
YVe believe that this size eGect is not due merely to a
limiting of the electron mean free path by imperfections
or the surface. One of us4 has shown experimentally
that Tj is relatively insensitive to quantities of impuri-
ties sufhcient to shorten the mean free path to a value
comparable to particle diameters used in the present
experiment. These experiments on impure supercon-
ductors also tend to rule out the possibility that me are
observing a spin dÃusioI1 limited Bow of energy to
nuclei having a large quadrupolar specific heat as a
result of lattice imperfections. o

It would obviously be interesting to study other prop-
erties of these small particles.
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A method has been devised to calculate the cross sections of inelastic electron-atom collisions under near-
resonance conditions. This method (referred to as the method of resonance distortion) consists of solving the
limiting exact-resonance problem as the zeroth-order approximation and using this solution to obtain the
first-order solution by an iteration procedure, and is particularly suitable for treating optically allowed
transitions produced by electron impact where the coupling between the initial and final states is strong
and of long-range type. Application of this method has been made to a sehematie model with an isotropic
inverse-square interaction potential and to the problem of electron-atom collisions with ns —+ np transition.
The general results indicate that (i) for weak coupling the collision strengths calculated by the resonance-
distortion scheme reduce to those calculated by the method of distorted waves, (ii) the resonance-distortion
method and Seaton's B'II method give nearly equal partial cross sections for large l, and (iii) at very low ],
the B II partial cross sections are substantially larger than those determined from the resonance-distortion
method. The total cross sections for the 3s ~ 3p transition in Na have been calculated by the resonance-
distortion method for various incident electron energies, and the results show better agreement with experi-
ment than do those of the Born approximation and of Seaton's version of the modified Born approximation.

I. INTRODUCTION
' "N the treatment of the inelastic collisions between

electl ons and atoms~ the Boln approxlmatlon~
which consists of using the wave function of a free
particle to obtain the 6rst-order solution of the
Schrodinger equation, is quite extensively employed. "
However, when there exists a strong coupling between
the initial and the Anal states of the atomic system, the
Born approximation generally yields poor results.
The reasons for the failure of the usual Born approxi-

* Supported by the U. S. Air Force Once of Scientific Research.
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$ Alfred P. Sloan Foundation Fellow.

¹ F. Mott and H. S. W. Massey, The Theory of AIomjq
Collisions (Oxford University Press, London, England, 1949),
2nd ed«' H. S.%.Massey, in Hundbuch der I'hys~k, edited by S. Flugge
(Springer-Verlag, Berlin, 1956), Vol. 36, p. 233.' H. S. W. Massey, Rev. Mod. Phys. 28, 199 (1956).' M. J. Seaton, Proc. Phys. Soc. (London) 68, 457 (1955).' M. J. Seaton, Rev. Mod. Phys. 30, 70 (1958).' M. J. Seaton, Proc. Phys. Soc. (London) 77, 174 (1961).' M. J. Seaton, in Atomic end Molendar Processes, edited by
D. R. Bates (Academic Press Inc. , New York, 1962), p. 374.

mation have been discussed by Seaton and modiIj. -
cations of the approximate method have been pro-
posed. 4 ~ The problem of the calculation of i~elastic
collision cross sections becomes more complicated when
the change of energy in the atom is rather small {near
resonance), because in such cases the expansion of the
total cross section in terms of the phase shifts of the
partial waves do not always converge rapidly and
accurate calculatioIIs of more partial-wave cross sections
are needed. In this paper we shaH present a method for
the calculation of cross sections for inelastic collisions
under near-resonance conditions. In essence this is an
iteration procedure in which we use the solution of the
exact resonance problem as the zeroth-order approxi-
mation.

Consider an electron with linear momentum hho
colliding with an atom which was initially in the state
characterized by fe and Es. We shall denote the co-
ordinates of the colliding electron by r, those of the
atomic electrons by r' and the potential energy between
the electron and the atom by V{r,r'). If the wave func-
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tion of the system is written as'

+(r,r') =P, F,(r)g, (r'),

the Schrodinger equation may be decomposed into

(P+kP)F;(r) =P; U;, (r)F;(r),
where

(2)

U;;(r) = (2'/it') V;, (r)

= (2M/A') f;*(r')V(r, r')f;(r')dr', (3)

k,o =kp'+2M (Ep—E;)/A'.

(~'+ko' Uoo)Fo= U—o.F.,

(V'+k ' —U„„)F„=U„pFp.

(6)

(7)

In case of exact resonance, viz. Upp=U, Ep=E„,
these two equations may be decoupled, ' and for some
special cases of Upp, U, and Up„, exact solutions of
Fp and F can be found. For problems involving near
resonance, it is no longer possible to decouple Fp and
F„, and our approximate method consists of inserting
in Eq. (7) the FP~ obtained from the limiting exact-
resonance problem and solving for F„ from Eq. (7).
It is interesting to compare this procedure with the
method of distorted waves' in which one solves for Pp
by omitting the Up„F„ term in Eq. (6) and then uses
this Fp in Eq. (7) to determine F„.Thus, our method
and the method of distorted waves represent two
diGerent iteration approaches; the former assumes a
close coupling solution as the zeroth-order approxi-
mation and the latter starts with zero coupling. Detailed
applications of our method, which will be referred to as
the method of resonance distortion, are described in the
following sections.

II. APPROXIMATE FORMS OF THE
INTERACTION POTENTIAL

In this paper we shall be concerned primarily with
the special class of electron-atom collisions which in-
volves (i) strong coupling, (ii) a long-range interaction
potential, and (iii) near resonance, although our
iteration scheme is not restricted to thi. s type of
problem. It has been pointed out by Seatone that
certain collision-induced transitions of the type e, I,

Here we have neglected the eGect of electron exchange.
This point will be discussed in Sec. VIII. The solutions
of these differential equations are subject to the
asymptotic conditions

Fp(r) exp(ikp. r)+r 'fo(8,&) exp(ikpr),

F;(r) r 'f, (0,$) exp(ik, r).

In collision-induced transitions 0 —+N for which the
coupling between two states is strong, it is often per-
missible to treat only two equations, i.e.,

nz' —+ e, l&1, m show strong coupling with long-range
interactions. In many instances, if we are dealing only
with single excitation, the wave function of the atom
can be represented approximately by the one-electron
orbital of the excited electron P„q (r') =R„~(r')Fq (r').
[This is, of course, not always valid, especially for the
cases where the exchange eGects of the atomic electrons
must be taken into consideration, e.g., He(2 oS~ 2 oP).
However, extension of the treatment in this section to
these cases can be made very easily and will not be
considered here. ]Choosing kp as the axis of quantization
and using atomic units, we have, according to Eq. (3),

U.o(r) =2 0' ~ '(r')( —1/r+1/Ir —r'l)4'"~ (r')«'

= P (8~/n+ 1)y, (nf, n't'l. )
0

&( Q k),„(&n,l'rn') F),„*(r), (8)

where

I"~ *(r')V~o(r') V~ (r')«'

and

yz(nt, nV lr) = (1/r"+') R &(rp)rp"+'R„(. (ro)dro
0

+r" R„((rp)rp' "R„r(rp)drp s), (nl, nV)/r"+'. (9)

The long-range behavior is apparent from the fact that
for large r

y, (n 1+1,n'l
l r) sg(n 1+1,n'i)/r',

where s~' is the line strength, i.e.,

(10)

s~(n 1+1,n'l) = R„~+~(ro)R„((ro)roodro. (11)

In a similar way we can calculate Upp(r) and U„„(r).
These functions diverge at r=0 and drop rapidly toward
zero for increasing r.

