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Polarons in an Electric Field
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Eationul BNreum of Standards, washington, D. C.
(Received '1 August 1963)

Wave functions for a polaron in a uniform external electric field F/ pare calculated in the weak coupling
approximation to 6rst order in the electron-phonon interaction at zero temperature. The electric field is
treated exactly. It is shown that the wave function is not an analytic function of the applied Md in the
neighborhood of F=0, but can be expanded in an asymptotic power series in Ii valid near F=0.The distor-
tion, due to Ii, of the distribution of polarization potential around the electron is calculated in the weak-
field limit. It is shown that this distortion eRect in typical crystals is small for reasonable values of the applied
6eld.

INTRODUCTION

'HE problem of the motion of electrons in the
conduction band of a polar crystal has attracted

considerable theoretical attention in recent years. ' '
Generally, the Hamiltonian of I"rohlich is used to study
the wave functions and energy eigenvalues of low-lying
states of the crystal-electron system. ' One 6nds for
the lowest lying states that the effect of the electron-
phonon coupling is to change the moving free electron
into a more complicated kind of excitation corre-
sponding to a moving electron which carries along
with it a distortion of the crystal lattice induced by
the Coulomb Geld of the electron. This excitation is
called a "polaron. " The important point is that the
excitation moves freely through the crystal without
change of momentum provided that: (1) The polaron
momentum is too small for a phonon to be emitted by
the polaron with conservation of energy and momen-
tum, and (2) there do not exist free phonons initially,
which could be absorbed or scattered.

It is expected that at low but nonzero temperature
and low-polaron momentum the polaron wave function
computed at zero temperature should serve well to
describe the polaron between scattering events. By
calculating the probability of the various processes
leading to momentum change of the polaron, one can
attempt to calculate, for example, the mobility of
electrons in a polar crystal' in an applied electric 6eld.

In previous calculations, however, the applied
electric 6eld was assumed only to accelerate the polaron;
no attempt was made to assess the sects of the electric
Geld on the structure of the polaron wave function.
The purpose of the present paper is to calculate, by
perturbation theory, the polaron wave function in the
presence of a uniform external electric GeM.

In order to introduce the unperturbed states for our
problem, we consider the Schrodinger equation de-

'I'olurons und Excitons, edited by C. G. Kuper and G. D.
WhitQeld (Oliver and Boyd, I td. , Edinburgh, 1963}.

~ R. P. Feynman, P. %'. Hellwarth, C. K. Iddings, and P. G.
Platzman, Phys. Rev. 127, 1004 (1962).

'T. D. Schultz, Phys. Rev. 116, 526 (1959}.' T. D. Lee, F.E.Low, and D. Pines, Phys. Rev. 90, 29'7 (1953).
6 F. E. Low and D. Pines, Phys. Rev. 98, 414 (1955}.

scribing an electron in a uniform time-independent
electric field,

[(P/2~) —Fs)lp= ik(df/»),

where m is the electron mass, p is the electron momen-
tum operator, —ik&, Ii is the force on the electron
due to the external Geld, taken to lie in the s direction,
and s is the s component of the displacement of the
electron.

In one dimension, a set of solutions to (1) is given by

imp„(s, t) =exp[—ih(6m5) '{(kp,+Pt)' —kp, ')j
Xexp[i(kii, +R)s$, (2)

where (rr= F/h.
The solutions (2) are convenient because of the

properties

iP*r„(s, t)iPg„, (s,t)ds =3 (tp, kii,), —

pys, .(s,t) = (&kp.+Ft)gs, .(z,t).

We can thus regard the functions ipi,„as a natural
generalization of the plane waves states exp[i(kp, s
—Akp, 't/2m)J, which are the solutions of (1) when
F=0. It is useful to think of its„as an eigenfunction
of the momentum with instantaneous momentum
eigenvalue p(t) given, in our one-dimensional problem,
by p(t) =ok„yFt.

When no external electric 6eld is present, the starting
point for a perturbation calculation of the polaron
wave function' is the product wave function

cits r
~
0)

which describes a freely propagating electron and the
clystal ln its gl'ound state. The crystal grouI1d state
~0), is defined by P& bitbi~0)=0, where bit creates a
longitudinal optical phonon of wave vector L We
ignore all other modes of excitation of the crystal.

