method of resonance distortion and its relation to other approximate methods of solving collision problems. First of all, the method of resonance distortion is restricted to problems involving near-resonance, since the limiting case of exact resonance is taken as the zeroth-order approximation. This method is most suitable for cases where the coupling between the initial and final states is strong. We can illustrate the nature of this method through a partial-wave analysis. The partial cross sections corresponding to large l for the strong coupling case reduce to the Born partial cross sections, because partial waves of large l are classically equivalent to distant impacts and at large distances, U_{00} , U_{nn} , and U_{0n} are sufficiently small so that the Born approximation is applicable. At lower lthe "effective" coupling becomes so large that the use of the Born approximation and the method of distorted waves, which are valid for weak coupling, is not always justifiable. It is in this region of l (called "low-l region") that the method of resonance distortion is useful. For collision-induced transitions with a long-range interaction potential, where the contribution from the partial cross sections in the "low-l region" constitutes a substantial part of the total cross section (e.g., Table IV), we may expect the method of resonance distortion to yield more accurate results than the usual Born approximation.

For very weak coupling, the results of the method of resonance distortion approach those of the method of distorted waves. This can be seen from Eqs. (108) and (109). When U_{0n} becomes very small, $F_0^{(0)}$ in Eq. (109) is nearly equal to the zeroth-order solution in the method of distorted waves, which is defined by

$$(\nabla^2 + k_0^2 - U_{00})(F_0^{(0)})_{\rm DW} = 0$$

The difference in F_n as calculated by these two zerothorder functions should be small compared to F_n itself.

ACKNOWLEDGMENTS

The authors wish to thank Mrs. Barbra Lafon and George Shelton for their assistance in the numerical computations.

PHYSICAL REVIEW

VOLUME 133, NUMBER 4A

17 FEBRUARY 1964

Analytical Self-Consistent Field Functions for Cr⁺, Cr and Its Excited States^{*}

MIROSLAV SYNEK

Department of Physics, De Paul University, Chicago, Illinois (Received 7 October 1963)

Self-consistent field calculations by the expansion method were carried out for Cr⁺, Cr and some of its excited states. The results represent closely the absolute Hartree-Fock solutions. The wave functions were calculated with the requirement to satisfy exactly the cusp condition so that they can be considered to be particularly accurate in the immediate vicinity of the nucleus. The differences in calculated energy levels are compared with experiment.

INTRODUCTION

HE self-consistent field (SCF) expansion method of Roothaan¹⁻³ was applied on a number of cases.⁴⁻⁹ In this paper the application is carried out for

* This work was supported through the grant of the guest privileges at the Department of Physics, University of Chicago, Chicago, Illinois.

¹¹ C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951).
 ² C. C. J. Roothaan, Rev. Mod. Phys. 32, 179 (1960).
 ³ C. C. J. Roothaan and P. S. Bagus, in Methods in Computational Invited to P. Addards (2000).

⁶ C. C. J. Roothaan and P. S. Bagus, in *Methods in Computational Physics*, edited by B. Alder et al. (Pergamon Press, Inc., New York, 1963), Vol. 2.
⁴ C. C. J. Roothaan, L. M. Sachs, and A. W. Weiss, Rev. Mod. Phys. 32, 186 (1960).
⁶ E. Clementi, C. C. J. Roothaan, and M. Yoshimine, Phys. Rev. 127, 1618 (1962).
⁶ C. C. J. Roothaan and P. S. Kelley, Phys. Rev. 131, 1177 (1063)

(1963).

⁷ M. Synek, Phys. Rev. 131, 1572 (1963); this article, with numerical tabulations and graphs of some wave functions in-cluded, is also printed in the Technical Report, Laboratory of

Cr⁺, Cr and some of its excited states. Vector coupling coefficients $J_{\lambda\mu\nu}$ and $K_{\lambda\mu\nu}$ were taken from the tables calculated recently.10

The computation was done on an IBM 7090 computer with a modification of the previously established program.8

RESULTS AND DISCUSSION

The notation and the units used are the usual ones and are identical with those employed in a recent work.⁷

Some of the important results are presented in

Molecular Structure and Spectra, Dept. of Physics, University of

Molecular Structure and Spectra, Dept. of Flysics, Oniversity of Chicago, 1962-3, Pt. 1, p. 229.
⁸ H. D. Cohen, Technical Report, Laboratory of Molecular Structure and Spectra, Dept. of Physics, University of Chicago, 1962-3, Pt. 1, p. 251.
⁹ C. C. J. Roothaan and M. Synek (to be published).
¹⁰ G. L. Malli and C. C. J. Roothaan (to be published).