Near-resonance occurs for transitions between the
same e, i.e., nl~e 7+1. Here, a signiicant contri-
bution to the total cross section comes from the partial
waves of large l, and the e6'ects of U;; at small distances
are unimportant. Thus in the ns —&np transition we

shall make the simplihcation of replacing the true
interaction potentials by

Upp= U„„=O,
Up„——(2M/k')'ox'"Fg (g,y)s/r'. (12)

The same set of potential functions was used by Seaton
in deriving the close-coupling formula' and the modified

version of Bethe's approximation. e Throughout the
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calculation the exchange between the incident electron
and the atomic electron has been ignored, since this is
justifiable for collisions with long-range interactions.
However, the eGect of electron exchange can be readily
incorporated into the general formulation of the
resonance-distortion method (see Sec. VIII).

U00= U„„=O,
Uo„= A/r', — (13)

with A being an adjustable parameter. With Eqs. (13)
as the interaction potentials it is possible to obtain
exact solutions for Fo and F„ in the limiting case of
exact resonance. The Uo„ in the schematic model can
be thought of as representing some kind of angular
average of the Up„ ln Eqs. (12). With the proper value
of A, the schematic model may be expected to give the
same total cross section as that produced by the angular-
dependent potential. This indeed has been demon-
strated by Seaton. 4

III. SCHEMATIC MODEL

Before proceeding to the solution of Eqs. (6) and (7)
with potential functions (12), it is instructive to con-
sider a schematic model in which it is assumed

The solutions of Fo, ~ and F,~ can then be obtained from
Eqs. (18) and (20), e.g.,

Fp, g= 'i'+'-( orr/2kp)'" exp( ',—in-)LJ„+(kpr)

&&exp( —xoiP+or)+ J„(kpr) exp( —,'iP—or)j .(21)

The partial cross section corresponding to excitation
can be calculated from F„,g as

Q (0-+ go) =orko '(2l+1) sin'~m(p~ —p ). (22)

Here ~&op~ and -,'mp may be identified with the con-
ventional partial phase shifts g~ and bg. ' In the case of
exact resonance with the schematic model, the total
cross section diverges. This divergence is removed when
the energy difference of the two states hE is taken into
consideration. Also, it may be added that the solution
presented here is valid only when P~ are both reaLo

For the very small values of l where (l+—,')'(A, the
partial cross sections must be determined by other
means.

2. Inexact Resonance

%hen Eo/E„, the two diGerential equations in Kqs.
(6) and (7) can no longer be completely decoupled. A
partial-wave expansion analogous to Eq. (16) gives

1. Exact Resonance

In the case of exact resonance (Eo——Z„), it is possible
to decouple Eqs. (6) and (7) by introducing'

-d2—+k '—l(l+1)/r' Fn, g= —AFo, g/r'.
dr'

(23)

F+=Fo+F,
which satisfy the differential equations

(P+kp'&A/r') F+=0.
With the usual partial-wave expansion

(15) F„,g k„-' expi(k r ——,'igr) (-',mk„r) g g'J g+g(k.r)

&& ( A/r')Fp, g(r)dr=—c,g exp(ik r). (24)

Making use of a standard variation of parameters pro-
cedure, ' one obtains

F+(r) =r ' Pg ig(21+1)Fg+(r)Pg(cos8), (16)

where 8 is the angle between r and ko, we obtain

-d2—+koo —(p '—-')/r' Fg+(r) =0,
dr'

pp= L(l+-', )'HA]gg',

(17)

The collision amplitude is then given simply by

f.(8) =k='Z (2l+1)

(-', ork„r)'g' Jg+x(k„r) (—A/r')Fp, g(r)gfr

&&Pg(cos8) . (25)
Fg+ = ggg(mr/2ko)'go Jn (kor) . (18)

Here J„~(kor) is the Bessel function of the Erst kind of
order p+, and gg+ are constant coeflicients. At a large
distance it is required that

Fp, g=-,'(Fg++Fg—
) sin(kor ——,'ior)+cp, g exp(ikpr),

F„g ', (Fg+ Fg )c„,g ——ex-p(ikpr—), — (19)

which are satisfied by choosing

gg+ exp(pip+or)+gg exp(-,'ip m) =2i exp(-,'iior-&oigr),

o—= gg+ expPoigr(p+ p )j (—20)

As a 6rst-order approximation, we simply replace
Fp, g in the integrand of Eq. (25) by Fp, g&o& calculated
for the case of exact resonance. Upon inserting Fo, ~~ '
from Eq. (21) into Eq. (25), we determine the inelastic
collision amplitude to be

f„(8)= ,'Am(kpk ) 'go-—
&& exp( —xoim) P g i'(Pl+1) P g+ exp( —ogiP+or)

+Ig exp( ——',ip m)fag(cos8), (26)

8 See Ref ys p 148' See Ref. 1, p. 40.
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where

Jt+t(k„r)Jv (kor)r 'dr.

It follows then in a straightforward manner that the
partial cross sections for the schematic model under
conditions of near-resonance are given by

Qt(0 —+ rt) =zrko '(—'zrA)'(2l+1){ (It+)'+(It )'
+2It+It- cos-,'(p+—p )zr]. (27)

It may be easily shown that if one lets ko=k„,
Qt(0 ~ zz) reduces to the partial cross section for exact
resonance, which was given in Eq. (22). It may also be
shown that for large values of l, Qt(0v sz) approaches

O
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Qt (0 —+ rt) =zrko-'(zrA)'(21+1)

X Jt+t(kor) Jt+t(k„r)r 'dr, (28)

which is equivalent to the partial cross section gotten
by applying the Born approximation to the schematic
model. 4 It should also be pointed out that if A is
reduced to zero in the zeroth order, then Fo&') becomes
simply exp(zko r), and the first-order result Qt(0-+ rt)
becomes identical to that determined by the Born
approximation for all 1. This may be seen most easily
by taking p+ ——p =/+-,' in Eqs. (26) and (27).

The integrals involved may be evaluated in terms of
hypergeometric functions sFt, which in turn may be
determined by their power-series representation. We
have then"

It+= s(k /ko)'+&r{ (ay)/r(ay+by+ 1)r(1—by) }

XzF1La~, b~, a~+b~+1; (k /ko)'j, (29)

Fro. 1. Partial cross sections Qt for di6erent values of AZ(eV)
and A =3.0 calculated by using the schematic model.

Since Uo is now angular-dependent, when we express
the total wave function in terms of the products of
the atomic wave function and the Ii function of the
coOiding electron followed by a partial-wave expansion
of Ii, an infinite set of coupled differential equations
for the partial-wave amplitudes will result. Percival and
Seaton" have suggested that considerable simplification
can be achieved by taking advantage of the fact that
the total angular momentum of the atomic and colliding
electron is a constant of motion. Denoting the angular
momentum quantum numbers of the atomic and the
colliding electron as l~m~ and 1m, respectively, we shall
construct eigenfunctions of the total angular momentum
I Was

~f .(r4r) =2-,- C-,-~"'%-,t,-, (rt) l't-(r), (3o)

where
a~ s(p~+l+——s),
4 s(l+=s p+)—

ap+b~+1=l+-,s .

where v stands for the group of quantum numbers
e~t~K M, and C is the Clebsch-Gordan coefFicient. The
wave function of the whole system is then expanded as

%(v'{rt r) =r 'Q„F„(v'~r)P„(rt r). (31)

Typical curves, representing partial cross sections
for 2=3.0 and different energy separations AE, are
given in Fig. 1. The values of Qt are seen to increase
steadily with decreasing hE, the maximum occurring
for DE=0. It is important to notice that these partial
cross sections remain below the maximum allowed by
conservation. The partial cross sections for 1=0 and
l=1 are not shown since they cannot be calculated by
this scheme.