Because of the degeneracy of the unperturbed
states which occurs when kp) 1/rp, where

re= (t'r/2m'))'"

' H. Frohlich, Adv. Phys. 3, 325 (1954).
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and Aco is the energy of an optical phonon, perturbation
theory starting with the state (3), breaks down when
ko& 1/ro This corresponds physically to the possibility
of emission of a phonon by the moving electron, so
that the state (3) is far difFerent from a stationary
state of the perturbed system.

In the presen, ce of an electric field, we may hope to
proceed by perturbation theory from a wave function
analogous to (3); specifically, we take as unperturbed
wave functions

units of 1/ro, x is the electron displacement in units of
ro, and X is a labeling parameter giving the order of
smallness of the term in which it appears. We assume
that the crystal is so large that the electron can assume
continuous values of momentum.

We take solutions of (7) with X=O as our set of
unperturbed states, which can therefore be defined as

lko+Pk~, {~ }&=L{i~']"'ll(b")"'Ik„o&. (10)

0) exp[i(k r ppp 2t/2') ]p (s t)
~
0) (4) Th«»thonormahty relati&» is

where r and ko are the electron displacement and initial
wave vector, respectively, with respective components
z and ko, in the direction of the force, and ko& ——ko—ko, .
By analogy with the 6eld-free case we might expect
that the simple perturbation theory will fail for those
values of t such that

where
P(t) &&&t/ro,

y(t) =i'tko+Ptm/s. (6)

FORMULATION OF PERTURBATION THEORY

Our model of an electron inside a polar crystal and
acted upon by a uniform external electric field is
de6ned by the Schrodinger equation

(HD Fs+hH&) qr&„—ih(&t q „,/&&t),
——

"2

We expect that, if initially the total wave number of
the system is suKciently small compared to 1/ro and
no free phonons are present, the time-dependent wave
function obtained by perturbation theory on

~
k0,0) will

closely approximate the true wave function of the
system until such time as (5) begins to hold.

In the next section we show how perturbation theory
analogous to the usual Rayleigh-Schrodinger pertur-
bation theory for the time-independent Schrodinger
equation can be applied to the time-dependent
Schrodinger equation when the unperturbed states are
not stationary states but are of the form (4).

&o U exp G(kQ„$)dp ~k0, 0&, (12)

where G(koi, &) is a o-number function and

UtU=1, [U,8/Bt]=0

so that U is a time-independent unitary operator.
Inserting (12) into (7) and performing the time differ-
entiation we obtain

{(Ho+AH&) U+F[U,s]}( kp, 0) = G(koi, ko +I)

&&t'(bo,+R)'+5't'toi2
Ui k„O&. (13)

2m

We assume that for o.&&1 and for times in the interval
of interest we can expand U and G in powers of n'",
or equivalently, in powers of X. Thus we write

G(ko„ko,+rt) =G&'&+KG&'&+X'G&'&+ . (14)

U=1+XS+X'(AS'+o)+ . (15)

(k,{«}~
1,{«})=b(k—1)bf.&,&, &.i&, (11)

where the quantity bl„&),( i) equals one or zero de-
pending upon whether the set of occupation numbers
{e&,}is or is not identical to the set {ei}.

Ke assume that for the time interval of interest we
can take

where"

Ho +A(d Q bitb&——, —
2ns

t4sn 't' 1
XHi ——&&tM~ Q -(e "*bit+e"*bi),

i l

1(1 1 e'
0!=

2&&t&04„e ro

(g) From the fact that U is unitary, the operators S and o

must obey

St=—5, 0.t = —o-. (16)

ft'[(ko,+Ft)'+It, im]
Ho[ko 0)= G + [ko,0), (17)

{[Ho—», S]+H,}I k„0)= G& &

I k0,0&, (18)

(9)
Inserting (14) and (15) into (13) we obtain to order X':

g= «0 ', I =volume of crystal, 1 is a wave vector in {H,(-',S2+o)+H,S+.PPS2y~ s]}~k, 0)

7 The dielectric constants e and e are de6ned in Ref. 6.
8 It is to be understood that in all summations the term corre-

sponding to zero-wave number is omitted.

