
P F RC US —YF V I C K EQUATION FOR M IXTURE OF HARD

h = 36ytrts (Rs—Ri)',
L (s)=»m BI+It&)+)~,R, (R, R—,)jR,.

+LIZ~, (1+2t)—hR, )s+h,
~(s) = h+L12(~i+~,)(1+2~)—h(R,+R,)7s

—18(~,R, +~,R, ) —6(&,R, +„,R, )
X(i-g)ss-(1-t) se,

and Gss(s), Ls(s) can be found fi'oni Gti($) aiid Lt(s)
by interchanging qq, E1 with q2, E2. Ke may now verify
explicitly our previous assumptions on G,;(s) as well as
its correct behavior when g1 or Eq vanishes or E1=E~.

The pressure given in (39), which comes from the
compressibility relation (13), yields correctly the first
three virial coeScients, IS i.e., coefBcients of pq'p2~ for
I+k(3. It is also in very good agreement with the
Monte-Carlo computations'6 of the pressure done for
Rt= sRs, pi=-ps, ]&0.2. The reduced volume ofmixture
is always negative which implies that there is no phase
separation of the components. '~ The pressure may be
obtained from g;;(r), in addition to the compressibility
relation (13), also by use of the virial theorem. For a
mixture of hard spheres this has the form, "

Pp'= pt+ps+sw Z p'psR's'ge(R's) (44)

'~A. G. McLellan and B. J. Alder, J. Chem. Phys. 24, 115
(1956)."E.B. Smith and K. R. Lea, Nature 186, 714 (1960)."Iam indebted for the above results to Professor J. S. Rowlin-
son. Professor Rowlinson also obtained independently the pressure
(39) for the case Eq=o.

'e Note added in Proof. B.J. Alder has kindly informed me that

For the correct g,; the two relations, (13) and (44), will

yield the same result. For our approximate g;; we 6nd
from (40),

18
pp"= pp —— (gtRts+nsRss)s,

tr (1-P)s

where we continue to label the compressibility pressure
(39) by p. The generalization of the above results to
an ns-component mixture of hard. spheres is immediate.
The generalization of Eqs. (39), (45), and (40) are

XL2R~t+R'Rt(Z rttRt')3 (1 $) s) (46)

m

&P'=Op EZ—&tR&1'(1—k)
' k-Z &tRt', (4&)

l~1

g;; (R;;)= ttR;g;;(Rt)+R, g;; (R;)g/2R;;, (48)

g' (R)=((1—k)+-' (r, ~~r')R }(1—5)-' (49)
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both p and p" are in very good agreement (with p slightly above
and p' slightly below) with Monte-Carlo computations carried out
by him and his co-workers for several values of Ee/Ei, oe/p|, and
a large range of g.
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Simplified Approach to the Ground-State Energy of an Imperfect Bose Gas.
II. Charged Bose Gas at High Density
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Foldy, and later Girardeau, calculated the ground-state energy of a charged Bose gas at high density.
We rederive the common erst term obtained by these authors by using a nonperturbation method developed
previously. Our aims are: (i) to establish the validity of this common result, which has not been proved;
(ii) to establish the validity and usefulness of our nonperturbation method. We also show that our method.
will give the correct functional dependence of the ground-state energy on the density at low density, although
the exact coefBcient must await a numerical computation.

I. INTRODUCTION

A BOUT two years ago Foldy' suggested investigat-
ing the charged Bose gas as a possible model for

superconductivity and superQuidity. He derived for-
*Now at Heifer Graduate School of Science, Yeshiva University,

New York, New York.' L L. Foldy, Phys. Rev. 124 649 (1961) (hereafter rderred to
as F). See also Errata, ibid 12, 2208 (1962)..

mulas for the ground-state energy and elementary
excltatloIl spectruIQ of the systenl at high density
(weak coupling constant) by applying Ilogolyubov's
well-known method. 2 Foldy derived the 6rst two terms'¹

