refs. 4(a), 4(b), but the 1s—2s—2p exchange neglected,
and the 1s—2p curves are not calculated in these
references. As concluded before, the calculated curves
are higher than the experimental. Moreover, we notice

28 Note added in proof. Figures 2 and 4 show that in the 1s—2s
—2p couplings if E,_, and E, represent the energy with respect to
the threshold of the two neighboring maxima or minima then
E,/En_1=const. This may be attributed to the 72 potential which
is due to the coupling between the 2s and the 2p states. For further
details see Ref. 21,

2 W. L. Fiteand R. T. Brackmann, Phys. Rev. 112, 1151 (1958).

2 W. L. Fite, R. F. Stebbings, and R. T. Brackmann, Phys. Rev.
116, 356 (1959).

that, similar to the 15 — 2s excitation cross section, the
inclusion of the exchange lowers the value of the cross
section at threshold.

The calculation of the 2p — 2p elastic cross section is
more complicated than the cases so far considered. For
a given total angular momentum L, the angular
momentum of the partial wave which is scattered from
the 2p state may be L—1, L, and L+1. The first and
the third values correspond to a wave function which
has the same parity as the wave functions in the 1s and
the 2s channels. In this case L—Il;—/; is even. The
second value corresponds to a wave function with a dif-
ferent parity, and the only process that occurs with this
parity is the 2p elastic scattering. In this case L—l—1l;is
odd. We have calculated the 2p — 2p cross sections for
the two cases, and they are listed in Table III. The
total cross section is shown in Fig. 6. Because of the r~2
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potential it is difficult to find the zero energy value of
this cross section.

The 25 — 2p transition cross section has application
in some plasma, and stellar atmosphere, calculations.
The total cross section using the Born approximation is
given by Seaton.? In Table IV we list the partial cross
section using the close couplings approximation. This
table may be found useful in problems in which plasma
shielding occurs; where only electrons with an impact
parameter within a given range can induce the 2s — 2p
transition.

It may be noted that the cross sections for the inverse
processes 2s — 1s, 2p — 1s, and 2p — 2s may be cal-
culated by Eq. (3.20) and the symmetry of the T
matrix.

Tables for the processes 1s— 1s, 1s — 25, 15 — 2p,
and 2s — 2s will not be given here as the most important
cases have been reported by Burke, Schey, and
Smith.4(® ®) These tables in various approximations are
given in Ref. 6.

In all tables listed here &, is the wave number in the
1s, and k, is the wave number in the 2s or the 2p chan-
nels. The energy, in electron volts, of the incident elec-
tron in each channel is given by E=13.6k% where %
could be %; or ks. All cross sections are in units of wag.
In Tables III and IV, Y is the sum of the partial cross
sections calculated. The total cross section Qr is ob-
tained by adding the contribution of higher partial
waves than those calculated using the regular Born ap-
proximation. This could easily be done with the help of
the table of the Born approximation.

V. CONCLUSION

The noniterative technique employed here can be
applied to a large class of problems containing exchange
integrals. The method is particularly useful when ex-
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change potential is comparable to direct potential, in
which case the convergence of iteration is slow.
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APPENDIX I: ELEMENTS OF THE POTENTIAL MATRIX
(i) L—1,—1,Even

Elements of D.;

3 r
Dag=— —+—+—+—>e_’ ,
r 4 4 8
1 3 7 6(L—1)r1 11 11 r 7
Dg= —[ +—+— ]e_' } —-—( fF—+——4—F— >e—':| R
r 4 4 24 2L+1 L#3 7 2 2r 6 24 144
1 3 r 6(L+2)r1 1 1 11 7 2
Dy= —I: +-+— ]e" f —-—-< +—t—+—+—+ >e"] R
r 4 4 24 2L+1 L3 2 2r 6 24 144

% M. J. Seaton, Proc. Phys. Soc. (London) A68, 457 (1955).
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V2
D= D21=?(f+%)e_s’/2 s

128v2 L \'y1 1 3 9 2ir
Di3=Dg = X<———‘> l:—*—(——l-——l"-—l-——)e“s"z],

243 2L+1 "\ 2r 8 64
128V2 s L+1\"V2 1 1 3 9 27r

Dy=Da= ———(—) [—— (—+—+—+———)e‘3”2:| ,
243 \2L+1 r2 \r2 2r 8 64

L V21 1 11 7
Dys=D3p= -—3<—> [——— <—+_+_+_+_)e—r:l ,
2L+1 2 \r2 r 2 6 24

L_|..1 1/2, 1 1 1 1 r 72
D24=D42=3(—> [—«—(—+—+—+—+—)6—f],
2L+1 2 \r2 7 2 6 24

L+t 4,1 1 11 7 2
D34=D4a=—18[—] [——( F—t—t—t—t )e"].
(2L41)2 P\ 2 2 6 24 144

Elements of F;
B [Ruw [T " Ryo
F11= -_— Rlorll"l'ldf,—Rmel/ —dy’ ,
2L+1_ fL 0 0 T,L
B [Re " " Ry ,
F22= - Rzof’Hldf,—RzngI/ —-—dr ] 5
2L+1_ fL 0 0 f’L

r

381 1 /Ry [ "R L—1 /Ry [T Ra
Fy= p (—f—l / Ry’ FHdy’ — Ryyprlt! / ——2—1dr'>-}————<—ﬂ / Roy’E1dy' — Ropr™1 f - dr'>:| ,
2L—1L (2L4+1)2\ ¢ J, o 'L 2L-3\r72J, o 7’72

