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Exact Solution of Generalized Percus-Yevick Efluation for a
Mixture of Hard Spheres~

J. L. LEBOWITZ

Belfer Gradnate School of Science, Yeshiva University, hiero York, Few York

(Received 15 August 1963)

The Percus-Yeviek approximate equation for the radial distribution function of a Quid is generalized
to an m-component mixture. This approximation which can be formulated by the method of functional
Taylor expansion, consists in setting expL —Po;;(r)gC;;(r) equal to gg(r)[e «'~&*& 1j, where C;;,—g t, and
gj9;; are the direct correlation function, the radial distribution function apd the binary potential between
a molecule of species i and u molecule of species g. The resulting equation for C;; and g;; is solved exactly for
a mixture of hard spheres of diameters R;. The equation of state obtained from C;;(r) via a generalized
Ornstein-Zernike compressibility relation has the form p/kr=((Z p;)L1+k+(a)—18/e Z;&, v;v;(R; —R;)'
X[Rr+Rr+RRt( ZvtRP) j) (1—5) s, where v;= x/6 times the density of the ith component and 5= Zv~Rp.
This equation yields correctly the virial expansion of the pressure up to and including the third power in the
densities and is in very good agreement with the available machine computations for a binary mixture.
For a one-component system our solution for C(r) and g(r) reduces to that found previously by Wertheim
and Thiele and the equation of state becomes identical with that found on the basis of different approxima-
tions by Reiss, Frisch, and Lebowitz.

temperature T= (kP) ' will not be indicated explicitly
in most cases. ) This work is essentially the chemical
potential tts(pI, RI,ps, Rt) in the limit ps~ 0, which is
equal to the chemical potential of the single-component
Quid when R2= R& and thus yields the equation of state
of a single-component Quid also found by Wertheim
and Thiele. The P.Y. approximation for a hard-sphere
Quid, on the other hand, is completely characterized'
by assuming that the direct correlation function" C(r),
introduced by Ornstein and Zernike' vanishes for r
greater than the diameter of the spheres. The identity
of the equations of state for a single-component hard-
sphere Quid obtained from these apparently unrelated
theories led us to a generalization of the P.Y. equation

ECENTLY, Wertheim' and Thiele' succeeded in
obtaining an exact solution of the Percus-Yevick

(P.Y.) integral equation" for the radial distribution
function g(r) of a Quid of hard spheres. The equation
of state obtained from their g(r) through the use of the
Ornstein-Zernike compressibility relation' coincided
with that obtained previously by Reiss, Frisch, and
Lebowitzs (R.F.L.) and is in very good agreement with
the machine computations~ for the whole range of
"fluid" densities. The R.F.L. theory which does not
involve g (r) directly is based on approximating the work
necessary to add a hard sphere of diameter R2 to a Quid
of hard spheres of diameter Rt and density pt. (The

Copyright 1964 by The American Physical Society.

Supported by the U. S. Air Force OfBce of Scientific Research to Quid mixtures. Ke shall present here the explicit
under Grant No. 62-64 and the U. S. Atomic Energy Commission
under Contract AT(30-1)-1480. solution of this generalized P.Y. equation for a binary

M. Wertheim, Phys. Rev. Letters S, 321 (1963). mixture of hard spheres of diameters Rl,, R2 and densities
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793 (1914).' H. Reiss, H. L. Frisch, and J.L. Lebowitz, J.Chem. Phys. 31, s G. Stell, Physica 29, 517 (1963).
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agreement and a more complete discussion of this
equation will be presented elsewhere.