={(~S'+o)Ho+G"'S+G&'&}
~
k0,0). (19)

To obtain the lowest order perturbation correction
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to the wave function ~ko,0) we must solve (18) for S where for P)0, P(t) &A/rp,
and G().

To solve (18) we try Ii(p, e)

S=p Si, Si=e "*f)*(p)bit—fi(p)e"*biz (20)

where fi(P) is to be determined by (18).We anticipate
that it will be possible to write I2(p, u)

42rng 1/2 p'/'- e" COSe'

8 ) l, u'1/2 2)
(28a)

where '
fi(p) =»(u(P))+ig)(e(P)) (21)

42m) '/2 p'/' - &" Sine'

8) l pu2)
w(p)=(it—

AQ, p.l A'P
+

2tgf 0

(22) and for P&0, P(t) &A/ro

I,(p,e)
and h~ and g~ are real valued functions. To show this,
we insert (20) into (18) and use the general commutator
identity

[s,A (p) 5= iA(8/Bp, )A (p) I2(p, u)

/42m "' (—p)'" e" COSu'

'h 8 l p
u"/' )h2

(28b)

to obtain -~- sinN'
= AGD

0 u"~2p(t) ~ I AP otfi(p(t))+ fi(p(t))+2F
%Sf0 2tÃf 0 o/Pz

42rnh) "' 1
f)(e) —Ao)

8 ) lu"'
-+3!!]

2po (2oo)
which can be written

42m) "' Aoo

~e / h, (u)-AF g, (u) =-
ap, s ) l

—
Z

3

+5!! — + +1 (1)e "" (29)
2pu

(24)
8

au'/'gi(u)+AF hi(u) =0
8 z

The expansion (29) can also be derived directly from
(18), treating the external force in (18) as a pertur-
bation.

In (27) and (29), 1(1) defines a set of integration
constants. To determine 1'(1) uniquely, we require that
S be so chosen that the unperturbed state ~kp, 0) is
transformed into the perturbed state (1+AS) ~ko, 0)
when the electron-phonon interaction is slowly (but
not too slowly) turned on. The reader is referred to
Appendix A, where it is shown that this requirement
implies t (1)=0.

In order to understand the physical meaning of
setting |(1)=0 we observe that if S is a solution of
(18) obeying (16) and if LS', Hp —Fzj=0 with S't
= —S', then S+S' is a solution of (16) and (18) and
the state o)=S'~ko, 0) satisfies

where the upper signs are used if

to p(t) 1/—mrp+AP/2mrp2) 0.

If we change the independent variable from p, to u,
deGne

P=mr p/2A'l, F (25)

and decouple Eqs. (24), we get

d2 /42m) '/' p'
hi(e)+P'hi(u) = wAooi

du2 ( 8 ) lul/2

(26)
ah/(e)

pgi(u)

The integrals appearing in (28a,b) are the well-known

4 I i
Fresnel integrals. Of particular interest is the asymp-

p3) totic e peneion for f (o) when ~i)~w(pp))»1:
z

(Ho Fs) p=iA(l/t/)/—Bt) . (30)
Solving (26) we obtain

fi(e) —=ht(u)+ig)(u) = LI2(P,u)+iI2(P, u)]e-'t)

+f (1)e-'/2. , (27)

9 To simplify the notation we shall often use the symbol u or
zp[p (t)] to denote the quantity (Aop (Ap(t) 1/mro) —+ (A'l /2mro 7 .

Because the form of S+S' is restricted by the ansatz
of (20), the most general possible form for XS' is a
superposition of one phonon unperturbed states of the
form g)(f(1)e "'*e'&"b)t—H.c.) where )hS and the
e-number function &(1) are taken to be of order )h.

Thus the state L1+X(S+S')j~kp, 0) where S is evalu-
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ated by setting f(l) =0 in (27) before inserting (27)
into (20), is, to order l),, the state that arises adiabati-
cally from the initial state [1+'hS']

~
kp, 0) upon turning

on the electron-phonon interaction. The requirement
|'(1)=0 is therefore equivalent to requiring that the
initial state be simply ~kp, 0) with no admixture of
one-phonon unperturbed states.