IV. ATOM-ELECTRON COLLISIONS

We shall now return to the solution of atom-electron
collisions by means of the resonance-distortion method.
In particular, we shall consider the transition Ns v rtp.

» G. N. Watson, Theory of Bessel FNrtctzorts (Cambridge Uni-
versity Press, London, England, 1944), 2nd ed. , p. 404.

S= (1+zR)/(1 —iR), (34)

» I. C. Percival and M. J. Seaton, Proc. Cambridge Phil. Soc.
SB) 654 (1957).

The index v' is introduced to remind us that the system
represented by this wave function was initially in a state
characterized by v'. In other words, the asymptotic form
of F„(v'

~
r) for r ~ oo is

F.(v'
~

r)-k &{expt i -(kr ,'lzr—)]b.. ——
—exp} z(kr —-hr)]S„„}, (32)

in terms of the S matrix, or alternatively

F„(v'~r) k
—&{sin(kr——,'lzr)b„„.

+cos(kr ——',lzr)R„„.I, (33)

where the S and E matrices are related by the equation
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and the 5 matrix is diagonal in I. and M. When Eq.
(31) is substituted into the Schrodinger equation, one
obtains a series of differential equations for F„.How-
ever, F„and F„are coupled together only if v and ~'

correspond to the same values of I.and M.
Upon introducing the T matrix defined by p =2si(np&ns)/L3 (2L+ 1)]»' (41)

—+k„'—(L+1)(L+2)/r' Fp

dr2

= —(L,+1)»ppr pF„(40)
where

T—=1—S= —2iR/(1 —iR),

one can express the cross section for the n~'l~'~ n~l~

transition as where the indices 1, 2, 3 refer to the respective channels.

1. Zeroth-Order ApproximationQ(ng'l, '~ nglg) =sk'—'a(n, lg, ng'lg')/(2lg'+1)

(35) The collision strength is

Q(nP, ns) =gz(2,L+1)()Type'+ [Trp)'), (42)

(1) lg ——0, l=L
(2) lg=1, l=L—1

(3) lg 1, l=L+——1.
(37)

Three coupled differential equations then result corre-
sponding to these three channels. If we designate the
F function of channels (1), (2), and (3) by F~, F&, and
F3, these equations are

=n.k' ' Q (2L+1)
Ills

X ) T(nddL, ni'4'l'L) ~'/(24'+1), (36)

where Q(n~l~, n~'l~') is the collision strength for the
transition e~'l~' —& e~l~.

Let us now consider an ns —+ np transition and neglect
the interactions with all other states. To obtain a given
total angular momentum I., one can take three dif-
ferent combinations of l~ and t as follows:

/d2
rp~ +k—,p ~F=AF,

kdrP )
(43)

where F is a vector with components F~, Fp, Fp, and A
is the square matrix

L(L+ 1) L' 'P —(L/1)' 'P '

A= L'~'P L(L—1) 0
—(L+1)'"P 0 (L+1)(L+2)

To solve Eqs. (43) we diagonalize A by means of the
transformation X, so that Eq. (43) becomes

(44)

r'L(d'/dr')+kp']G = aG, (45)

where a=X 'AX and 6=X 'F. The eigenvalues of a are

The zeroth-order solution is obtained by setting
kp

——k„ in Eqs. (38), (39), and (40). When this is done,
the three diGerential equations can be decoupled by a
linear transformation. This can be seen by writing the
three equations in matrix form as

d2

+kp L(L+—1)/r F—y=L I Pr Fp
dr'

—(L,+1)»PPr PF, (3S)
where

ag =L(L+1),
ap L'+L+ 1 (2L+——1)x, —
ap L'+L+1+(2——L+1)x,

(46)

d2—+k~' —L(L—1)/r' Fp=L"Pr 'Fg
dr'

(39)
x= L1+P'/(2L+1) ]'"

and the matrix X is

(47)

4 fp 5pI»'P(g/2L L»'Pfp/(2I+ 1)(1—x) L»'P)p/(2L+1) (1+x)
(I.+1)»'Pfg/2(L+1) (L+1)»PP/p/(2L+1) (1+x) (L+1)'~'P)p/(2L+1) (1—x)

where

b'= «(L+ 1)/L«(L+1)+P'(2L+1) j,
fpP =P'/2(P'+2I+1 —x), (49)
gpP =P'/2 (P'+2L+1+x) .

The procedure now is to choose solutions to the de-
coupled equations having the proper asymptotic be-
havior and then transform back to F. To investigate
the asymptotic behavior, we note that

Considering the asymptotic form of Ii;, we 6nd that
(kp=k )

G kp «I Xg;( 2i) sin(kpr —~lpr)

+Xg,Tne px/i( krp$hr)j-
+Xp; Tpg expLi(kpr —

sp lpr)]

+Xp(Tpg expLi(kpr —(is)) I . (51)

Thus the solutions of G; which conform to the proper
boundary conditions are

G.;=+, (X-')»F, =Q;X;;F;. (50) Gq ———2iXn(p prr)'~'Jz+«(kpr),
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Go ———2iXgo expL:', in. (L—po)](,orr)'"J„~y(kor), (53)

Go —— —2iXqo expL-,'i&r(L —po)](nn. r)' 'J„~y(kor) (54)

Here we have used the abbreviations

$2

,= —,+L(L——,') —C],
w= —-'+ t:(L+-')'+C]'" (55)

where
C= (2L+1)(x—1), C~&(L——',)'.

The phase factors are due to the assignment of phase
in the de6nition of the S matrix.

The functions F&, Il2, Ii 3 may now be determined by
transforming the G matrix to I'. In particular, for F~
we obtain

Fq(r) = —2i(-,'orr)Uo {Ãp J~y(kor)
+Xxo'J,~~ (kor) expLnior (L—p o)]

+X,ooJ„~.(kor) expL:', in-(L —po)] } . (56)

~o 6

Cl

ox.
' 'os

I I I I I I I I. I

I 2 5 4 5 6 7 6

20

2. Resonance-Distortion Approximation

The approximation is now made of replacing F~(r)
in Eqs. (39) and (40) by Fz(r) calculated in the previous
section, i.e., for the case of exact resonance. The col-
lision strength obtained by the resonance-distortion
scheme becomes

0"n(&op,ns) =-o'(ors)' gr, {L
~
I(L, L—1) ~'

+(L+1)II(L, L+1)I'}, (57)
where

I(L, L+1)= boH&'&(L, L+1)
+$o'H&'&(L L&1) expPin. (L po)]-

+P Ho& &(Lo, L+1) expLnior(L —po)], (58)
and

H" (L, L+1)= I„;(kor)Jul~)(k r)r 'dr, (59)

pg=l&&&+o, (&&&g=L) .