Br 1 Ro1 7 " Ra1 L+2 /Ry (T , , " Ry ,
FM: 1 (——/ Rglr,Hldf'—RglfHI/ -—“df' +—(—f R217' I’H"dr —R217L+3/ ; df ,
2L43L L4122\ 7L J, o 'L 2L+5\r+2 J, o 7' It2

B [Re 7 " Ryg
= - RloT,HIdfl—'Rzole/ —dr ’
2L+ 1 L TL 0 0 T’L

Fo1=F1[Ri0=Rso],

L 1/2 RZI r r RIO
F13=\/3ﬁ[:——————————] XI:——/ Rmf’l’df—RzlfL/ dfl:l y
(2L+1)(2L—1)2 1), o P11

Fy1=F1[Rio=Ro1],

L+1 U2 Ry [T ™ Rio ,
F14= —\/gﬂ[——————-] X[—/ RloT'H2dr/—R217L+2/ —-dr y
(2L+1)(2L+3)? P+ J o I+

Fyu=F1[Riy=Ra],

L U2 Ry [F " Ry
a5 [ rrar [ 2],
(2L+1)(2L—1)? i1 /o o 7'

Fyp=Fo3[ Rog = Ro1],

L+1 12 Ry 7 " Ry
F242= m\/gﬂ[——————————] X[—/ Rgof’”2df’—R217L+2/ df,:l 5
(L+1)(2L+3)? i+ J, o I+

Py
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Fis=Fo[Roo= Ro1],

L (L+ 1) 2 R21 r r R21
Fyu= —33[————] X[—-—/ R217’L+ldf’—R217L+1/ —————dr':l ,
0

(2L+1)* rt
Fyy=Fy.
Elements of gi; and hs;
BRI()"L-H
1= )
2L+1
ﬁRgofL-H
822= ’
2041
3BRyrH1
gas'=

@L—1)@L+1)]
36 (L— 1)R217’I’—1
(2L—1)(2L—3)’
38R+
gul=———————,
(2L43) (2L+1)?
38(L+2)Rorr ™+
QL43)L+5)

gss?=

g442

812= R207'l""1 )

2L+1
g21=g12[R20 - Rxo:] ,

1/2
]
8= ei+ner—1]

g31= g13[R21 - Rm] y

L+1 12
] Royr+2,

e T
(2L+1)(2L+-3)?
ga1=g1[ Ra1— Rio],

g23=\/§

L 1/2
:3[ - __] R211'L’
(2L+1)(2L—1)?
g32=g23[R21 - Rzo] ,

L+1
g24=—\/3 [

1/2
B —-——————] Rowr™+2,
(L+1)(2L+3)*

842= g24[R21 - Rzo] )

L(L+1)v2
8342—3/3[—‘“] Royr™*1,
(2L+1)*

843= 834

0 7L

Ykt

) (L,2)r] R

3+k

1
h441=R21[—L* a(L,O)r:| y

1+4-ky?

1
hiy= Rlo[——
yL

B(L,O)r] ,

ho1= hlZI:RIO - Rzo] ’
1+ky2

1
h13=R10|i———— 5(L,1)7’:| ,
L1
ha1= h13|:R10 - Rzl] ’

Ry
hiy=——,
yLH1

ha= h14[R10 g R21] s
b

1
k23=R20|:————— 5(L,1>1’] ,
yL—1

h3a= hzs[Rzo i ij y

R20

h24=_ )
yL+1

h42=h24ER20 - R2l:| y
Ry

34=

yL

)
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() L-1,—1;0dd

1 3 7 1 11 11 r 9
D =—[—+ +- +—-]e-f—6[——( F—t—t=t— )e‘]
r 4 4 24 " \r® 72 2r 6 24 144

38 1 Ra * Roy 1 Ry 7 " Roy
F55= '—-————-l:——< /. Rzlf’Ldfl—RzlfL/ dr’ —————( / R217'L+2d7’,~‘R217’L+2/ dr’ :l,
2L+1L2L—1\r2 o Yt 2L+ 3\rLH1 o 7'ItL

3BRyyr™ 1 i+k?
g55‘= s — h551=R21|: ( 1)7’]
(2L+1)(2L—1) .
SﬁRzlfHZ R21
g 5% = —————————— y hsg?= .
(2L+1)(2L+3) i+t

In F;; matrix the interchange of the functions Rje, Rgo, and Ry accompanies the interchange of their argu-
ments too.