Setting 1(1)=0 for all I completes the specification
of S. Since S has no diagonal elements in the unper-
turbed states, (18) implies G(') =0.

The solution of (19), giving the second-order cor-
rection to the wave function in ) can be carried out in
a manner similar to that given above. [An outline of
this calculation appears in Appendix B.]

The solution specified by (20), (27), and (28a,b) is
not satisfactory for p(t) &ft/rp because when p(t) & ft/rp
there exist values of 1 such that N=O, and when I=0
the solution for f in Appendix A does not approximate
the solution of (23).

POLARIZATION POTENTIAL IN
WEAK-FIELD LIMIT

We wish to find an expansion of (1+)S)~kp, 0) in
the limit Ii —+ 0 with IlI, held constant. By taking the
limit this way we focus attention on the explicit Ii

dependence of the perturbed wave function as opposed
to its implicit dependence on Ii due to the change of
the instantaneous momentum, p(t).

From the fact that (29) is a divergent asymptotic
series, it is clear that F=0 is a singular point of f(tt),
hence of the perturbed wave function.

If we introduce the dimensionless unperturbed
electron momentum by

q(t) = (ro/@) p(t)

we can write (29) in the form

Aq(t)) (4He()'lp 1
fi I-—

~ I
-[1 2q(t) 1+P]-'

r, i ksi
2ZPf 0

X 1+
pe (1 2e1(1) )+P))—

( 2i Fro l, —
+3('( )+

A(p (1—2q(t) I+P)')

The dimensionless parameter characterizing the expan-
sion of (34) is the ratio of the change of potential
energy of an electron in the external Geld over a distance
of the order of the size of the polaron, to the phonon
energy. If the external electric field is as strong as 1000
V/cm and we take rp and App equal to 10 ~ cm and 0.025
eV, respectively, we find that 2Frp/Asr=8X10 '. This
means that even in quite strong applied Gelds the
distortion of the polaron wave function will be a small
eBect, at least for slow polarons.

To get some insight into how the electric Geld

1
Xg-[e-"'bee+H. c.i(1+1S) )ce, P), (31)

i l

where +e is the electronic charge, y= rH/rp and 5(r) is
the Dirac delta function of the electron displacement,
r. Expanding the delta function in plane waves and
evaluating the matrix element gives

2Puo (4n cp)
't' 1

((t, (r„))~=
~ ~

Re+ e
—'i rf,(p(t)). (36)

e &si
The expansion of f given by (34) gives an expansion of
((t)(rH)), from (36). Inserting the lowest order term
from (34) into (36) yields

Q(r ))."'=-
%' e

cosv y
(37)

v'(1 —2q(t) v+v')

which is the familiar result for the weakly coupled
polaron. ' Considering the term linear in F in (34) as
generating the first correction in Q)(rH))p due to the
external electric Geld we obtain

Aeon 2Fro 8

pr'e ))tpp i Bs

cosv y
X (38)

v'(1 —2q(t) v+u')'

where s is the component of y in the direction of the
external force. Both ((t (r~)),(p) and ((t)(rH)), (') are time-
dependent because of the time dependence of q(t). It
is most convenient to evaluate ((t (r„))p at that time at
which (t(t) =0; we denote this value by (1t. (r~))p. Then

1 e st

X ——+— (y'+4y'+8) cos8, (39)

where 8 is the angle between y and the direction of the
force.

distorts the polaron wave function, it is useful to
calculate the average polarization potential at position
r„when the electron is at the origin, denoted by
((t)(r„))~.This is given by

~~(4 ~litp
(y( „)),=—

~ ~
0, k, (1—xs)s()eksi
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At large distances from the electron (r+)rs) we Gnd

(1 1 e

(e~ e Fy' (40)

(41)

The expression given in (40) is the potential due to
the spherically symmetric distribution of polarization
charge induced by the electron. This term is the
known result in the absence of an external electric field.
Thus (41) shows that the effect of a weak Geld is to
distort the spherical polarization charge distribution
so that there is a decrease in positive charge in the
direction of acceleration of the electron.