¹ Bogolyubov, J. Phys. (U.S.S.R.) 11, 23 (194'l). See
also The jdany Body Problem, edited by C. DeWitt (John Wiley
8z Sons, Inc., New York, 1959), p. 343.
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in an asymptotic series for the ground-state energy, and
conjectured that the 6rst term at least was given
correctly by Bogolyubov's formula —although no proof
was OGered to support this assertion. His result was

»idy: f~Zs//(NRII) = —0.803r, "'+0.213, (1.1)

where Eo is the ground-state energy, E is the number of
pRI'tlclcs V Is thc volume, p=N/V Is tllc dcrlslty s
is the particle charge, m is the particle mass, XII
=me'/2h' is a Rydberg, and r,= (3/4sp)II'e'(m/As) is
the dimensionless coupling constant.

Girardeau' later recomputed the ground-state energy
using the variational method of himself and Arnowitt. 4

He found

Girardeau: f= —0.803'/r;si' —III lnr. +0(1). (1.2)

As far as the first term is concerned, Eqs. (1.1) and
(1.2) agree, but this is not surprising since they are
both derived from Bogolyubov's method. The reason
the respective second terms disagree, and at the same
time the reason Girardeau is probably more nearly
correct, is the following: Foldy derived the second term

by considering the difFerence between p and ps (the
so-called ground-state depletion effect). He ignored,
however, the expectation value of the quartic part of
the many-body Hamiltonian. For the general short-
range, 6nite potential, this quartic part will give a
correction of the same order in the coupling constant
as the ground-state depletion CR'ect, and so in any
event, ought to be included. But for the Coulomb
potential it turns out that the expectation value of the
quartic part in Bogolyubov's ground state contains a
divergent integral. The dilemma is resolved by including
the effect of the quartic part directly on the wave
function (in the same manner that p —ps is usually
incorporated into the wave function) with the result
that the divergence gives place to a lnr, term as found

by Girardeau.
Thus, in order to calculate the second. term con-

sistently within the framework of the Bogolyubov
method, one should include ul/ so-called pair terms in
the CGective Hamiltonian. This program has already
been carried out by Luban. ' It is unfortunate that even
the pair Hamiltonian cannot be diagonalized exactly
bccausc lt ls quartic~ but LubRQ quotes R theorem of
Wentzels to the effect that the free energy (which at
T=O is the ground-state energy) can be calculated
exactly in the limit of a 1arge system by using the

3 M. Girardeau, Phys. Rev. 127, 1809 (1962).
4 M. Girardeau and R. Arnowitt, Phys. Rev. 113, 755 (1959).
5 M. Luban, Phys. Rev. 128, 96S (1962).' G. Wentsel, Phys. Rev. 120, 1572 (1960). Unfortunately, the

theorem cannot be regarded as rigorously proved in all generality
for the Bose gas, because it assumes that a certain unknown power
series converges. For the particular case of the ground state
(zero temperature), the case in which we are here interested, the
theorem was proved previously by Girardeau and Arnowitt (cf.
Ref. 4, Appendix 3).However, their proof also sufI'ers from having
to make the same assumption as %entzel.

self-consistent procedure which is at the heart of the
Bogolyubov method.

Although Luban did not actually calculate the
ground-state energy for any specific system, it is dear
that his integral equations are the same as in Girardeau's
calculation. In short, Girardeau's result, Eq. (1.2), has
a doubly validity. On the one hand, it is the correct
solution of the pair Hamiltonian without omitting any
terms. On the other hand, it arises from avariational
calculation and hence is an upper bound for the ground-
state energy.

