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The problem of calculating Curie (or Noel) temperatures for layer structures is discussed by considering
a simple example —that of a simple-cubic lattice of spins in which the (Heisenberg) exchange interactions
J (or —j) within a set of parallel planes is allowed to differ from the interactions X (or —E) between them
Ferromagnetism and antiferromagnetism are both considered, and particular attention is paid to the cases
where E/J«1. Most of the well-tried methods for obtaining transition temperatures are discussed, and it is
shown that the molecular-Geld theory, the Opechowski high-temperature expansion method, the constant-
coupling treatment, and the cluster methods of Oguchi and of Bethe-Peierls-Weiss are all unable to give
results which are even qualitatively satisfactory for the weakly interacting layer problem, if we accept the
spin-wave conditions for the existence or nonexistence of long-range order at low temperatures. The break-
down of these methods is shown to be particularly serious in the antiferromagnetic case. Finally, the method
of Green functions is used and is shown to give acceptable approximations for both ferromagnetism and
antiferromagnetism.

1. INTRODUCTION

'HE problem of locating magnetic transition tem-
peratures for Heisenberg ferromagnets and anti-

ferromagnets is one which has received considerable
attention from theoretical physicists ever since the
model was first introduced by Heisenberg' in 1928. In
spite of the large number of approximate treatments
which have been given, only very recently has it been
found possible to make a reliable estimate of the Curie
temperature in even the simplest of three-dimensional
lattice structures. We refer, of course, to recent work on
the isotropic cubic ferromagnets with a single exchange
parameter J (see, for example, Rushbrooke and Wood'
and Domb and Sykes') employing the exact series high-
temperature expansion method introduced by Opechow-
ski, 4 and more recently pursued by Brown and
Luttinger. '

Despite this very considerable success, it is well to
bear in mind some of the limitations of the Opechowski
method as a tool for the evaluation of transition tem-
peratures. Firstly, the price to be paid for obtaining
these "accurate" Curie temperatures is the very large
amount of arithmetical computation which is required
to extend the series expansions to a sufhcient number of
terms. It seems unlikely that anyone would be willing
to carry out such a detailed calculation for each experi-
mentally important case, or even whether such a cal-
culation would be feasible using a more realistic Hamil-
tonian with anisotropy and possibly more than one ex-
change parameter. Secondly, the method is far less
suited for the calculation of antiferromagnetic transi-
tion temperatures (see, for example, Brown and Lut-
tinger'), and this is a very serious restriction since the
localized-spin model of Heisenberg is, in general, a far

more realistic model for antiferromagnets than for
ferromagnets. Thirdly, the Opechowski method seems
to be particularly unsuited for dealing with two-dimen-
sional lattice structures for which it predicts the onset
of long-range order at nonzero temperatures although
the spin-wave theory of Blochs (see also Van Kranen-
donk and Van Vleckr) makes it clear that this should
not be the case. Although the problem of two-dimen-
sional lattices might be considered to be of relatively
minor importance, we shall show that it is this particular
weakness which makes the method unsuited for prob-
lems concerning the weakly interacting layer structures
with which the present paper is mainly concerned.

In view of these limitations it is encouraging to find
that the well-tried cluster treatments of Bethe-Peierls-
Weiss" (the BPW approximation) and of Kasteleijn
and Van Kranendonk "(the constant-coupling method),
in spite of their relative simplicity, are both surprisingly
good approximations. For the isotropic cubic ferro-
magnets they give Curie temperatures which are in
general too high, but only by a little over 10% Both
of these methods may successfully be applied to the
antiferromagnetic case, though they may be difFicult
to adapt for use with the more complicated types of
Hamiltonian and of antiferromagnetic-spin patterns.