APPENDIX II: SINGULARITY OF THE DETERMINANT OF EQ. (2.17) FOR L=0 AND 1
(i) L=0 Case

By making use of the definition of D;; and F,; and Eq. (2.18), the following relation can be derived
from Eq. (2.14):

© a a2 2
/0 [7R20<E+klz)”l—ﬁme(E;-l‘kzz)vz]df = —;/'—3[013324—3023314] ) (IL.1)
where the superscript u is suppressed when there is only one value for u and
3= / RioRorr®dr=[215X 3912, (11.2)
0
(123=/ RzoRnfadr: —3\/3 (113)
0
Integrating the left-hand side of Eq. (IL.1) by parts, and making use of Egs. (2.11) and (2.18), we obtain
o az a2
/ [7R2o(7d—2+k12> 37‘R10<—"+k2> :| dr=—2[ Bu—BBi2]. (IL.4)
0 T
We conclude that
1
Ba—BB 12=%[013324"‘ﬁ023314] . (IL5S)

Equation (II.5) connects the right-hand sides of four equations of Egs. (2.17) specified by =21, 12, 24, 14.
A similar relation should hold among the left-hand sides of these equations. This in fact is the case and by making
use of the first of Eqs. (2.18) it can be shown directly that equations similar to Eq. (IL.5) hold among the elements
of each column kv of the left-hand sides of Egs. (2.17) specified by 4j=21, 12, 24, 14. We conclude that one of the
Egs. (2.17) is linearly dependent on others and the determinant of Eqgs. (2.17) is singular.

(ii) L=1 Case

Similar to the previous case, the following relation can be derived from Egs. (2.14):

r r

© d? 2 a?
/ [7R21<E—2+k12— “;‘)”1‘5’R10<ﬁ+k22> ] = ——[:/3013311+ﬂa23312 dlaBaal-f'\/Z(astu"%ﬁdasBu)], (1L.6)
0 s
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where

o= / Raxrtdr=30. aL7)
)

Integrating the left-hand side of Eq. (I1.6) by parts, and making use of Eqs. (2.11) and (2.18), we obtain

/ . l:rRm(f-}-klz—i)vl-— BrRm(£+kz2>v3:|dr= —2[Bu—BBus]. (IL.8)
0 dr? 2 ar? :
Combining Eqgs. (IL.6) and (IL.8), we get
By1—BB1s=3[Ba13B11+Bas3B1a— 613B3s'-+V2 (a13B3s— $Ba33B14) ] (I1.9)
Finally, Egs. (2.14) give the following relation:

a2

0 a: 2
[ I}sz(;*i‘kzz——2>'112—37R20<;+ k22>v3]df = —2[BasBar+Ba13Ba— a2 Bss'+V2 (a2sBss— Bas3Bs4) ]. (11.10)
JO s r T
Integration by parts of the left-hand side gives as before

0 d2 2 d2
/ [7R21<-—‘+k22——>’1)2—~ﬂfR20(—+k22>1)3]dr= —ZEBaz—ﬂBzaj y (IIll)
0 dr? 2 dr?

4

whereupon we get

Biss—BBas=3[Ba23Bee+Ba13Ba1— a23Bss'+V2 (a23Bss— §Bas3Baa) . (I1.12)

Similar to the case L=0, Eqgs. (IL.9, 12) indicate that two of the Eqgs. (2.17) are linearly dependent on others and
the determinant of Egs. (2.17) is singular.

To remove the singularity in L=0 case, one of the Cy/” is chosen arbitrarily, and a degenerate equation is removed
from Egs. (2.17). Similarly, in the L=1 case two of the C;” are chosen arbitrarily and two degenerate equations
are removed from Egs. (2.17).

APPENDIX III: ELEMENTS OF THE MATRIX OF THE SUM OF THE ASYMPTOTIC COULOMB
AND CENTRIFUGAL POTENTIALS

U11=L(L+1)1’_2, U22=L(L+1)7‘_2,
Uss= (L—1)Lr24+12(L—1) 2L+1)"3, Uss= (L+1) (L4+2)r2+12(L+2) 2L+ 1)1,
Upie=Un=0 y Up=Un= [256\[2-/243][14/ (2L+ 1)]1/27_2 y

U14= U.n= et E256\/2-/243][:(L+ 1)/ (2L+ 1)]”21’_2 y U23= U32= —6[:L/ (2L+ 1)]1/27’“2,
Ugs=Us=6[(L+1)/2L+1)]"r2, Uss= U= —36[ L(L+1)"2(2L+1)"1r2,