It should be pointed out, by the way, that the second
term of Eq. (1.1) or (1.2) is what wouM normally be
called the third term. The reason is that for the Coulomb

gas the usual 6rst term is exactly cancelled out by the
positive background. Now even for the short-range,
hard-sphere'Bose gas, Wu~ found that the third term is

logarithmic. Judging from Girardeau s calculation, the

log term appears to be specifically connected with the
long-range behavior of the Coulomb potential, but if
we believe Ku's calculation, it may well be that the

log term is somehow a general feature of the Bose gas.
In this paper we rederive the common 6rst term of

Eqs. (1.1) and (1.2) by a method introduced previously. '
Kc do this by solving, to lcRdiQg order R nonlinear
integrodifferential equation [I,Eq. (3.29)j.Our purpose
is twofold: Firstly, since the result above has not been
proved, the fact that we also obtain it by a method

quite diff'erent from Bogolyubov's is support for its
validity. Secondly, but closer to our real interest, we are
attempting to establish the usefulness and validity of

I, Eq. (3.29).
Judging from the results of the present paper and of I,

it would seem that this same equation is valid (for
weak-coupling constant at least) for both long-range

and short-range potentials, with or without a hard core.
This equation does not make use of pseudopotentials
or other arti6ces which must be introduced in other
methods if the potential is singular.

For wcRk-coupllQg constant7 Rs lQ this present CRSC

and in the short-range case treated before, I Eq. (3.29)
can be linearized to the extent that it can be solved

analytically and the first two terms in a power series

for the ground-state energy obtained. LFor the Coulomb

case this means that we obtain only the first term

correctly, as explained before. Our next term is a
collstRllt Rs III Eq. (1.1) but witll R different coefficient.

It is not clear whether we could obtain a log term by
solving I Eq. (3.29) more accurately, or whether it is

necessary to 6rst construct an improved version of this

equation by invoking higher correlation functions than

the second. j Another case in which this equation

acquits itself properly for uQ coupling is in the one-

' T. T. Wu, Phys. Rev. 115, 1390 (1959).
s E. H. Lich, Phys. Rev. 130, 2518 (1963) (hereafter referred

to as I).
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In I we made a further simpliication, namely, that
since e(r), and hence S(r), was short range compared to
u(r) we could replace S(r) (in the integrals for E and 1.)
by h'(r)xsep ', where e was the energy per particle. In
the present case we obviously cannot make such a
replacement. Thus, for the Coulomb case, while we are
still using the same basic equation, I, (3.29), we must
treat it a little more carefully.

To this end we combine Eqs. (2.3), (2.5), (2.6),
(2.11), and (2.12), and take Fourier transforms of both
sides with the result that

f=Ar, s/4+J3 (2.20)

00

2 =-6'/' {ps(P4+2)'»—p' —1}dp=—0.803 (2.21)

Having thus hounded. f we can proceed to 6nd an
asymptotic expansion for f in powers of r,s/' by expand-
ing I in a power series in H about H= 1 and retaining
the erst e terms in I„.To 6nd the erst two terms we
we must go to N2, whereupon

—k'u(k)+S(k) =pS(k) {2u(k)—pu(k)'} (2.13)

4'' 4n-e'

S(k) = — u(q)d'q. (2.14)
k' (2s.)' (k—11)'

We have dered

co oo

g3 — PI{p4+1 ps{p4+2)1/s} (p4+2)—1/s

0 0

I p+q
Xq{q4+1—q'(q4+2)'/'} in~ — — dpdq—

g
=0.0597. (2.22)

u(k) = u(r)s/~'d'r, (2.15)

P+q
H(p) = 1——6 '/'r, s/'p pq ln u(q)dq

ip —
q

=—1—H'(p) .
The energy is given by

2 00

f= —61/'r;s/'p u(p)dp—,
0

= —$6'/sr, '/' lim P 'H'(P).

(2.17)

(2.18a)

(2.18b)

We pmpose to solve the coupled equations (2.16)
and (2.17) by iteration in the following znanner: Let
e„and B denote the eth approximations to e and B,
respectively, and take H~= i. This gives

p«(p) = 1+p' p'(p'+2)" —(2.19)

We then insert ul into Eq. (2.17) and derive Hs, the
process is then repeated inde6nitely.