Tables I-VI.¹¹ The values of cusps are not presented since the cusp conditions are exactly satisfied.

The results computed represent the Hartree-Fock values to about six significant figures for total energies, and to about three decimal places for the radial functions $P_{i\lambda}(r)$. The condition for the required number of nodes of $P_{i\lambda}(r)$ is usually satisfied to four decimal places; as a rule,¹² the occasional deviation did not exceed nine units at the fifth decimal place (in the original computer tabulation). While keeping the same numbers of basis functions, the values of total energies

TABLE I. Comparison with other calculations for total energy E(au).

State		
	Other calculations	This work
Cr ⁺ , 3d ⁵ , ⁶ S	-1043.1346ª	-1043.1379
Cr. 3d44s2. 5D	-1043.3036 ^b	-1043.3084
Cr, 3d ⁶ , ⁵ D	-1043.0909ª	-1043.0957

^a See Ref. 14. ^b See Ref. 15.

TABLE II. Optimized exponents a ζ of the basis functions for Cr⁺, Cr and its excited states.

Atom and									
State	Cr+	Cr	\mathbf{Cr}	Cr	Cr	Cr	Cr	Cr	Cr
Basis	$3d^5$	$3d^44s4p$	$3d^{4}4s^{2}$	$3d^{5}4s$	$3d^54s$	$3d^{5}4s$	$3d^{5}4s$	$3d^{\circ}4p$	300
function	6S	${}^{\eta}F$.	5D	⁵ S	•Р	°G	'5	'P	*D
1s	24.000	24.000	24.000	24.000	24.000	24.000	24.000	24.000	24.000
35	25.696	25.763	25.671	25.763	25.763	25.763	25.763	25.782	25.518
35	19.410	21.115	21.668	21.115	21.115	21.115	21.115	20.785	21.037
35	13.643	13.769	13.874	13.769	13.769	13.769	13.769	13.760	13.859
35	9.696	9.822	9.726	9.756	9.756	9.756	9.756	9.744	9.860
35	5.233	4.891	5.082	5.104	4.799	4.865	5.129	5.044	4.958
35	3.375	3.335	3.442	3.372	3.187	3.237	3.360	3.357	3.239
4 <i>s</i>		1.646	1.745	1.592	1.613	1.601	1.602		
4s		0.936	1.014	0.881	0.911	0.912	0.880		
20	12.000	12,000	12.000	12.000	12.000	12.000	12.000	12.000	12.000
4p	27,700	27.178	27.178	27.178	27.178	27.178	27.178	27.178	27.454
$\overline{4}\overline{b}$	12,950	13.033	12.967	12.909	12.909	12.909	12.909	12.909	12.963
$\overline{4}b$	8.885	9.073	9.006	8.958	8.958	8.958	8.958	8.977	9.133
$\overline{4}b$	5.602	5.830	5.506	5.572	5.571	5.588	5.606	5.606	5.694
4 b	3 344	3 582	3.318	3.310	3.314	3.317	3.336	3.286	3.314
4 b	01011	1 688	01010					1.279	
$\tilde{4}_{p}$		0.954						0.684	
3d	8 000	8 000	8.000	8.000	8.000	8.000	8.000	8.000	8.000
5d	10.829	10 243	10.243	10.547	10.547	10.547	10.547	10.322	7.893
5d	7.038	6.393	6.393	6.393	6.393	6.393	6.393	6.393	6.950
5d	4.433	3 771	3.653	3.662	3.783	3.715	3.653	3.603	4.505
5d	2.944	3 059	3.021	3.025	2.972	3.004	3.021	2.971	2.446
5d	1.924	2.008	1.950	1.843	1.749	1.759	1.800	1.875	1.255
4p 4p 3d 5d 5d 5d 5d 5d	8.000 10.829 7.038 4.433 2.944 1.924	1.688 0.954 8.000 10.243 6.393 3.771 3.059 2.008	8.000 10.243 6.393 3.653 3.021 1.950	8.000 10.547 6.393 3.662 3.025 1.843	8.000 10.547 6.393 3.783 2.972 1.749	8.000 10.547 6.393 3.715 3.004 1.759	8.000 10.547 6.393 3.653 3.021 1.800	1.279 0.684 8.000 10.322 6.393 3.603 2.971 1.875	8.000 7.893 6.950 4.505 2.446 1.255