Successively higher order terms in f Lin (34)j give
rise to terms of successively higher multipolarity in the
mean polarization at great distance from the electron.

(Fra/Puo)'«1. (44)

Thus, the usefulness of the functions q l„ in discussing
the mobility of electrons in crystals is conGned to the

I G. Hohler and A. Mnllensiefen, Z. Physik 157, 159 (1959).

DISCUSSION

We have based our calculation on perturbation
theory, considering only the lowest term in an expansion
of the wave function as a power series in n'~'. In the
absence of an external electric Geld there is reason to
believe that perturbation theory is appropriate even
for values of n l' which are not small In the limit of
zero Geld (F~ 0, Ft —& 0) the wave functions obtained
in this paper approach continuously the weak-coupling
wave functions in the absence of a field. These facts
suggest that our procedure of studying the weakly
coupled polaron in an electric field by expanding in
powers of o.'~', is a reasonable one.

The question remains as to the conditions under
which wave functions of the form py, can be used to
describe the state of the electron between scattering
events in a Boltzmann equation description of mobility
at nonzero temperature.

We shall confine ourselves to a few qualitative
remarks. First, we would expect that a necessary
condition for being able to speak of isolated scattering
events is that the mean time, ~, between collisions obey

(Fr)'/2m«h, (42)

r))1/re. (43)

If (42) and (43) are not satisGed, then there exists the
possibility of emission of real phonons between colli-
sions.

In order to satisfy (42) and (43) simultaneously we
must have

low-Geld limit (in which limit, as mentioned earlier, it
would have been permissible to have treated the
external electric Geld as a perturbation, at least for
low-average electron drift momentum).

The form of the expansion of f in (34) suggests that
as the mean drift momentum of the electron approaches
fs/rs the asymptotic expansion of given in (34) fails and
the effects of the applied field on the wave function
may become non-negligible. On the other hand, neg-
lecting terms of order X' an/ higher is probably a bad
ayproximation in this case.

I't is dificult to discuss quantitatively the question
of the effects of the external Geld on the electron
mobility. In general we expect that these effects will
be very small when Frs/Aa&«1 and the drift momentum
is much smaller than 5/rs. The change in the polaron
wave function due to the presence of the applied field

will alter the phonon-polaron scattering cross section
and also the rate of change of the average electron
momentum between collisions.

To estimate the efI'ect of a Gnite but weak electric
field on the mobility p, computed in the limit of zero
Geld, we must Grst identify the quantities which play
the role of effective masses in our treatment.

It is easy to show, using (85), that the mean current
carried by a slow polaron in the direction i is given by

j;=eP'(1)/m'"(F) (45)

Expanding f~ from (34) we obtain

where

0.738m(2Frp '

m 4 Aa)m,*(F) m*(0)
(4/)

0.246(y 2Frp '

m AM)m„*(F) m,"'(F) m*(0)

1 1 n)

m*(0) m 6)

as is well known. s

If we take the zero-6eld mobility p, to be proportional
to (m/m*(0))' as in Ref. 3, then it seems natural to
expect an additive correction to p of order n(2Frs/Are)'p
arising from the Geld induced shift of the effective
mass. But since (2Frs/Aced)' will typically not exceed
6)&10 ', this correction is completely negligible com-

where p;(t) is the component of the polaron momentum

p(/) in the s direction and

1 1 4nn) 'I'
= —-+ lim p;-'(t)

2m'" (F) 2m &'&'~ ' 5 )
(f~(p*(1))—f~(0))

&&Re+ (46)
1 l
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pared to uncertainties in both polaron mobility theories'
and experiments. "

SUMMARY

We have obtained solutions of the time-dependent
Schrodinger equation for an electron interacting with
an external electric field and the lattice vibrations of a
polar crystal. The solutions are valid in the weak
coupling limit for periods of time during which the
electron momentum is suKciently small so that the
wave function can be described by a perturbation series
in powers of n'", starting with unperturbed wave
functions given by (4). An upper bound for the time
interval during which our treatment holds is implicit
in condition p(t) &A/rp.