The integrals H&'&(L, L&1) may be expressed in terms
of hypergeometric functions as

H &'& (L, L+1)=-'(k„/ko) ~+'+&

x {rLa, (L~1)]/r Lc,(L~1)]r{1—b, (L+1)]}
X oFgLa, (L+1),b, (L&1);c,(L&1); (k /ko)o], (60)

where

,(L~1)=-:L(L~1)+p.+-'.],
b, (L~1)=-;L(L~1)—p,+-;], (61)

c;(L+1)=L+1+a.
It has been verjtded that in the limit of exact resonance

(ko ~ k ), the collision strength given in Eq. (57) does
agree exactly with that determined by Seaton's
formulas. ' Again the results here are valid only for
those values of I which satisfy the inequality in Eqs.
(55).

+IG. 2. Collision strengths QP in the case of exact resonance
for several values of the line strength s'.

V. GENERAL RESULTS

In the previous section a technique was presented
whereby inelastic cross sections for collision-induced
transitions under near-resonance conditions could be
determined. It is now wished to investigate the general
behavior of these cross sections for diferent degrees of
coupling and resonance and to compare them with the
results obtained from other methods of calculation.

1. Effect of the Magnitude of Coupling

In Fig. 2 the collision strength for Ns ~ oop transition
with exact resonance is given for several values of the
line strength s' (s' is a measure of the strength of
coupling). The cross sections with 1=0 and 1 cannot be
calculated by the scheme outlined in the previous
section, since they violate the inequality in Eqs. (55).
It has been shown that for exact-resonance collisions,
as one increases the strength of coupling (from weak

coupling), the transfer probability first increases

rapidly, then reaches a certain saturation stage, and
6nally behaves in an oscillatory manner. "For a given l,
such saturation and oscillation behavior can be seen

from the convergence of the points corresponding to
larger values of s along each vertical line in Fig. 2,
(Here we have replaced the expansion index L by I in

order to facilitate comparisons with other works. ) This
can be illustrated more clearly in Fig. 3, where Q&an/

(2l+1) is plotted against s' for k=2, 3 6. The
saturation e8ect is more pronounced for low values of l

since partial waves with small l correspond classically
to a small impact parameter and therefore stronger
interaction. Thus the curve for l=2 in Fig. 3 passes
through a maximum around s'=10, while the 1=3
collision strength does not reach the highest value

"See Ref. 1, p. 149.
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until s'=25, and the collision strengths for higher l
require even stronger coupling for complete saturation.
This saturation e6ect is also responsible for keeping
the collision strengths below the conservation limit (see
Fig. 2).

For the case of near (but not exact) resonance, the
qualitative behavior of the partial collision strengths
with respect to the degree of coupling is similar to that
of exact resonance. Figure 4 shows the variation of

QPn/(2l+1) with respect to s' for an energy separation
of the initial and final states (hE) of 2.0 eV.

I.O—

0.8

+ o.e

O.e—

A-5

I I I I I I I Se
I0 I5 20 25 30 55 40

2. EQ'ect of AE

In Fig. 5 is displayed the collision strength Q&R in
terms of l for several di6erent AE with s'=19.3. As
hE is decreased, the collision strength curves are found
to move up steadily, at 6rst, and 6nally converge upon
the DE=0 curve in an oscillatory fashion. Vertical
sections of these curves are plotted against (AE) ' in

Fig. 6. All the computations were made for a particular

I.O—

0.8—

FIG. 4. Values of QPn/(21+1l for diiferent l and hZ=2. 0 eV
in terms of the line strength s'.

3. Comparison with Other Methods

The standard approximate methods for systems with
weak coupling, such as Born approximation and the
method of distorted waves, break down in the region
where saturation is important (i.e., large s' or s=1),
since they give an accurate estimation of the cross
sections only along the initial rise of the curves" of

Q~/(21+ 1) versus s'. Thus when these methods are used
for cases with strong coupling, they may produce
partial cross sections which violate the conservation
limit4'

Qg&~prkp '(2l+1) . (62)

o.e—

I I I I I I I I Se
5 lo 15 20 25 50 55 40

FIG. 3. Values of QIR /(2l+1) for diQ'erent l and AL&'=0 in
terms of the line strength s'.

value of E of 13.6 eV; in general, the collision strengths
depend on E and AE solely through s = (k„/kp)'
= (E DE)/E. This fact —enables us to use Figs. 5 and
6 for several diferent sets of E and hE by means of
Table I. Figure 6 illustrates that for low values of l,
reduction of hE leads to saturation and oscillatory
behavior of Q~ analogous to Fig. 3.

It may be seen in Fig. 3 that a weak-coupling approxi-
mation applied to l=2 is valid only for relatively small

line strengths (s'=7.5 is considered small for near-
resonance optically allowed transitions).

One method which has been devised so as to satisfy
the conservation rule is that of Born II.' The method
consists of replacing the R matrix which was delned
in Eq. (34), by the 8 matrix, which for the particular
case of three channels is given in atomic units by

8;;= —-', e. J~f(kr) U,; (r)Jp+f(kr)rdr, (63)
0

TABLE I. Values of AE(eV) corresponding to given values
of E(eV) and s.

0.9632
0.9265
0.8897
0.8529
0.8162
0.7794
0.7426
0.7059
0.6324
0.5588
0.4853
0.4118

0.125 0.25 0.375 0.50
0.25 0.50 0.75 1.0
0.375 0.75 1.125 1.5
0.5 1.0 1.5 2.0
0.625 1.25 1.875 2.5
0.75 1.5 2.25 3.0
0.875 1.75 2.625 3.5
1.0 2.0 3.0 4.0
1.25 2.5 3.75 5.0
1.5 3.0 4.5 6.0
1.75 3.5 5.25 7.0
2.0 4.0 6.0 8.0

0.625
1.25
1.875
2.5
3.125
3.75
4.375
5.0
6.25
7.5
8.75

10.0

Z(ev)
3.4 6.8 10.2 13.6 17.0

0.75 0.875
1.5 1.75
2.25 2.625
3.0 3.5
3.75 4.375
4.5 5.25
5.25 6.125
6.0 7.0
7.5 8.75
9.0 10.5

10.5 12.5
12.0 14.0

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

10.0
12.0
14.0
16.0

20.4 23.8 27.2

5

a~

0.5
l.o

e.o

5.0

I

e 3

4.0

5.0
I I I I I

5 6 v 8

FIG. 5. Collision strengths 0&a arith s =19.3 for
several values of AE(eV).
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denoted by Q)~'",

Q,a rr 4(2/+1)([(B„)s+(B„)
[1+(Brs)'+ (Brs)'1& (70)

The B'I (usual Bethe approximation) partial cross sec-
tion may be expressed in terms of these matrix elements
as

QP'= k,—'4(2l+1)[(B )'+(B„)']. (71)

where

and

0.2—

I I l 1 l i I I l

0.2 0.4 0.6 0.6 1.0 (
FIG. 6. Values of II+ /{2/+1) for di8erent / and

s'=19.3 in terms of AE(eV) '.