· Calculated to five decimal places. Values in the table are to be followed by two zeros beyond the third decimal place.

TABLE III. Eigenvectors of coefficients $C_{i\lambda p}$ for Cr⁺, Cr and its excited states.

Ato: and sta Basis function	$ \begin{array}{c} \text{m} \\ \text{l} \\ \text{te} \\ & Cr^+ \\ & 3d^5, {}^6S \end{array} $	Cr 3d44s4p, 7F	Cr 3d ⁴ 4s ² , ⁵ D	Cr 3d ⁵ 4s, ⁵ S	Cr 3d ⁵ 4s, ⁵ P	Cr 3d ⁵ 4s, ⁵ G	Cr 3d ⁵ 4s, ⁷ S	Cr 3d ⁵ 4p, ⁷ P	Cr 3d ⁶ , ⁵ D
1s 3s 3s 3s 3s 3s 3s 4s 4s	$\begin{array}{c} 1s\\ 0.97998\\ 0.02557\\ 0.00332\\ 0.00355\\ -0.00150\\ 0.00036\\ -0.00016\end{array}$	$\begin{array}{c} 1s\\ 0.97996\\ 0.02470\\ 0.00364\\ 0.00441\\ -0.00179\\ 0.00049\\ -0.00028\\ 0.00005\\ 0.00002\end{array}$	$\begin{array}{c} 1s\\ 0.97996\\ 0.02523\\ 0.00273\\ 0.00473\\ -0.00200\\ 0.00063\\ -0.00034\\ 0.00007\\ -0.00003\end{array}$	$\begin{array}{c} 1s\\ 0.97997\\ 0.02473\\ 0.00356\\ 0.00444\\ -0.00183\\ 0.00051\\ -0.00026\\ 0.00005\\ -0.00002\end{array}$	$\begin{array}{c} 1s\\ 0.97997\\ 0.02466\\ 0.00369\\ 0.00428\\ -0.00167\\ 0.00043\\ -0.00025\\ 0.00005\\ -0.00002\end{array}$	$\begin{array}{c} 1s\\ 0.97997\\ 0.02468\\ 0.00366\\ 0.00431\\ -0.00171\\ 0.00045\\ -0.00025\\ 0.00005\\ -0.00002\end{array}$	$\begin{array}{c} 1s \\ 0.97997 \\ 0.02473 \\ 0.00356 \\ 0.00444 \\ -0.00183 \\ 0.00050 \\ -0.00026 \\ 0.00005 \\ -0.00002 \end{array}$	$\begin{array}{c} 1s \\ 0.97997 \\ 0.02467 \\ 0.00382 \\ 0.00406 \\ -0.00160 \\ 0.00038 \\ -0.00018 \end{array}$	$\begin{array}{c}1s\\0.97999\\0.02648\\0.00141\\0.00491\\-0.00189\\0.00041\\-0.00019\end{array}$

¹¹ The numerical tabulations are presented in Tables VII-XV. As a rule (see Ref. 12) the tabulated values are rounded to four decimal places. The tables are deposited as Document number 7766 with the ADI Auxiliary Publications Project, Photoduplication Service, Library of Congress, Washington, D. C. A copy may be secured by citing the Document number and by remitting \$1.25 for 35-mm microfilm. Advance payment is required. Make checks or money orders payable to: Chief, ¹² The only exception occurs for the state 3d⁴4s4p, ⁷F.