The P.Y. equation for a mixture may be derived in
complete analogy with that of a single-component Quid4

by using the methods of functional Taylor expansion.
We consider a binary system confined to a volume V
which is represented by a grand canonical ensemble
with chemical potentials p~ and p2. The particles interact
via a pair potential y;; (r) and are subject to an external
potential U, (r) where i, j=1, 2. Let " be the grand
partition function of this system. It is then easy to
show' that,

we obtain, using (2) and (3),

pg (y)="p,e «ij&'& 1++ C;&(r—r')

Xp&[g&, (r') —1]«'+ . . (7)

Truncating this expansion after the second term and
using (4) yields the generalized P.Y. equation for
mixtures,

g, .(y) (s f&y&j(r—& 1)—e per&(r&C. —.(y)

8 ln™

be, (r)
=e,(r)e;(r')

b( PUf(—r')) b( PU (r—'))b( PU'(r—))

X [g,;(r,r') —15+e, (r)8 (r r') 8,;—, (2)

where e, (r) is the density of the ith species at r and
g,, (r,r ) is the radial distribution function between an
i particle at r and a j particle at r', g;;(r,r') =g;;(r', r).
Defining now the direct correlation functions C,;(r,r')
by the equations,

=12(rf;rf )'I' g,;( ), r&Rg,
rf; =wp;/6, (10)

Thus, as in the case of a single component Quid, the
P.Y. approximation for a mixture states that the range
of C,;(r) is equal to the range of &p;;(r). In particular for
a Quid of hard spheres,

-e~&&" "&=&0, r(R;,= (R,+R—;)/2,
r+E;;.

Equations (8) and (9) state that C,;(r) vanishes for
r) (R,+R;)/2 and g;;(r) vanishes for r((R;+R;)//2.
The approximation is of course in the erst statement the
latter being rigorously true. "We may define now,

~v()= —1 (nn)'" Cv(), & v,

b(r —r')
= 8;, —C,, (r,r'),"

n, (r)

we obtain immediately the relations"

[g,, (r,r') —1j=C,;(r,r')
o,, (r) =A,,r—P

l~l)2 g ol

dy~'tb) o&;(x)dx, (11)

(3) and write Eq. (4) in terms of o alone. Doing this and
going over in the integrations into bipolar coordinates
yields,

l:~+@,&ljl

where [y+y, R&;] indicates that the smaller of these
+ P [g,&(r,y) —1]e&(y)C&;(y,r')dy, (4) two numbers is to be taken as the upper limit of the

l—172 integration. Here

C,;(r,r') =C;,(r', r) . A;;= 12 (rf,qf) '&'a; (12)

When there is no external potential, U, (r) =0, and the
system is sufficiently large, V~ oc, then e, (r) =p;, the
average density, and g,;(r,r'), C;;(r,r') depend only on
lr —r'f.

We consider now the behavior of the function
e, (r)est~'&'& "'~ &"&& as the ex'ternal potential U;(r) is
"turned on" from zero to its final value p,;(r), i.e., at
the end there is a particle of the jth species held fixed
at the origin. Then,

(re) e '~'s" &«&"&' =p;e sr'~ & "&, initial'ly,
=p,g,;(r), finally.

Expanding the Anal value of this function about its
initial value in a functional Taylor series in the density4'

'0 F. j. Pearson and G. S. Rushbrooke, Proc. Roy. Soc. Edin-
burgh 464, 305 (1957).

a;=1—P p& C(, (r)dr
l=1,2

~Pp&(pr, ps) ~P(pt, ps)
p =-P, (13)

l=1,2

where p is the pressure. The second equality in (13)
follows from (3) upon integration with respect to r'
in a uniform system when it is realized that the chemical
and external potential enter the grand partition function
in the combination p.;—U;.The last equality follows from
thermodynamics. These equalities may also be derived
from consideration of Quctuations in a binary system"
and are a generalization of the Ornstein-Zernike com-
pressibility relation for a one component system.

"For a one-dimensional mixture of hard rods the exact C;;(r)
vanishes for r&R;; and Eq. lsl is exact, [c.f., J. L. Lebowits r

J. K. Percus, and I.J. Zucker, Bull. Am. Phys. Soc. 7, 415 (1962),
where this was shown for a one-component system).
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Let us assume, for de6niteness that R2&R». The
upper bound on the second integral in (11)will then be
R,; except for the case (sj)= (1,2). Taking the deriva-
tive with respect to r of (11) yields

;.;"1(r) =A;;—Q o;1(r X—)o I; (X)dX

lr —S j& Rsf, -Rf;& X(0

~ l(r —x)o.l (x)dx P "(r—) (14)

lr-Xl & Rsf, 0& X& Rfi

where

P;;(r) =8;Ib;sp(r),

and 1'=2, 2'-1. The requirement that G and F be
symmetric determines the value of I"~2. This value of
I"j2 also ensures that we can obtain Oqq from f722 by
simply interchanging gq, R~ with g2, R2.