In Appendix B we prove that for r, &E, (where E,
is some constant) this iteration procedure converges to
a u(p), which is a unique solution of Eqs. (2.13) and
(2.14). We prove, moreover, that if f is obtained from

u» via Eq. (2.18a) then f~a forms a decreasing sequence
of upper bounds and f, , forms an increasing sequence
of lower bounds for the true f. Both sequences have a
coI11nlon 11Q1j.t) of course.

with a similar definition for S(k).
If we change to the dimensionless variable

P'= k'(8lre'p) ',
and perform the angular integration in Eq. (2.14) we

obtain (cf. latter part of Appendix B)

pu(p) =1+p'/H (p'/H) (p'+—2H)'/' (2.16)

The integral in Eq. (2.22) can be done by Mellin
transforms and details of its evaluation, as well as of
the integral in Eq. (2.21), are given in Appendix C.
The A coefllcient is the same as in Eqs. (1.1) and (1.2).

Returning to the full nonlinear version of L(1,2),
Eq. (2.7), we see at once, by changing to the dimen-
sionless variable x=p'/'r, that for large r, (low-density'

limit) the second derivative term in Eq. (2.3) may be
dropped and we obtain a pure integral equation for
u(r). Assuming the solution is properly integrable, we

see from Eq. (2.10) that in this limit f~constant
Xr, '—the correct result found by signer. " If this
constant turns out to be close to the value —1.792
found by I'uchs" then it may be supposed that for all
values of r, our nonlinear equation yields an accurate
value for the ground-state energy.

%e conclude this section by displaying the two-

particle correlation function g(r) =1—u(r). To leading
order in r, we may use the function Nq found before.
The inverse I'ourier transformation is facilitated by
performing a contour integration around the branch
cuts of the square root. We also change variables to

wllere Go= k /'//le ls the Bolll' radius. Tile leslllt ls

16
u(s) = r " p'(1 —p')"'

0

Xexp( —3"4ps)sin(3'/4ps)dp. (2.24)

The asymptotic behavior of u(s) is not s-' as one

might have guessed from the usual argument that
small p is important in the integral when, s is large.

"E.Wigner, Phys. Rev. 46, 1002 (1934);Trans. Faraday Soc.
(London) 54, 6/8 (1938).

'4 K. Fuchs, Proc. Roy. Soc. (London) A151, 585 (1935).
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Rather, one can prove that tusing the fact that

N(s) = (12)P'r P

3 x
jg

X ~»2cos 3»4. — ~ 2.2S
8

rb(r)«=r4(r) — 4(r)«=4 (0}=0j,

f= 4n. r'M'(r)«.
p

(A3)

where A=O(s-IIP). An outline of this proof is given in
Appendix C. Note that for large r, g(r) has an oscillating
component.

It is to be noted also that the range of I decreases
with r, like r,@', but more important e itself is propor-
tional to r".This means that if r, is not too large, N(r)
is everywhere less than 1, so that g(r) is positive as it is
known to be on general grounds Lcf. I, Eq. (3.6d)].
In fact for all s,

=3-»44r, 3~4r — I — ~1 —.
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APPENDIX A: JUSTIFICATION OF THE
INTEGRODIFFERENTIAL EQUATION

Kc wRIlt to solve Eq. (2.3), whlcll rllay bc wl'lttell

(suppressing all irrelevant factors):

Pg(r) —(1/r)N(r)= 1/r+M(r). — (A1)

From the solution to this equation we must compute
the ground-state energy per particle,

f= — r-'N(r)d'r = —4Ir rl(r)dr

~hat we wish to show here is that the quantity f is
determined primarily by the asymptotic behavior of
M(r).

+le first observe that since N(r) must be integrable
(in three dimensions), the right-hand side of Eq. (A1)
must go to zero faster than r-I This me.ans that M(r}
=r '+M'(r), where M'(r) is what we might call the
finite part of M(r). For a short-range potential, M
would have only a finite part. Any approximation to
M must give the r ' term correctly or the answer will
be nonsensical. Indeed, the superposition unsure gives
the r ' term providing J' N(r)d'r= p '. In any event, the
r-' part of M is still a part of the asymptotic behavior
of M, so that to obtain it we do not require knowledge of
M for small r.