Atom and state									
Basis function	Cr+ 3d ⁵ , ⁶ S	Cr 3d ⁴ 4s4p, ⁷ F	Cr 3d ⁴ 4s ² , ⁵ D	Cr 3d ⁵ 4s, ⁵ S	Cr 3d ⁵ 4s, ⁵ P	Cr 3d ⁵ 4s, ⁵ G	Cr 3d ⁵ 4s, ⁷ S	Cr 3d ⁵ 4 <i>p</i> , ⁷ <i>P</i>	Cr 3d ⁶ , ⁵ D
1s 3s 3s 3s 3s 3s 3s 4s 4s	$\begin{array}{c} 2s \\ -0.29373 \\ -0.00091 \\ 0.10826 \\ 0.52078 \\ 0.44741 \\ 0.00625 \\ 0.00132 \end{array}$	$\begin{array}{c} 2s \\ -0.29358 \\ -0.01743 \\ 0.10399 \\ 0.52396 \\ 0.46139 \\ 0.01308 \\ -0.00252 \\ 0.00060 \\ 0.00011 \end{array}$	$\begin{array}{c} 2s \\ -0.29364 \\ -0.01942 \\ 0.09324 \\ 0.54316 \\ 0.45820 \\ 0.00694 \\ 0.00078 \\ -0.00013 \\ 0.00006 \end{array}$	$\begin{array}{c} 2s \\ -0.29362 \\ -0.01565 \\ 0.09967 \\ 0.53563 \\ 0.45364 \\ 0.00983 \\ -0.00026 \\ 0.00003 \\ -0.00019 \end{array}$	$\begin{array}{c} 2s \\ -0.29363 \\ -0.01588 \\ 0.10019 \\ 0.53470 \\ 0.45500 \\ 0.00989 \\ -0.00121 \\ 0.00031 \\ -0.00004 \end{array}$	$\begin{array}{c} 2s \\ -0.29363 \\ -0.01582 \\ 0.10005 \\ 0.53494 \\ 0.45469 \\ 0.00986 \\ -0.00101 \\ 0.00027 \\ -0.00003 \end{array}$	$\begin{array}{c} 2s \\ -0.29364 \\ -0.01560 \\ 0.09957 \\ 0.53580 \\ 0.45354 \\ 0.00969 \\ -0.00021 \\ 0.00021 \\ 0.00006 \end{array}$	$\begin{array}{c} 2s \\ -0.29364 \\ -0.01177 \\ 0.09869 \\ 0.53325 \\ 0.45391 \\ 0.00882 \\ 0.00002 \end{array}$	$\begin{array}{c} 2s\\ -0.29364\\ -0.01639\\ 0.10115\\ 0.51317\\ 0.47416\\ 0.01185\\ -0.00115\end{array}$
1s 3s 3s 3s 3s 3s 3s 4s 4s	$\begin{array}{r} 3s \\ 0.10596 \\ 0.00448 \\ -0.05851 \\ -0.16396 \\ -0.35633 \\ 0.61141 \\ 0.59404 \end{array}$	$\begin{array}{r} 3s\\ 0.10713\\ 0.00626\\ -0.04054\\ -0.20250\\ -0.31096\\ 0.69610\\ 0.47469\\ 0.00142\\ 0.00036\end{array}$	$\begin{array}{r} 3s\\ 0.10714\\ 0.01008\\ -0.04250\\ -0.20042\\ -0.32959\\ 0.62296\\ 0.56120\\ 0.00274\\ -0.00045\end{array}$	$\begin{array}{c} 3s\\ 0.10604\\ 0.00874\\ -0.04600\\ -0.19068\\ -0.32993\\ 0.62120\\ 0.56523\\ 0.00405\\ -0.00024\end{array}$	$\begin{array}{c} 3s\\ 0.10646\\ 0.00430\\ -0.03559\\ -0.21303\\ -0.29655\\ 0.75169\\ 0.41863\\ -0.00029\\ 0.00030\end{array}$	$\begin{array}{r} 3s\\ 0.10642\\ 0.00548\\ -0.03833\\ -0.20749\\ -0.30482\\ 0.72111\\ 0.45307\\ 0.00059\\ 0.00009\end{array}$	$\begin{array}{r} 3s\\ 0.10622\\ 0.01039\\ -0.04986\\ -0.18393\\ -0.34067\\ 0.63050\\ 0.56279\\ 0.00124\\ 0.00004\end{array}$	$\begin{array}{c} 3s\\ 0.10610\\ 0.00501\\ -0.04069\\ -0.19912\\ -0.31717\\ 0.63162\\ 0.54992\end{array}$	$\begin{array}{r} 3s\\ 0.10596\\ 0.00866\\ -0.04572\\ -0.18312\\ -0.32907\\ 0.69135\\ 0.49067\end{array}$
1s 3s 3s 3s 3s 3s 3s 4s 4s		$\begin{array}{r} 4s \\ -0.02630 \\ -0.00538 \\ 0.01895 \\ 0.03314 \\ 0.10485 \\ -0.25596 \\ -0.05693 \\ 0.74737 \\ 0.34613 \end{array}$	$\begin{array}{c} 4s \\ -0.02372 \\ -0.00519 \\ 0.01548 \\ 0.03437 \\ -0.19616 \\ -0.09634 \\ 0.53841 \\ 0.56328 \end{array}$	$\begin{array}{c} 4s \\ -0.01648 \\ -0.00284 \\ 0.01063 \\ 0.02322 \\ 0.06389 \\ -0.13275 \\ -0.06549 \\ 0.38375 \\ 0.70890 \end{array}$	$\begin{array}{c} 4s \\ -0.02179 \\ -0.00372 \\ 0.01387 \\ 0.03188 \\ 0.08126 \\ -0.22081 \\ -0.03300 \\ 0.56579 \\ 0.53342 \end{array}$	$\begin{array}{c} 4s \\ -0.02169 \\ -0.00458 \\ 0.01583 \\ 0.02801 \\ 0.08607 \\ -0.21732 \\ -0.03684 \\ 0.56795 \\ 0.52825 \end{array}$	$\begin{array}{r} 4s \\ -0.02220 \\ -0.00592 \\ 0.01919 \\ 0.02217 \\ 0.09916 \\ -0.19912 \\ -0.07238 \\ 0.61536 \\ 0.49368 \end{array}$		