The solutions of Kq. (11) which are physically
meaningful are those for which g;;(r) —+ 1 as r -+ oo in
such a way that J'r~g, ;(r)—1~dr exists."This requires
that G,"(s)—12(thor.)II's s have no singularities in the
closed right-hand plane of the complex s plane. Now
the symmetry of G and F imply, using (20), that

G(s)=H(s) Kr(s)(s)=Gr(s)=Kr(s) Hr(s)
=K(s) Hr(s) {25)

where the superscript T in'. ieates the transpose of a
n1atrlx an(i thc last cquahty follows from thc symmetry
of K. Multiplying (25) by Hr( —s) and noting that
K(s) =K(—s), gives

r & (Rs—EI)/2—=X,

r&X,

(15) L(s)=—G(s) Hr( —s)=[H(s) K(s)g Hr( —s)
=H(s). [H(—s) K(—s)]

= H (s) G (—s) =Lr (—s) . (26)

where

G,;(s)= e—"o "(r)dr—= 12(rf rf )'I'

Taking the Laplace transform of (14) yields

sLG' (s)+F (s)3=~9/s —r, G'l(s)
&&[F1 (—s)—Pl (s)]+I'"(s) (16)

It is seen from the definition of H(s) that lt (1 e, each
of its elements) is an entire function of s. Hence, since
H (0)=A, we have, by our assumption on the na«««
G(s), that

L(s)—s-'A'= G(s) Hr( —s)—s 'A'
= H(s) G(—s)—s-'A', (27)

e '"rg;;(r)dr =G;;(s),

e '"o";(r)dr= —12(rf rf )'I'—
(17) where A; = 12 gl(g ql)'"A;I = (12)'(g,q;)"'2 m«= ~v'

has no singularities anywhere in the s plane and. is
therefore an entire function. It follows from (14) that

e '"rC,;(r)d Pr, ;(s), (18)

o"&"(0)=A,e, s=1, 2

erst(r) =ol, (r) =Aslr, r&&,

I';, (s) = 5,,5;,r„(s)= 5,,b;,[p(—s) —p(s)$,
Rlld oslt l(r) ls continuous Rt r'=X. All exRInlllatloll of

(1,9) the behavior of the entire function

P(s) = e '"P(r)dr. (2o) Iss(s) —a„s '=Xsl (s)Hsl (—s)+ass(s) H„(—s)

D(s)

So»ing «» G,;(s) we obtain, in matrix notation,

G(s) = [A+SI'(s) —s'F(s)]. [s'& —SF+(s)&-
= H(s). K(s),

F~(s) = F(s)—F'(—s)

where t is the unit matrix. More explicitly

G,, (s) =X;;(s)/D(s),
where

D(s) = {[s'—SP»+{s)][s'—sp»+(s)]

(22)

—Ass's ' (29)

now shows that it is bounded along every ray in the s
plane. Hence it must be a constant" which we shall
call 28rs. Thus, using (27),

Gsl (s)Fsl (—s)+Gss (s)Pss (—s)

= {AsIGsl(s)+AssGss(s)}s '

A sr(rfslrl)'ll+Assrfs 2Bss—12 (3o)
$2

—

S'Fls+(S)ps+�(S)),

(23)

~V,, (s) = P ([Z;I+sr;I(s)—s'P, ,(s)]
"This method is a generalization of that developed by M„

Wertheim for the one-component system PJ. Math. Phys. (to be
published) ].