Urs ——2fr(0lll —1; /)yr(eP, ns),
Urp=2fr(0/1/+1; l)yr(np)res),

f,(0/1/ —1; l) = [//3(2l+1) j'",
fr(0/1/+1; /) = —[(l+1)/3(2/+1)]'". (65)

For purposes of comparison, calculations of Q~~' have
been made for E=13.6 eV, s'= 19.3, and several values
of the energy separation hE. The results are shown in
Fig. 7. From Fig. 8 we see that for /&3, the partial
cross sections calculated by the resonance-distortion
method and by 8'Il agree quite well with each other
for hE as large as 3.0 eV. However, for /=2 and 1=3,
they are found to diBer considerably. This can be
ascribed to the fact that the method 3'II tends to
overestimate the collision strength for small l, since

In the approximation of keeping only the asymptotic
parts of the potentials (corresponding to the Bethe
approximation), we have

and

Ugg= Ug2= U33=0,
Urs=/' 'P/r' Urp= —(l+1)' 'P/r' (66)

Brs= ,'rr/rf'P Jr—+I—(kpr)J( I(k„r)r 'dr,
0

(67)

P = 2sr (osP, res)/[3 (2/+1) ]" (69)

Accordingly, the partial collision strength will be

Brs= ——,'rr(l+1)"'P J~I(kor) JI(k„r)r 'ter, (68)
0

where

0)
II

OJ
co 5

I

II
-l~

/

I i I i I

4 6

QK:~0

l '.L. ( I

8 IO

FIG. 8. Collision strengths OP for BE=0, 0.5, 3.0 eV and
0/ 6» for d 8=0.5, 3.0 eV. The upper of the two solid and of the
two dashed curves correspond to the Bethe II method, and the
lower, the resonance-distortion method.

CII

O6 4

(eV)
0.5
t.O

e.o

in the limit of hZ=0, QP" does exceed the corre-
sponding partial cross section obtained from the exact
calculation for I=2 and 3.' Furthermore, Fig. 6 shows
that for these low values of l and for hE'(3.0 eV, Q~~D

is quite insensitive to hE. Because of the insensitivity
of the collision strength with respect to AE and the
fact that for DE=0 the resonance-distortion result is
exact for the particular potentials chosen, it appears
likely that the resonance-distortion method gives more
accurate partial cross sections for small / than does
a'II.

1 L I l 1 . I I l I

I R 3 4 5 I

I'IG. 7. Bethe II collision strengths Qp'» with $2 —$9 3
for several values of DE(eV}.

VI. APPLICATION —3 '8 ~ 3 'P TRANSITION OF
Na BY ELECTRON IMPACT

An excellent example of a near-resonance and strong-
coupling situation is the 3'S—& 3'P transition in Na,
which has an energy separation AF.=2.104 eV and a
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. rather large line strength s'=19.0. Since this tran-
sition is optically allowed, the coupling matrix element
Ve„becomes proportional to 1/r' asymptotically, and
because of this long-range interaction it is expected
that many partial waves will contribute to the total
cross section. Salmona and Seaton" have discussed
this problem and made calculations based on the modi-
fied Bethe approximations B'II and B'III, which are
found to satisfy conservation conditions. Previously,
Seaton had investigated, by a close-coupling technique, '
proton and electron impact on Na, giving rise to this
transition; the results were found to be quite good for
high energies. Cross sections for this transition have
been determined experimentally and found to be large. "

Partial cross sections have been calculated for several
values of the incident electron energy ko' using the
resonance-distortion method, Bethe I, and Bethe II
approximations. Since for large values of l, say l&lo,
the coupling is weak, we 6nd that the partial cross
sections QPn QP' and QP' all coincide. The total
cross sections may then be determined by utilizing the
"tail" of B'I as

&o &o

QRD —QB'I Q Q O'I++ Q RD+Q&
L 0 lM

where

&o &o

QB'n QB'I P Q B'I++ Q
B'lI

l~ L 0
(73)

Qs'= ko '(8s'/3) inL(ke+k„)/( kQ k Q, (74)

and Q' represents the sum of the s and p cross sections,
which must be determined in some other manner (see
Secs. III, IV, and V). Numerical values for QP and
QP" are given in Tables II and III for several values

TABS.E III. Partial cross sections in units of duo' of the 3s-3p
transition of Na calculated by 3'II method.

l 4.210
E(eV)

7.364 10.520 16.832 23.144 33.660

0 3.18
6.19

2 16.14
3 16.43
4 10.83
5 5.98
6 3.08

1.55
8 077
9 038

10 0 19
11 0 10
12 0.05
13 0.02
14 0.01
15 0.006

1.50
3.64
9.17

11.67
11.08
9.13
7.01
5.18
3.76
2.70
1.93
1.37
0.98
0.69
0.49
0.35

0.93
2.62
6.41
8.37
8.52
7.73
6.61
5.47
4.46
3.59
2.88
2.30
1.83
1.46
1.16
0.92

0.51
1.68
4.02
5.26
5.52
5.27
4.81
4.29
3.78
3.30
2.88
2.50
2.17
1.89
1.64
1.42

0.35
1.24
2.93
3.81
4.02
3.89
3.62
3.30
2.98
2.69
2.41
2.16
1.94
1.74
1.57
1.41

0.23
0.86
2.01
2.61
2.75
2.67
2.51
2.32
2.13
1.95
1.79
1.64
1.50
1.38
1.27
1.17

of the incident energy and several l; all cross sections
are in units of mao'. A comparison of the partial cross
sections Qpn, Qp', Qp", and —,Q~ is given in Figs.
9 and 10 for incident electron energies 10.520 and
33.660 eV, respectively. As is, of course, to be expected,
the major contribution to the cross section in the case
of 8= 10.520 eV is due to a few intermediate values of l;
while for E=33.660 eV, the contribution is more uni-
formly distributed among several different l. One may
also notice that QPn, QP'r, and QP" all approach the
same value for large l, the convergence being faster for
small E.

In calculating cross sections by the resonance-
distortion and Bethe methods, all of the hypergeometric
functions needed, except those for 8=33.660 eV, were
evaluated by means of the series representation"

TABLE II. Partial cross sections in units of maP of the 3s—3p tran-
sition of Na calculated by the method of resonance distortion.

4.210

2 11.79
3 11.44
4 7.84
5 4.52
6 2.45
7 1.29
8 0.66
9 0.34

10 0.17
11 0.09
12 0.04
13 0.02
14 0.01
15 0.006

z(evl
7.364 10.520 16.832 23.144 33.660

6.54 4.31 2.69 2.04 1.51
10.17 7.58 4.80 3.49 2.40
10.03 8.25 5.50 4.02 2.74
8.18 7.44 5.29 3.93 2.70
6.26 6.29 4.80 3.65 2.54
4.65 5.18 4.25 3.32 2.34
3.40 4.21 3.72 2.98 2.15
2.46 3.39 3.24 2.68 1.96
1.77 2.72 2.82 2.40 1.79
1.27 2.18 2.45 2.15 1.64
0.91 1.74 2.12 1.92 1.50
0.65 1.39 1.84 1.72 1.38
0.47 1.11 1.60 1.55 1.27
0.33 0.89 1.39 1.39 1.17

IO

I l I l l i I l I l l l I )

2 4 6 8 l0 l2 l4

'I A. Salmona and M. J. Seaton, Proc. Phys. Soc. (London) 77,
617 (1961).

'4 W. Christoph, Ann. Physik 23, 51 (1935); I. P. Zapesochnyi
and L. L. Shimon, Opt. Spectr. 13, 355 {1962).

F~G. g. Partial cross sections QP Qg
'I QP'» and )Q~m'x for

Na (3'8 ~3~P) by electron impact, where DE=2.104 eV and
s'=19.0 for an incident energy of E=10.520 eV.

»A. Erdelyi, P~gher Trunscendentul Iiunctfons, I (McGraw-
Hill Book Company, Inc. , New York, 1953), p. 56.
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TABLE IV. Total cross sections in units of mao' and partial sums of Qg for the 3s—3p transition of Na.