2 <i>p</i> 4 <i>p</i> 4 <i>p</i> 4 <i>p</i> 4 <i>p</i> 4 <i>p</i> 4 <i>p</i>	2p 0.72387 0.00434 0.22953 0.12813 -0.00728 0.00273	$\begin{array}{c} 2 \ p \\ 0.72388 \\ 0.00432 \\ 0.21977 \\ 0.13712 \\ - 0.00702 \\ 0.00336 \\ - 0.00078 \\ 0.00037 \end{array}$	$\begin{array}{c} 2 p \\ 0.72377 \\ 0.00452 \\ 0.22570 \\ 0.12980 \\ -0.00478 \\ 0.00210 \end{array}$	$\begin{array}{c} 2p\\ 0.72384\\ 0.00480\\ 0.22971\\ 0.12525\\ -0.00435\\ 0.00200\end{array}$	$\begin{array}{c} 2p\\ 0.72383\\ 0.00479\\ 0.22980\\ 0.12520\\ -0.00444\\ 0.00200\end{array}$	$\begin{array}{c} 2 p \\ 0.72383 \\ 0.00480 \\ 0.22978 \\ 0.12525 \\ -0.00446 \\ 0.00199 \end{array}$	$\begin{array}{c} 2 p \\ 0.72383 \\ 0.00480 \\ 0.22972 \\ 0.12534 \\ -0.00448 \\ 0.00201 \end{array}$	$\begin{array}{c} 2 p \\ 0.72386 \\ 0.00484 \\ 0.22918 \\ 0.12552 \\ -0.00416 \\ 0.00211 \\ -0.00033 \\ 0.00018 \end{array}$	2p 0.72396 0.00470 0.22288 0.12979 -0.00161 0.00144
2p 4p 4p 4p 4p 4p 4p	3p -0.25297 -0.00077 -0.07296 0.07096 0.60242 0.44463	3p -0.25653 -0.00090 -0.06931 0.04597 0.56620 0.48389 0.01969 -0.00309	3p -0.25633 -0.00051 -0.07651 0.07977 0.63795 0.40061	3p -0.25302 -0.00078 -0.0745 -0.07309 0.61394 0.43358	3ϕ -0.25400 -0.00079 -0.07460 0.07301 0.61913 0.42785	3p - 0.25389 - 0.00087 - 0.07377 - 0.06994 0.61800 0.43145	3p -0.25343 -0.00083 -0.07394 0.06983 0.60855 0.44089	$\begin{array}{c} 3 p \\ -0.25313 \\ -0.00114 \\ -0.07061 \\ 0.06023 \\ 0.62698 \\ 0.43017 \\ 0.00315 \\ 0.00034 \end{array}$	3p -0.25254 -0.00109 -0.06911 0.04923 0.61382 0.45461
2p 4p 4p 4p 4p 4p 4p 4p		$\begin{array}{c} 4p\\ 0.05196\\ 0.00013\\ 0.01427\\ -0.01201\\ -0.12820\\ -0.09909\\ 0.34420\\ 0.74890\end{array}$						$\begin{array}{c} 4p\\ 0.03446\\ 0.00032\\ 0.00770\\ -0.00425\\ -0.10582\\ -0.02989\\ 0.41273\\ 0.68564\end{array}$	
3d 5d 5d 5d 5d 5d	$\begin{array}{c} 3d \\ 0.15360 \\ 0.03178 \\ 0.28184 \\ 0.36364 \\ 0.26447 \\ 0.20465 \end{array}$	3d 0.16224 0.06190 0.38530 0.39340 0.08687 0.19501	$\begin{array}{c} 3d \\ 0.16364 \\ 0.05956 \\ 0.39558 \\ 0.43949 \\ 0.04863 \\ 0.17622 \end{array}$	$\begin{array}{c} 3d \\ 0.15064 \\ 0.05238 \\ 0.37786 \\ 0.37656 \\ 0.12272 \\ 0.22957 \end{array}$	$\begin{array}{c} 3d \\ 0.14777 \\ 0.05278 \\ 0.36559 \\ 0.31463 \\ 0.19863 \\ 0.24785 \end{array}$	3d 0.14821 0.05192 0.36973 0.33393 0.17093 0.25151	$\begin{array}{c} 3d \\ 0.14912 \\ 0.05167 \\ 0.37485 \\ 0.37440 \\ 0.12070 \\ 0.24914 \end{array}$	$\begin{array}{c} 3d\\ 0.15174\\ 0.05397\\ 0.37286\\ 0.44134\\ 0.04231\\ 0.24809\end{array}$	3d 0.14436 0.16649 0.06577 0.41303 0.38617 0.20894