If we now write N(r}=r Ig(r), with P(0)=0, multiply
Eq. (A1) by r', and integrate by parts, we obtain

Ke thus conclude that the situation here is quite
analogous to that expressed by I Eq. (3.22). Assuming
that M(r) is reasonably smooth, we see that we need
to know it for distances of the order of its cuto6
length, whatever that may be. The superposition urisuis
then tells us that the cuto6 length is r,314gp.

APPENDIX 3: THE ITERATIVE SOLUTION OF
EQS. (2.16) AND (2.I7)

Ke observe that since the kernel appearing in Eq.
(2.17) is a positive function, if Nl(P) and Np(P) are any
two functions satisfying the relation NI(p)&gp(p) for
all p, then H(ll, p)&H(pip, p) for all p. On the other
hand, since p8u, (H,P}//BH(P) = (P /H) I~PpI(P) &0 for
H(p)&0, then if HI(p)(Hp(p) for all p, N(Hl, p)
(N(Hp, p) for all p.

Now, starting with Hl 1and N——I=I(HI,p) $cf.
Eq. (2.19)j, wc lllscl"t Nl lllto Eq. (2.17} Rnd obtR111
Hp=H(Nl, p)&HI. In general, N„=N(H„,p) and H„
=H(N l,p). One easily concludes from the above
inequalities Lassuming for the moment that H„(p))0
for all e and pj that if e is any odd integer, then for all p
Nl) pip) ~ ~ ~ )I„)I +l&g I) ~ )N4) Np&0, (81)
and

H»H» "&H„&H„+»H„,)"
)H4) Hm) 0. (82)

Thus, the odd I's and the odd H's form a decreasing
sequence for all p, while the even I's and the even H's
form an increasing sequence. Since the odd sequences
are bounded below, and the even sequences are bounded
above, it follows that each of these sequences must
converge to limit functions. Wc denote these by e„
H„ lp, and 8'0, respectively. Ke have, however, glossed
ovcl' ollc point: Tile Rbovc lllcqllRlltlcs, (81) Rnd (82),
are true only if H„(p))0 for all n and p. Since Hp(p)
is always the smallest H, it is sufEcient to show that it
is positive. But Hp ——H(NI, P), and when we insert
Eq. (2.19) into Eq. (2.17) we see that Hm'(p) is given
by an integral which is not only convergent but which
is bounded for all p. In other words, we can write

H.-(p)&H...(p)&H {p)»-;(../a) ~, (I}
where 8, is some constant. Therefore, if r, &2'I'E„ then
Eqs. (81) and (82) are true.

%e next must show that the limit functions satisfyI =fop and H =Hp (at least for sufficiently small r,).
Unless these limit functions agree, the iterative solution
to Eqs. (2.16) and (2.17) will not exist.
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The limit functions satisfy

uo ——u(Ho); u, =u(H.),

Ho(p) =1— K(p, q)u, (q)dq,

H. (p) =1— K(p, q)uo(q)dq,

where we have used an obvious notation for the kernel
appearing in Eq. (2.17). Assuming r, &24/2R„and
observing that Bou/BH2& 0 we have (from the remainder
theorem on Taylor series)

uo —u, ~& (Ho H,)Bu,/B—H& (H11 H,)(u,/H—,)
~& (Ho —H,)u~, (BS)

where A = L1—22(r,/R, )2/'j '. Let h(P) =Ho(P) —H, (P)
~&0, which satisfies

l'2(P) ~&A K(P,q)h(q)u, (q)dq

& AM K(p, q)u, (q)dq

=AML1 —H, (p))&M(A —1), (B6)

where M= max„h(p). If A —1&1, Eq. (86) is a contra-
diction unless M =0, and hence if r, &R„H,(p) =H, (p).
QED