E(eV)

4.210
7.364

10.520
16.832
23.144
33.660

QB'I

288.63
231.87
189.12
139.19
111.26
84.48

QB'II

64.9
71.6
68.9
60.5
53.3
44.4

QRD

47.1
61.7
62.9
57.7
51.6
43.5

Ql

6 5(13 7%)
3.7(6.0%)
2.6{4.1%)
1.6{2.8%)
1.2 (2.3%)
0.8(1.8%l

Q
B"I

l ~16

0.0(0%)
0.9(1.5%)
3.6(5.7%)
9.6(16.6%)

13.2 (25.6%)
15.6(35.9%)

16
QLRD

40 66{863%)
57.10(92.5%)
56.69 (90.2%)
46.50(80.6%)
37.24(72.1%)
27.10(62.3%)

where

and
(p)-= p(p+1)(p+2)" (p+ts —1), (76)

to—

For the higher energy, use was made of a formula given
by Seaton. '

The total resonance-distortion and Bethe II cross
sections calculated by means of Eqs. (72) and (73) are
given in Table IV. The cutoff value for the tail is /o ——15
and the percentage contributions from the tail, the
intermediate values of /, and /=0 and /=1 are also
given in the table (i.e., % relative to QaD); the s and P
cross sections were arbitrarily taken as —',Qt '". In Fig.
11, these cross sections are compared with Born ap-
proximation as well as absolute measurements of
Christoph and relative measurements of Haft (as
quoted by Bates et al.).to The relative curve has been
adjusted according to the absolute measurements. It
is important to note that some freedom remains in the
adjustment of Haft's relative measurements. Each
resonance-distortion cross section in Fig. 11 is ac-
companied by a bar indicating the maximum and
minimum values obtained by taking Q'= 0 and
Q'=Q', respectively. (One may recall that in Table
IV the value —,'Q, ' was used. ) It is clear that the form
of the resonance-distortion curve is in reasonable
agreement with that of the experimental curve, how-

Qt '= ,'k (o2l-+1). (77)

It is found that a reasonably good approximation is

(78)

It is known that for large l, QP', and QP'r (standard
Bethe approximation) coincide. Thus, if lo is suitably
large, one may simplify calculat'on by replacing QP'
above by Qtn'. Despite the simplicity of this approach,
it is actually found to give satisfactory results. Cross

ever we should not place too much faith in our results
for small E, since in such cases, ko' —k ' is no longer
very small compared to ko' (i.e., the kinetic energy of
relative motion changes considerably during the col-
lision) and thus our assumption of exact resonance in
the zeroth order is no longer justified. It is also likely
that distortion effects due to the diagonal elements
Uoo, U „will come in. Exchange sects have been
neglected completely, and are expected to be important
only for small /; however, since for small 8, the eBect
of small / becomes significant, one might then expect
exchange to be important.

A close-coupling technique was devised by Seaton'
specifically for cases where exceptionally strong coupling
causes the weak-coupling approximations to give much
too large cross sections. In such cases, one may find a
value /0 of /, such that

IOO—

BO—

os 0
60

0'

20—

Fn. 10.PartialcrosssectionsQ~ Q~B'I QP'» and-', Qg '~for
Na (3'S ~ 3'E) by electron impact, where DE=2.104 eV and
s = 19.0 for an incident energy of E=33.660 eV.

D. R. Bates, A. Fundaminsky, and H. S. W. Massey, Phil.
Trans. Roy. Soc. London A243, 93 (1950);G. Haft, Z. Physik 82,
73 (1933).

i0 30

FIG. 11.Total cross sections QR QB'I, QB'», and Q~o for Na
(3'S —+328) by electron impact. The open circles refer to the
absolute measurements of Christoph and the solid curve marked
EXPT represents the relative measurements of Haft. The dashed
curve represents Seaton's close-coupling approximation Qoo.
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sections calculated by this method (denoted by CC)
are included in Fig. 11. It should be pointed out that
this method is strictly limited to cases of strong
coupling, its failure in other cases having been clearly
demonstrated. 4

VII. TWO-CHANNEL APPROXIMATION FOR
ELECTRON-ATOM COLLISION

Attempts have been made to devise a simplified
procedure for the calculation of the collision strength
by the resonance-distortion method, particularly to
avoid the task of solving the three-channel coupled
differential equations. Here the zeroth-order solution
of Fo Ldenoted by Fo"'j is again obtained from the
limiting exact-resonance case, i.e., Fp&'& and F ( '
satisfy the equations

(P+koa)Fo(o)=Uo F (o),

((72+k 2)F (o) —U Qo(0) (80)

At this point we introduce an additional approximation
of replacing the angular dependent Uo„(r) by an angular
independent potential of the form A/r . This e—limi-
nates the three-channel coupling for the zeroth-order
equations and Fp' & can be obtained by a procedure
analogous to that given in Sec. III. We then solve for
F by using this form of Fp( ) and the original angular
dependent Up„. At 6rst thought, this procedure might
seem inconsistent in that we use an angular-independent
interaction potential to calculate Fp( ), and an angular-
dependent one for F„.However, it must be remembered
that Fp&" can be regarded as a erst-step trial function.
It need not be the solution of the problem corresponding
to the true potentials so long as it has sufhcient re-
semblance to the actual solution Fo of Eqs. (6) and (7).

The first task is to select a suitable value of A, so
that Fp"& gotten here will produce a satisfactory result
for F„.As suggested before, the potential —A/r' repre-
sents some kind of average of Up„. Considering Kqs.
(12), we can write down the asymptotic form of Uo„
for the transitions ns ~ npm, as

(Va+k„a)F„(r)= U~o(r)Fo(r), (84)

where U„o is given by Eq. (8). It is not permissible to
expand F„(r) in terms of Legendre polynomials since
such an expansion implies cylindrical symmetry.
Rather, the spherical harmonics must be used, i.e.,

F.()= -'Z,F.. ,()Y,(~). (85)

The differential equation for the partial-wave ampli-
tudes is

d2—+ k.a—f(l+ 1)/la F„,„(.)
dr'

Y *()U (*)Y' '()F, ' ()d (86)

The desired solution may be found by the standard
variation of parameters technique, in which the
Wronskian of the homogeneous solutions is chosen to
be equal to one."Thus we have for the partial-wave
amplitudes, the asymptotic result

F«(r) (—1)' exp(ik„r) g rj&(k„r)Fo, ) o (r)dr

Uo~o(r) over all space as

1 Z/2

(Uo.), .= A—/ra=,'g~ —
l Y,o(f) ladf sr a

4n-

= as/r', (82)

thus
2 = —~3s.

Alternatively, we can average the square of the matrix
elements over all the m values, i.e.,

(Uo ) =l-'(IU 'I'+IU +'I'+IU 'I')1'"
= -', s/r', (83)

giving the same result as Eq. (82).
Next we shall determine F„from

Uo„(r) 'n')'Yg" (8,y)s/-r' U o*(r), (81)
X Y„*(~)U..(.)Y, (')«, (87)

where 8, P give the orientation of the incident particle
in the atomic coordinate system. We recall that when
one considers the cross section for transition to a
degenerate level, one must sum the cross sections over
each of the degenerate states of the level. This fact
leads us to consider two averaging techniques in order
to obtain an appropriate value of A. It should be
remembered that the zeroth-order function Fp( ) need
only represent one of the three degenerate states
(r)a=O, +1), since in performing the iteration it will
be used to calculate the cross section for each of the
degenerate states, separately. We 6rst take A to be
determined by averaging the modulus squared of

where

j&(kr) = (n/2kr) '~aI&+i(kr), .

and for the total inelastic function

X Y~ *(/)U o(r)Y, , ()o)dl'Y«()a). (88)

"See Ref. 1, p. 10'l.