Ie See, e.g., E. C. Titchmarsh, The Theory of PNeefeoas (Oxford
sshpp ——1 '+'sppp+ s ) (24) University Press, London, 1939).
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H we take the inverse Laplace transform of (30) then
for r&82~ &82 the erst two terms on the right side will
Ilo't coll'tl'lblltc slllcc Gt/($) goes Rs e '& fol' I'cR1 pRI't
of s large positive and has no singularities in the right
plane. Thus we can close the contour on that side. The
Laplace transform of the left side of (30) is precisely
the first term in the bracket on the right side of (14)
for o 22o& (r) [cf., first term in bracket on right side of
(16)7. On the other hand, the second term in the bracket
on the right side of (14) makes no contribution to
o22&I&(r) for r&R12. Therefore, adding the inversely
Laplace transformed Eq. (30) to Eq. (14), we obtain

&22 (r) A 22+2B22»+ 2[A 21('V2»&l) +A 222&27»

r &R21, (31)

while for E2~&r&E2, we 6nd after taking two more
derivatives and using (28),

o 22
' (r) = 12[A 21(r&22&I)' '+A 222&27» =24D22». (32)

where x= r—X.The coeScients A,, and 8;;may be found
from (13) and from the continuity of o,;(r) and its
6rst two derivatives at E;;.We 6nd

-C,(r)=a+br+d«2 r&R 2=1 2

—C12(r) = —C21(r) = al r &X) (3'/)=al+ Px'+4Mxs+dx47/r,
)«r &82'

Bnd vanish 1n this approxlmat1on fol' t'+ ~ij. Here)

~DiP( I,ps)7

f I=—6[nIRPgIP(RI)+~2R»'g»'(R»)7,

f&= —6[2&,RIg, (RI)+2&,Rsg22(R2)7R gl2(R ),
d= 2[2&la&+2&2a27 ~

o 22(r) =A 22»+B22»'+D22«', r &R2, (33)

which is of the same functional form, i.e., a quartic
polynomial in r, as that found by %ertheim and Thiele
for a one-component system.

We can carry through a similar analysis for the
function

L21(s)e"'A21'[s 2+As '7

-E21(s)HII(—s)+F22(s)H»( —s)-

Pp —
I
6»+ps)[1+5+87

18—
glr&2 (Rs—Rl)'[(Rl+R2)

+RIR2(»/IRI2+r&2R22)7 (1—$) ', (39)

g.(R)={[1+!6+-:"R"(R.-R.)}(1-~)-'
= —CII(RI),D()

)(e'ks A &($-2+)ts-I) (34) g12(R12) [Rsgll(RI)+Rlg22(R2)7/ R12

=—C»(R»),This function is also an entire function of s which is
bounded on every ray. [From (19) I'12(s) is an even
fllnctloll of $ wlllch goes Rs $ e fol' real palt of $1RI'gc

( )
.

( )positive. ] Hence, it is equal to a constant; 2B21. In a
changing qq, E» with q2, E2. The Laplace transforms of
«gv(r), [»(~ )'"7 'G () f df (20) (26).

G2, (s)FII(—s)+G22(s)F»( —s)

[A11G21($)+A12G22($)7$ +I 12($)G22($)$

2&I) I

24 —
l

D22[$-'+As-27+2B21/$2 e-'".

Gll(s) =$[i'2—12(s)e'"'7/u(s),

G21 (s) =
G12 (s) = (2&12&2)112$2e's»{[g (2&2R22—2&IRI2)

& (R —RI)—RI2(1+-'.$)7$—(1+25))/&($), (41)

Taking the inverse Laplace transform of (35) and adding
it to the equation for oslo&(r) in (14) we obtain,
(using F21=F12),

osl(r)=o»(r)=Aslr, r&X
~ yl/2

=A 21»+B2»+2 (R2—RI) —
I

1/2

+ — D22x', ),&r &R21, (36)
92

X)(s)= II 11(s)e'"l L2(s)e—'" +S(2s)e'—I"'+~'&, (42)

'4 The exact one-dimensional direct correlation functions for a
one-dimensional mixture of hard rods are (c.f., Ref. 11),

-Cn(») =Ll —p2(R2 —Rl) —(p,+p,)rf(l —p,R1—p2R2), r&Rl
C»(«) =Ll ——p2(R2 —Rg) j(l—plRg —p2R2), »&&,

=Ll —p2(R2 —Ri)0—(pl+ p2) L»—(R2—Ri)/23
X(~—p,~,—~&A), ~&.&~».