TABLE III (continued).

could be made more accurate, mainly, if the cusp condition were sacrificed.

The results are compared with other calculations wherever available.

A numerical SCF calculation for the state $3d^6$, 5D of Cr was published by Porter.¹³ However, his calculation was done without exchange and, furthermore, it was done only for the purpose of an approximate orientation. Hence, his numerical wave functions (after normalization) cannot be compared with ours.

Analytical (i.e., expansion method) SCF calculations on the ground state of Cr^+ , $3d^5$, 6S, and on the two states of Cr, 3d⁶, ⁵D and 3d⁴4s², ⁵D, were carried out by Watson.^{14,15} The comparison of the results for the total energies is given in Table I.

Atom or ion	State	Calculated total energy	Energies to grou Calcu- lated	s relative nd state Experi- mental	Estimate of correlation energy difference
Cr ⁺ Cr	$\begin{array}{c} 3d^{5}, {}^{6}S \\ 3d^{4}4s^{4}p, {}^{7}F \\ 3d^{4}4s^{2}, {}^{5}D \\ 3d^{5}4s, {}^{5}S \\ 3d^{5}4s, {}^{5}S \\ 3d^{5}4s, {}^{5}G \\ 3d^{5}4s, {}^{7}S \\ 3d^{5}4p, {}^{7}P \\ 3d^{6}, {}^{5}D \end{array}$	$\begin{array}{r} -1043.1379\\ -1043.2744\\ -1043.3084\\ -1043.3154\\ -1043.2132\\ -1043.2305\\ -1043.2305\\ -1043.2583\\ -1043.0957\end{array}$	$\begin{array}{c} 0.2160\\ 0.0795\\ 0.0455\\ 0.0385\\ 0.1407\\ 0.1234\\ 0\\ 0.0956\\ 0.2582\end{array}$	$\begin{array}{c} 0.2486\\ 0.1152\\ 0.0364\\ 0.0346\\ 0.0996\\ 0.0935\\ 0\\ 0.1066\\ 0.1620\\ \end{array}$	$\begin{array}{c} -0.0326\\ -0.0357\\ 0.0091\\ 0.0039\\ 0.0411\\ 0.0299\\ 0\\ -0.0110\\ 0.0962\end{array}$

TABLE IV. Calculated energies and experimental energies.ª

See Ref. 16.