F„(r) r ' exp(ik„r) P (—1)' rj )(k„r)Fo,r (r)dr
~g ~rgl

p
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(91)yi(lp, ls
I r) s 1(gop, ggs) /r'.

(89) We replace U„o(r) in Eq. (88) by its asymptotic form,
and noticing that as a result of the angular integration,

g =g' —nz and l=l'&1, we obtain for the total collision

(90) amplitude

where for Ns —+ grp transitions we have

b„(pm, so) = pgrrr',

In the case of optically allowed transitions, which and for large r
are often accompanied. by strong coupling, U„o(r) will

always include a dipole term, i.e., a term given by

b„(/+1 grr, /grr') Yr„*(/)yr (n /+1, rr/
I r),

j r+1(k„r)Fo,v (r)r 'dr 1 vyrg , (&) &1 (i') ~r g (i')d~ 1'r''+r, g' (r'—)

jr 1(k.r-)Po, r g (r)r '«1'l' 1, ' -(-r) 1'1 (r) 1'r'g'(i')d~i'r' 1, ' -("—)

= —2s Qrg (—1)'{I(l+1,/g)c'(/g; /+1 g
—grr) Tr+r, g „(rg)+I(/ —1, lg)c'(lg; l—1 g

—grr)Fl r, g „(r)}, (92)

where we have employed the Condon and Shortley notation, " (see Table V)

co(/grr; /'grg') = (2/2k+1)r~' O~(k, ggr grr') —O~(/, grr) 0'(P,grr') sin8de,
0

and where we have defined

(93)

I(l'&1, /'g') = j l +1(k&r)P rog (r)r 'dr (94)

The total cross section for the transition rrs ~ grpgrr, is given by

Q(ns —+ grpgrr) = (k„/ko) I f~ (0,&) I'dQ= (k„/ko)gos' p {II(l+1, lg)c'(/g; l+1 g gN) I'—
lg

+ I
I(/ 1, /g)c'(/g; l —1g—gg—r) I'+I*(l+1,lg)I(l+1, /+2 g)c'(/g; l+1 g

—grr)cr(/+2 g; l+1 g
—grr)

+I*(/ 1, lg)I(l —1, / —2 g)ci—(/g; / —1 g
—rrr)cr(/ —2 g; l 1g—grr) —

I . (95)

In evaluating the radial integrals I(l', lg), we use For, "'(r), as determined for the case of exact resonance. In
this section, we have made use of the expansion

P (r)= 'Z. Fo, .()1'.(r) (96)

Comparing this with Eq. (26) for Fo,r, we find that

Po, 1g (r) = 2i I gr (2l+ 1)g Po, 1 (r)b g, o,

where 8, , 0 is the usual Kronecker delta. The radial integrals are found to be given by

(97)

I(/+1, /0) =irr'"( —1)'(2l+1)'"(kok„)- exp( ——,'rri)

)(LH+(/+1, l) exp( —gip+rr)+H (/&1, l) exp( ,'ip rr)—j,—(98)
where we have defined

00

H+(/&1, l) =—— J„+(kor)Jr~i+~(k„r)r 'dr,
0

H (/&1, /) = J„—(k—or)Jr~r+y(k„r)r 'dr.
2 0

Making use of the coeKcients given in Table V, we find for the total cross sections

(l+2) (l+1) /(l —1)
Q(nsg grp(&1)) =grko '$(grs)' Q I

G(/+1, l) I'+
I G(l—1, /) I'

2(2l+3) 2(2l—1)

(99)

(/+2) (/+1) l(l—1)
G~(/+1, l)G(l+1, l+2)— ~~(/ —1, /)G(l —1, l—2), (100)

2(2/+3) 2(2/ —1)
' E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, London, England, 1951),

p. 175.
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and
(l+1)' is (l+2) (l+1),

Q(es-+ epo) =srks '4(scs)'g IG(l+1, l) I'+ IG(l—1, l) I'+ G*(l+1, l)
2l+3 21—1 2l+3

l(l—1)
XG(l+1, l+2)+ G~(l—1, l)G(l—1, l—2), (101)

2(2l—1)

TABLE V. Integrals of three normalized associated
Legendre polynomials.

c'(l 0; l+1, &1)= —[(l+2) (l+1)/2 (2l+3) (21+1)]'~s

c'(l, 0; l 1, a—1)= [l(l—1)/2(2l+1) (2l —1)]'"
c'(l+2, 0 l+1, &1)= [(1+2)(l+1)/2(21+3) (2l+3)]"'
c'(l 2, 0—; l 1, —a1)= —[l(l—1)/2(2l —1) (2l—3)]'"

d(l, 0; 1+1,0) = (l+1)/[(2l+3) (2l+1)]''s
c'(l, 0; l 1, 0)—=l/[(2l+1) (2l—1)]'"

and

G+ = s (P++l+ s)
b~= s(l+s —p+),

cg= l+-,',
(105)

where we have dined

G(i&1, l) =H+(l+—1, l) exp( —-'sip'. )
+H (1+1,/) exp( ,'ip—s—.) (10. 2)

Since the initial state is nondegenerate, we need only
sum the three cross sections above to obtain the total
es-+ np cross section; one finds

Q(es ~ ep) =m.ks s-'(7rs)' Q( I (l+1) IG(l+1, l) I'

+l
I
G(l 1, l) I'}—. (103)

The radial integrals given in Eqs. (102) may be
readily evaluated in terms of hypergeometric functions'0
as

1
H+(i+1, l) = J~~-(ksr) Js+I(k„r)r 'dr

2 0

=-', (k./k, ) + ' Ir(,)/r(c, )r(1—b,) }

x sFtLG~,4; c+, (k„/kp)'j, (104)
where

iteration result, contain the A dependence. It can be
shown that for a given A and large values of l, or for
small A and any values of /, the two results coincide.
This is to be expected since A is a measure of the dis-
tortion of F0, and its eGect becomes much less pro-
nounced for large /; we also hand that for A —+ 0 we have
Fs"l (r) —+ exp(iks r)

The criterion by which we chose the constant A is,
of course, somewhat intuitive. It is based on the well-

known idea that transitions in an atomic system are
governed by the absolute square of the matrix elements
of the external perturbation connecting the initial and
the final state. Since the cross sections calculated from
Eq. (103) do depend appreciably on ri, the use of the
two-channel approximation does introduce some un-

certainty to the cross sections. Nevertheless, this
"two-channel" scheme may be used as an approximate
method for calculating the cross sections where more
detailed calculations are impractical. Figure 12 shows
reasonable agreement between the collision strengths
calculated by the three-channel coupling equations
and by the two-channel approximation with A= 3~.
Also is shown the variation of the collision strengths
with respect to A.

VIII. DISCUSSION

In the calculations presented in the previous sections,
we have made the approximation of using a special set
of potential functions as given in Eqs. (12) and of
neglecting the efFect of exchange between the colliding
and the atomic electrons. For transitions with long-
range coupling, where the total cross section is dis-

MA)(

with

=-'(k-/ko)' 'Ir (G+')/r (c+')r (1—4') }

XsFtLG~', b~'i c~'i (k„/k, )'j, (106)

&+'= s (P++1+5)
b+'= s (l+5 P~)—
c~'=i+-ss.