The resemblance to (3/) is very striking.
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h = 36ytrts (Rs—Ri)',
L (s)=»m BI+It&)+)~,R, (R, R—,)jR,.

+LIZ~, (1+2t)—hR, )s+h,
~(s) = h+L12(~i+~,)(1+2~)—h(R,+R,)7s

—18(~,R, +~,R, ) —6(&,R, +„,R, )
X(i-g)ss-(1-t) se,

and Gss(s), Ls(s) can be found fi'oni Gti($) aiid Lt(s)
by interchanging qq, E1 with q2, E2. Ke may now verify
explicitly our previous assumptions on G,;(s) as well as
its correct behavior when g1 or Eq vanishes or E1=E~.

The pressure given in (39), which comes from the
compressibility relation (13), yields correctly the first
three virial coeScients, IS i.e., coefBcients of pq'p2~ for
I+k(3. It is also in very good agreement with the
Monte-Carlo computations'6 of the pressure done for
Rt= sRs, pi=-ps, ]&0.2. The reduced volume ofmixture
is always negative which implies that there is no phase
separation of the components. '~ The pressure may be
obtained from g;;(r), in addition to the compressibility
relation (13), also by use of the virial theorem. For a
mixture of hard spheres this has the form, "

Pp'= pt+ps+sw Z p'psR's'ge(R's) (44)

'~A. G. McLellan and B. J. Alder, J. Chem. Phys. 24, 115
(1956)."E.B. Smith and K. R. Lea, Nature 186, 714 (1960)."Iam indebted for the above results to Professor J. S. Rowlin-
son. Professor Rowlinson also obtained independently the pressure
(39) for the case Eq=o.

'e Note added in Proof. B.J. Alder has kindly informed me that

For the correct g,; the two relations, (13) and (44), will

yield the same result. For our approximate g;; we 6nd
from (40),

18
pp"= pp —— (gtRts+nsRss)s,

tr (1-P)s

where we continue to label the compressibility pressure
(39) by p. The generalization of the above results to
an ns-component mixture of hard. spheres is immediate.
The generalization of Eqs. (39), (45), and (40) are

XL2R~t+R'Rt(Z rttRt')3 (1 $) s) (46)

m

&P'=Op EZ—&tR&1'(1—k)
' k-Z &tRt', (4&)

l~1

g;; (R;;)= ttR;g;;(Rt)+R, g;; (R;)g/2R;;, (48)

g' (R)=((1—k)+-' (r, ~~r')R }(1—5)-' (49)
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both p and p" are in very good agreement (with p slightly above
and p' slightly below) with Monte-Carlo computations carried out
by him and his co-workers for several values of Ee/Ei, oe/p|, and
a large range of g.
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Simplified Approach to the Ground-State Energy of an Imperfect Bose Gas.
II. Charged Bose Gas at High Density
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Foldy, and later Girardeau, calculated the ground-state energy of a charged Bose gas at high density.
We rederive the common erst term obtained by these authors by using a nonperturbation method developed
previously. Our aims are: (i) to establish the validity of this common result, which has not been proved;
(ii) to establish the validity and usefulness of our nonperturbation method. We also show that our method.
will give the correct functional dependence of the ground-state energy on the density at low density, although
the exact coefBcient must await a numerical computation.

I. INTRODUCTION

A BOUT two years ago Foldy' suggested investigat-
ing the charged Bose gas as a possible model for

superconductivity and superQuidity. He derived for-
*Now at Heifer Graduate School of Science, Yeshiva University,

New York, New York.' L L. Foldy, Phys. Rev. 124 649 (1961) (hereafter rderred to
as F). See also Errata, ibid 12, 2208 (1962)..

mulas for the ground-state energy and elementary
excltatloIl spectruIQ of the systenl at high density
(weak coupling constant) by applying Ilogolyubov's
well-known method. 2 Foldy derived the 6rst two terms'¹

¹ Bogolyubov, J. Phys. (U.S.S.R.) 11, 23 (194'l). See
also The jdany Body Problem, edited by C. DeWitt (John Wiley
8z Sons, Inc., New York, 1959), p. 343.