We conclude by showing that the iterative solution is
the unique solution. To do this we must erst show that
the only meaningful solution is one for which H(p)) 0
(all p). The argument is as follows: (1) f exists Lcf.
Eq. (2.10)) because it is bounded from above by zero
(from a variational calculation with 1P=1) and from
below by" —j..8r, ', the minimum value of the potential
energy. For any admissible u, therefore, Jo"ru(r)dr
exists. (2) u(r) is bounded since g is. In particular,
u(r=O) is finite. (3) Since H'(P)=constXP2 Jo"ru(r)
X (sinpr/pr)dr, H'(p) is continuous and differentiable in

p. Also ~H'(p)
~
&constXp Jo"u(r)dr=constXp. (4)

We now come to the question of the choice of the plus or
minus sign before the square root in Eq. (2.16).Which-

ever choice we make, by the bound on
~
H'(p) ~, u (p =0)

=/o '. This means J'ud'r exists, and hence u(p) is

continuous and differentiable and bounded for p&0. (5)
Since u(p) is supposed to be the three-dimensional
Fourier transform of a real, symmetric function, u(p)
is real, which means that H(P) &&—~2P4. (6) On the face
of it, there is no need to retain one sign of the square

APPENDIX C: THE EVALUATION OF INTEGRALS

The integrals appearing in this paper are readily
evaluated by utilizing the Mellin-representation.

log
z+y 1 7l ÃS S

—tan —— ds, (C1)
2ÃZ $)ReB)—1 s 2

and the integral

r(*)rb)
u ~ t~'(a+t) ~odt

r(*+y) o

(C2)

with Rex and Rey)0.
(42). The coe%cient A LEq. (2.21)j, is a particular

case of (C2).

2
61/4 (p4+1 [(p4+ 1)2 1]1/2}/Ep

8 3 '/4P(3/4)'
= —0.803,

52r 4 P(3/2)
(C3)

where we have changed variables to p' and integrated
twice by parts to reduce the integral to the form (C2).

(/P). The constant 8 is obtained by noting that

root in Eq. (2.16) for all p but, by continuity of u(p),
we can change the sign only when the square root
vanishes, i.e., either when H= & oo (which never
happens) or when H(P) = —2P4. (7) Let u be given by
Eq. (2.16) and u+ be the u with a plus sign in front of
the square root. If H(p)&0 someplace it must be
negative for all p, because when H=O , u =——oo

and when H=O+, u~=+ oo. Since u(p) is bounded,
and since we cannot switch from I+ to I when B=O,
we conclude that H(p)40. By continuity of H, it is
either always negative or always positive. ln the latter
case we must use I, as we have done, in order that
u(P= 121)=0. (8) If ——,'P'&H&0 both u+ and u are
negative, but by Eq. (2.17) It would be positive —a
contradiction.

Thus, Eq. (2.16) is correct and H)0 and u&0. (for
physically meaningful solutions). Consequently, since
0&H(P)&1, u(P) &ui(P). But this in turn implies
that II(P) )H2(P). Proceeding in this way we conclude
that for any odd integer n

ui&uo) u~~»~&u~+1)u~ 1) &u2 (B.7)

Since the even and odd sequences converge to a common
limit function, u(p) must be that limit function, and
hence is identical to the iterative solution.

2B/4—I//2

dqqe+1(q4+1 L(q4+1)2 111/2}—
4(-',s+-,') (ps+-', )

P(1+-' )P(l —-' ) 2)Res) —2 (C4)
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(C5)
0

g hy p@rts»eehere we have chang
Thus)

4 00

8——

g p4 @n&i ynteged variables to q

p+q00pi+1
dp qq(q4+I —[(q+ )

p —
q

ps —1+,
1), Ij&/2 p

xs) I'(I —4s)P(~+4r (1+-'s) p

(2 —'"3 2~g lyaes&-l

s &s)(-', +4s)(5+4s)4 cos2%$ 22K/ ])Re~+—1

1)"
+ g [ (I+ )+—g[—(3+ )2x ~='