(107)
I I I i I ) I 1 I f I

2 4 6 8 lo l2 l4

We notice that Eq. (103) is of precisely the same
form as the Born cross section given by Eq. P1),
except that the radial integrals are diferent and in the

~FIG. 12. Collision strengths Dpn(s'=19. 0) and n&(2 channel,
A=2.9, 4.0, 5.0) for Na(3'S —+3'E) by electron impact with
b,E=2.104eV. The value of A=2.9 corresponds to the relation
l~ l =s lsl.
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Upp= U =0

Up„= —A/r'
(112)

We chose the parameter rp so that at r=rp, Upp and
U are both very small and Up has deviated appre-
ciably from its asymptotic inverse-square form. Once
rp is Axed, Z can be determined in the same manner as
was done by Allis and Morse."For the case of exact
resonance, the solutions of Fp and F„can be expressed
in terms of the Coulomb wave functions'0 (r(ro) and
Bessel functions (r &&ra). We have calculated the partial

'~ Uncoupled representation refers to the expansion of the total
wave function as a linear combination of products of the atomic
wave functions and the colliding electron functions F. In the
colpled representation, on the other hand, the wave function is
expanded according to Eq. (31).

'&& W. P. Allis and P. M. Morse, Z. Physii& 70, 367 (1931l;P. M.
Morse, Rev. Mod, Phys. 4, 577 (1932).

tributed over a large number of Q&, these approximations
can be justified on the basis that they acct only the
partial cross sections corresponding to small values of l.
The use of the approximate potential functions is merely
to simplify the calculation of the cross sections, and
is not essential to the method of resonance distortion.
In case Upp and U are not set to zero, our zeroth-order
solution, in the uncoupled representation, "is taken as
the solution of

(V'+ko' —U00)FO&'& = UO„F„&'&,

(V'+ko' —Uoo)F "'=U OF0&0&,
(108)

and the 6rst approximation of F„is gotten by solving

(V'+k„' U„„)F—= U„oFO&'&. (109)

We have investigated, to a certain extent, the eGects
of the parts of the potential functions which were
neglected in Eqs. (12), on the cross sections. For
electron-atom collisions Up p and U behave like
—r-' exp( ar) —near the origin and decay rapidly on
account of the exponential factor. The radial part of
—Uo„ is proportional to r 2 at large distances (es ~ r&P),

but attains a maximum and eventually passes through
the origin as r is decreased to zero. Even for elastic
collision problems, the functional form of Upp is so
complicated as to make exact solution impractical. In
their studies of elastic collisions between electrons and
atoms of the rare gases, Allis and Morse'P used a
potential of the form

V=Z(1/ro —1/r), r(ro,
=0, r& rp, (110)

which makes possible an analytic solution of the
Schrodinger equation. As a trial calculation we have
considered a modified schematic model with the
following interaction terms:

Uoo= U =2Z(1/ro —1/r)
t r(ro, (111)

Up =0

in the uncoupled representation. Upon introducing

Fp,+ Fp+Gp p

F„,g=F„&G„,

we obtain the differential equations for the scattering
amplitudes as'

$V+ko' —U00)FO ~(r)~ IC00(r r )Fo ~(r )dr

= Uo F.,~(r)+ Eo„(r,r')F„.~(r')dr', (115)

LV2+ k„&—U„„)F„,~(r)~ E„„(r,r')F„,~(r')dr'

= U„@o+(r)~ E„,(r, r')Fo, +(r')dr', (116)

where Uoo, U„„,and Uo„are given by Eq. (8), and

+00(rl r2) —l&&'0 (rl)$0(r2) (kO' —2/r12 2+0),

E„„(r~,r2) =f *(r&)P„(r2)(k~' —2/r&2 —2E ),
Eo„(r~,rn) =P„*(r~g0(r2) (k~' —2/r&s —2R)

=+no (r2yrl) .
(117)

The zeroth-order solutions, which will be denoted as

Fp,+&" and F„,+('), are taken as the solutions of the
limiting exact-resonance problem, ignoring exchange.
Under these limiting conditions, Eqs. (115) and (116)
reduce to Eqs. (108) and (109), and Fo,~&'& and F„,~&'&

become identical to the functions Fp(& and F (",
respectively. We then replace Fo,y ln Eq. (116) by
Fp,~( & and solve for F„,~. A similar iteration procedure
can be used if one expands 9'(1,2) in terms of basis

functions of the coupled representation. "
Finally we wish to discuss the applicability of the

cross sections (exact resonance) for the 2s~2p tran-
sitions of H at an electron energy of 13.6 eV using the
two-region interaction potentials of Eqs. (111) and
(112), and have repeated the same calculation with the
one-region asymptotic form of Eqs. (13). It is found
that the results of these two cases are different only
for small l. For instance, the sum of Q& from l=2 to
l=7 varies by about 10%.Thus for transitions involving

a long-range interaction, the introduction of the two-

region potential alters the total cross section only
slightly.

The exchange eGect of the electrons can be incor-

porated into the formulation of the method of reso-
nance distortion. If we consider only the interaction of
two states, fo and f„, the total wave function is now

expanded as

%(1,2) =F0(r)ito(r')+F„(r)P„(r')
+I Go(r')4 (r)+G-(r')lt-(r))



method of resonance distortion and its relation to other
approximate methods of solving collision problems.
First of all, the method of resonance distortion is
restricted to problems involving near-resonance, since
the limiting case of exact resonance is taken as the
zeroth-order approximation. This method is most
suitable for cases where the coupling between the
initial and 6nal states is strong. %e can illustrate the
nature of this method through a partial-wave analysis.
The partial cross sections corresponding to large l for
the strong coupling case reduce to the Born partial
cross sections, because partial waves of large l' are
classically equivalent to distant impacts and at large
distances, Uoo, U„„, and Uo„are suKciently small so
that the Born approximation is applicable. At lower l
the "e&ective" coupling becomes so large that the use
of the Born approximation and the method of distorted
waves, which are valid for weak coupling, is not always
justifiable. It is in this region of f (called "low-/ region")
that the method of resonance distortion is useful. For
collision-induced transitions with a long-range inter-
action potential, where the contribution from the

partial cross sections in the "low-/ region" constitutes
a substantial part of the total cross section (e.g., Table
IV), we may expect the method of resonance distortion
to yield more accurate results than the usual Born
approximation.

For very weak coupling, the results of the method. of
resonance distortion approach those of the method of
distorted waves. This can be seen from Kqs. (108) and
(109).When Ue becomes very small, Foie& in Eq. (109)
is nearly equal to the zeroth-order solution in the
method of distorted waves, which is dered by

(&+&es—&ee) (&etc')nw =0.

The difference in P„as calculated by these two zeroth-
order functions should be small compared to Ii itself.
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Self-consistent 6eld calculations by the expansion method were carried out for Cr+, Cr and some of its
excited states. The results represent closely the absolute Hartree-Pock solutions. The wave functions were
calculated with the requirement to satisfy exactly the cusp condition so that they can be considered to be
particularly accurate in the immediate vicinity of the nucleus. The differences in calculated energy levels
are compared with experiment.

INTRODUCTION

HE self-consistent imld (SCF) expansion method
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Cr+, Cr and some of its excited states. Vector couphng
coef5cients J~„, and Eq„, frere taken from the tables
calculated recently. "

The computation was done on an IBM 7090 computer
with a modi6cation of the previously established
program. '

The notation and the units used are the usual ones
and are identical with those employed in a recent work. ~

Some of the important results are presented in
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