	TABLE V. Orbital energies ϵ .								
Ato and stat Orbital	$\begin{array}{c} m\\ 1\\ te \\ 3d^{5}\\ 5\end{array}$	Cr 3d44s4p 7F	Cr 3d44s ² 8D	Cr 3d ⁵ 4s ⁵ S	Cr 3d\$4s \$P	Cr 3d54s 5G	Cr 3d⁵4s ¹S	Cr 3d ⁵ 4p 7P	Cr 3d ⁶ \$D
15	-220,65076	-220.62782	-220.59149	-220.39096	-220.42135	-220,41613	-220.38375	-220.44881	-220,30459
2 <i>s</i>	-26.46663	-26.47595	-26.43855	-26.20988	-26.24773	-26,24204	-26.20758	-26.26771	-26.11747
35	-3.54816	-3.53224	-3.49864	-3.29183	-3.31511	-3.31077	-3.28394	-3.34649	-3.18330
4 s		-0.33145	-0.23933	-0.17818	-0.21751	-0.21679	-0.22079		
2 <i>p</i>	-22.39883	-22.40307	-22,36467	-22.14117	-22.17770	-22,17209	-22.13781	-22,19968	-22.05020
3p	-2.31925	-2.28422	-2.24831	-2.06079	-2.07916	-2.07514	-2.04994	-2.11635	-1.95714
40		-0.18370						-0.12148	
3 <i>d</i>	-0.64713	-0.60656	-0.56849	-0.38500	-0.33606	-0.34070	-0.37265	-0.44176	-0.20060

TABLE VI. Virial theorem. (Values of E_p/E_k .)

Atom or ion	State	E_p/E_k
Cr ⁺ Cr	$3d^{5}$, ${}^{6}S$ $3d^{4}s^{4}p$, ${}^{7}F$ $3d^{4}4s^{2}$, ${}^{6}D$ $3d^{5}4s$, ${}^{5}S$ $3d^{5}4s$, ${}^{5}P$ $3d^{5}4s$, ${}^{5}G$ $3d^{5}4s$, ${}^{7}S$ $3d^{5}4p$, ${}^{7}P$ $3d^{6}$, ${}^{6}D$	$\begin{array}{r} -1.9999691\\ -2.0000015\\ -2.000009\\ -1.9999815\\ -1.9999836\\ -1.9999807\\ -1.9999770\\ -1.9999872\\ -1.9999509\end{array}$

Since total experimental energies are not available, the energy differences between the excited states and the ground states are used for the comparison with

experiment in Table IV. Since the spin-orbit interaction is neglected in the calculation, the experimental energies¹⁶ are averaged over the multiplet components. An estimate of the correlation energy differences between the excited states and the ground state is given by the last column in Table IV. It shows that the correlation energy depends significantly on the state, not only on the configuration.

ACKNOWLEDGMENTS

The author is indebted to Professor Clemens C. J. Roothaan of the University of Chicago, whose developments in the SCF expansion method enabled this application.

The author also appreciates the technical assistance of George Stungis and Max Striegl of the De Paul University, and the staff of the Computation Center at the University of Chicago.

A964

¹³ A. Porter, Mem. and Proc. Manchester Lit. Phil. Soc. 79, 75

¹⁰ A. Forter, Intelli, Eds. 2014.
(1934).
¹⁴ R. E. Watson, Tech. Rept. No. 12, June 1959, Solid-State and Molecular Theory Group, Massachusetts Institute of Technology, Cambridge, Massachusetts (unpublished).
¹⁵ R. E. Watson, Phys. Rev. 119, 1934 (1960).

¹⁶ C. E. Moore, U. S. Natl. Bur. Std. Circular No. 467 (U. S. Government Printing Office, Washington, D. C., 1949).