We And that the electric 6eld, although acting only
on the electron, distorts the distribution of positive
polarization charge surrounding the electron, inducing,
to lowest order in Frp/Api a dipole moment in the
direction opposite to the direction of the external force.
One can visualize this situation by imagining that the
positively charged polarization cloud has inertia and
tends to lag the electron, which is pulling it along.

While no convergent expansion in powers of Frp/Api
exists for the wave function, treating the external field
in perturbation theory results in a correct asymptotic
representation of the wave function when

Frp/AM«1, p(t)«A/rp.
Under these conditions, corrections to the mobility

are expected to be very small.
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APPENDIX A

To determine t (I) we shall solve (7) by assuming
that at t=0, XH~ ——0 and that at t=0, XB~ is turned
on so that it achieves its f'inal value given by (9) after
a time to which satisfies

~
p(tp) —p(0)

~
&&A/rp and pitp&)1. (A1)

For simplicity we take
'AHi t P p i(e "bit+——e"'bi) (A2)

We use the same ansatz as before for solving (7) to
first order in li, except that we replace fi(P) [see (20)]
and fi(u) by fi(p, t) and fi(u, t), respectively. The
equation obtained for fi(p(t), t), analogous to (18), is

(
p(t) 1 At' . ~fi(p(t), t)

pi — + fi(p(t), t)+iF
pro 2m 8pz

Pf (p(t), t)= —A
—'y)t —i

Transforming from the indepen. dent variable p„ to u
given by (22) we obtain

i 8fi(u, t) Bfi(u, t)
+fi(u, t) = pit—u 'I' iAu—'t'

p Bu Bt

which, for P)0, has the solution

ei$

fi(u, t) = iP't'q ie-'e" d$
ez, iy(ti) $X/2

P (u(t')) gg
d$+Apl/2

P~(n(o)) 01/2

and for P&0
QQ e

—i$

fi(u, t)= —p(—p)'"V« '" t d(
al/2—P (s (&)) ~

—P (u( &))

+A(-p)" d$ . (A5b)
1/2 al/2—P'~(p(o) )

We note that fi(u, 0) =0, in accordance with (A3).
From (A1) we have Ftp&(A/rp, hence, (Frppitp)/Api&(1
but since pitp&)1, we conclude Frp/App«1 from which it
follows that ~P~u(P(tp))))1 and ~P(u(P(0)))&1 for all L
We can therefore replace the integrals in (A5) by their
asymptotic forms for large ~P~u. In this way we hand

that the first term in the bracket is of order ( ~ P ~
u) 't'tp

while the second term is of order (~P~u') 'I'A. But
since u is of order (Api)' the second term is negligible
(of order 1/pit p) compared to the first.

Thus, by comparison of (28a,b) with (A5a, b) we
conclude that (A4) is satisfmd only when for all I, f(1)=0
to the order of our calculation.

where Aco 47l cX APPENDIX B
(A2)

In addition, if Xi,p(t) is the solution of (7) with inter-
action (A2) we require the initial condition

x„(0)= ik„o) (A3)
be satisfied. We assume kp«A/rp.

Since we wish to choose 5 in (15) in such a way that
the perturbed state results from adiabatically turning
on the electron-phonon interaction, we require that S
(and therefore f) be so chosen that

xi„(tp) —(1+AS) ikp)0) =O(P', X/p~tp) . (A4)
"D. C. Burnham, F. C. Brown, and R. S. Knox, Phys. Rev.

119, 1560 (1960).