32(43 =0.05969 (C6)

the summand»to Partial~ed the serie yby decomP gto the right and suhave closed the contour to ewhere we have close

im' y t 'ned. We haveimilarly o taine .f bThe correlation unc
'

2 Q6 r.e/'

u(s) =—

& 3/42 +6r,
3 7r

'+1)'—I]&/') sin(6&/'pe pd(p'+1 —
L p'+

(C7)

Mellin representation,By using the e i

sinxy=
1+Rett )—1

X'S
)-'F (s) sin—ds, (CS)

lgs "& &"'/ I'(1—-'s)I'(-,'+-,s
y-'I'(s) sin —

~

(ws I'(1——,'s)
('V2y) —'I'(s) sin~ — ds.

1
~(y) =

2K' 1P Res& l

m 1

2 2Ã$ ]+Reit+ ]
If we now inser

in the p integration,we obtain, upon performing

(C9)

F(1—~~s) 1

I'(-' —-'s) I'(-')
t-& /'&(1 —t)'/'dt, (C10)

the Mellin inversion,and perform t e

v2
~(y) =—. &/4yeim/4]) dt1/4 kl'/4] exp[(1—t)&/'(exp[ —2t ye

'

so that

'/' —&i/'&'"& sin((t//2) '/'y)dt,=%2 (1—t '/'e- (C11)

N(s) =
8 0

"'&""sin((3t) &/'e)dt.(1—t)"'e (C12)
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emote that
r (3/2)r (5/4)

its(r) i &u(0)- r,"'. (C13)

Inoraer o oa t btain I for large 2', consider

(1—s)"' expL —(—2s)'/'rods=0, y) 0, (C14)

m ~ runs un er e r
' = — and then to +~ above the real axis.m ~ runs under the real axis to x=0—,an t en owhere t e conth ontour C starts from + ~, runs un er e r = — an t en o

He
7

x 1/4

i 1—x "'dx—""Cx+ exp —— (1+i)y (1—x '/ dxexp —— (1+i)y i(x 1)—x
2

1/

1—x x — —' i —x—1)'"Cx=0. (C15)exp —
i

—
i (1—i)y (1—xx)'/'Cx+ exp ——

~
(1—i)y (—s) (x-

&2)
Thus,

1/4

(2) )
= v2 s "/2&'"& cos~ —

~y ((x—1) x

where

=—L~+(2"'r)+F (2"'r)3, -
v2

exp —yx e
'1/4e+i+/4 j(x 1)1/2dx

(C16)

=8 exp/ —ye+' /'j
6s+4s'+s' '/'

[—yse+' "js"'(1+s)'~ 1+ ) ds, (C1'/)

s 1=x / . Thus,where we ave c ah hanged variables to s+ = ''.

l~+(r)l &e "'

s+' /4](I'(3/2)%(3/2, 11/2; ye+' /4))+R+ y .F+(y) =8 expL —ys '

e~' s&'/+s"'(1 ' 6s+4s'+s') ds

(C18)

+s) (

+ - —;—+1 -
I+~ -, —;— . (C )

7 15 y 9i /9 17 y

(2) 2' 2 'VZ E2
i- ~ —,—, ;

—') (-„,—,, , ;
—

)
metric function isSince the asymp totic behavior o ef the conRuent hypergeom

+(a,b;x =x-' x-—s+0(x—a—1)

it follows that
wkr/4 s—y/4R 5/a)Fg(y)=81'(3 2 ye

'
wiw/4) —3/2 expt ye acr j+0(s y—

///2 ~i + +Q(r ///Cy &/2)— —=~n.y "' exp ——&i—

(C20)

(C21)

Finally,
8 (12)"' exp (—M3s)

u(s) =r,"'— 3s exp( —4V3's)

cos ('V3s) +—+r, '/'0 (C22)