In this section we solve (19) for G"i and derive the
differential equation whose solution specifies 0. We
have from (19)

(H p( ',S'+o)+HiS+F[ ',5'-+o s]}
~
kp,0)-

=((-',5'+o)Hp+G"i} ~kp, 0). (81)
Using the relations

-', HpS' —-', S'Hp+F [-',S',s]=-',[Hp —Fs, 5']
,'{5[Hp Fs, S]+[H-p Fs, S—]S}=-,'[Hi,S]—HiS—,

we obtain from (81)

[Hp—Fey o]
~
kp, 0)= (—-', [Hi,S]+G"&}

~
kp, o). (82)
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If we make the ansatz and if

G&'~ =-,'(O,k,
~
[H,,S]

~
k, ,0)

t
4m " (ft(p(t))

=Re( Ace Q/tE

(B3)o=g e 't'+ ~'*Xt, *(p)b tbtt —H.c.
l,m

then o. satisfies (32) if

tuoL2 —2ti(t) ~r (I+m)+ (l+m)']Xt, (p(t))
8

X,.(p(t))
8 g

This verifies that the ansatz (33) is correct.
In solving (84) we must choose the integration

constant so that, in analogy to (A4), the adiabatic
condition

X)
Xq, (t,)—[1+AS+8(-,'S'+ )](k,,o)=0(l',

~&0&

Ace 4rrn)'"
I Lf-(p(t) —&I)—f-(p(t))]8)

+ (ft(p(t) —@m)—f (p(t))] (&4)
4m is satisfied.
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Experimental measurements of the fundamental optical absorption edge show that with increased doping,
n-type GaAs exhibits a shift of the optical absorption edge to higher energy at 77'K, while p-type GaAs
at 300'K shows a shift to lower energy. For n-type GaAs at 300'K and p-type GaAs at 77'K, a combina-
tion of the two eAects is observed. Fluorescence emission for the relatively low doped e-type GaAs occurs
at nearly the energy of the band gap, while the highest doped materials emit at higher energies. The p-type
Quorescence occurs through the acceptor state at 77'K, but not at 300'K. A deep level, presumably an
acceptor level about 0.08 eV above the valence band, was found for Ge-doped GaAs.

I. INTRODUCTION

HK discovery of the eflicient emission of infrared
light by forward biased GaAs diodes' and the

subsequent construction of GaAs lasers' has created
considerable interest in the optical properties of this
semiconductor. In order to determine some of the pos-
sible e8ects of material parameters on the performance
of these devices, and because of general interest in the
properties themselves, the following investigation of
transmission and Quorescence of doped GaAs has been
carried out.

First, the absorption edge of GaAs is measured for
crystals with various types and levels of doping. The
shifts in the absorption edge are interpreted as either
a "Burstein" type shift, ' an eR'ect of the impurities

' R. J. Keyes and T. M. Quist, Proc. I.R.E. 50, 1822 (1962).
~ R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and

R. O. Carlsen, Phys. Rev. Letters 9, 366 (1962); M. I. Nathan,
W. P. Dumke, G. Burns, F. H. Dill, Jr., and G. J. Lasher, Appl.
Phys. Letters 1, 62 (1962); T. M. Quist, R. H. Rediker, R. J.
Keyes, W. E. Krag, B. Lax, A. L. McWhorter, and H. J. Zeiger,
Appl. Phys. Letters 1, 91 (1962).' E. Burstein, Phys. Rev. 93, 632 (1954); see also T. S. Moss,
Proc. Phys. Soc. (London) B67, 775 (1954).

themselves, 4' or a combination of the two. It is at-
tempted to fit the first type of shift to the expression
of Kaiser and Fan' and some di6iculties are noted.
The Quorescence results are then presented and dis-
cussed in relation to absorption data.

II. EXPERIMENTAL TECHNIQUE

The first figure shows the experimental arrange-
ment for both the transmission and fluorescence ex-
periments. A Bausch and Lomb grating monochromator
with a grating blazed for 2 p 6rst order was used in the
second order in which case it has a dispersion of 66
A/mm. A type 7102 photomultiplier was used as a
detector in conjunction with a Perkin-Elmer model 107
chopper ampli6er.

Filters for the transmission measurements were neces-
sary to minimize scattered light. These were either
the RG-1 or RG-10 filter" (red and infrared trans-

4 I. Kudman and T. Seidel, J. Appl. Phys. 33, 771 (1962).
~P. Aigrain and J des Cloiseaux, Compt. Rend. 241, 859

(1955).
6 W. Kaiser and H. Y. Fan, Phys. Rev. 98, 966 (1955).
~ Fish-Schurman Corporation, 70 Portman Road, New Rochelle,

N. Y.