Like the Opechowski method, however, the cluster
treatments are essentially high-temperature approxima-
tions, and they do tend to exhibit unphysical behaviour
at low temperatures —the appearance of an anti-Curie
point being a typical example. For the purpose of
evaluating transition temperatures and magnetic prop-
erties in the critical region this might not, perhaps,
appear to be a serious restriction. We shall show, how-
ever, that if we accept the spin-wave criterion for the
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existence of long-range order at low temperatures, there
are cases of some physical importance for which all the
cluster tres, tments (and also the Opechowski method)
break down completely, and are unable to give even a
qualitatively satisfactory estimate for the transition
temperature. Such instances can occur both for ferro-
magnetism and for antiferromagnetism but they tend
to be more serious in the latter case. The breakdowns
occur in cooperative problems for which the lattice
consists of weakly interacting layers or chains of spins,
and for antiferromagnetism they may occur even when
the "weak" interaction is considerable. Experimentally,
the most important examples are possibly those of the
face-centered cubic antiferromagnetic orders for the
case of dominantly nearest-neighbor interactions factual
examples are MnS~, MnTe2, PMnS, K~IrClq, and.

(NH4)2IrC16j, but we may also cite the case of the
hexagonal layer crystals FeCl~, CoCl~, and NiCl2.

In the present paper we investigate what is possibly
the simplest structure and Hamiltonian for which these
difficulties can adequately be demonstrated. Ke con-
sider a simple-cubic (sc) lattice with isotropic nearest-
neighbor interactions, but we allow the exchange J
(or —J) within a set of parallel planes to differ from the
exchange E (or E) betwe—en adjacent planes. Thus,
for E&&J, the lattice is one of weakly interacting
layers, and for E»J one of weakly interacting chains.
In this work. we concentrate on the former and show

that there are cases for which none of the above methods
is able to give a reasonable estimate for the transition
temperature. After demonstrating the breakdown
of these methods, v;e attack the same problem by the
recently developed method using Green functions with
the simple random-phase approximation. We show that
this method, in contrast with the cluster techniques, is
able to give a reasonable approximation for all values of
E/J.

The breakdown of the other methods would seem to
stem from their inability to point to the dimensionality

as the criterion for the existence or nonexistence of
long-range order at nonzero temperatures. The Green
function method, like the spin-wave approximation, is
able to do this, and has the additional advantage of
being a valid approximation at all temperatures.

After the present introduction, we set out the detailed
problem in Sec. 2, where we also discuss the molecular-

field and high-temperature expansion theories. Section 3
deals with the BPW approximation, and Sec. 4 with

the constant-coupling treatment. Finally, in Sec. 5, we

discuss the method of Green functions.

2. THE MOLECULAR-FIELD THEORY

In this and each of the following sections, we investi-

gate the cooperative problem of a sc lattice of interact-

ing spins. Consider such a lattice with cubic axes x, y, s.
Each spin has six nearest neighbors of which four are
ocated in an xy plane and two along a s axis. We con-

sider the case of nearest neighbor only isotropic Heisen-
berg interactions, and we associate an exchange
parameter J with the interactions between the nearest
neighbors in an xy plane, but allow for an exchange
parameter E, possibly diferent from J, to exist between
the s-axis neighbors. We take, therefore, the Hamil-
tonian

X= —P uS,"S,—P —2ES,"S, (2.1)

for the ferromagnetic case, and the Hamiltonian

X= +2JS,"S;++2ES; S; (2.2)

for the antiferromagnetic case, where P,„ is the sum
over all nearest-neighbor pairs S, and S; with connec-
tions in the x and y directions, and where P, is the sum
over all nearest neighbors with connections in the s
direction. We shall refer to this structure as a layer
structure, reserving the term simple-cubic lattice for
the case v, hen E=J. In considering the problem for a
range of values of y=E/J we are able to include as
special cases the plane quadratic layer (y=0) and the
sc lattice (y= 1). Also, for a number of the approxima-
tions to be used, the results for the case y = 2 are either
exactly, or very nearly, equivalent to those for the body-
centered cubic (bcc) lattice.

The simplest of all the approximations which have
been used to treat the magnetic cooperative problem is
the molecular-field method, " and we may very easily
apply it to the present problem. I.et us erst consider the
ferromagnetic problem. We replace the Hamiltonian
(2.1) by —', P,X; where

X;=—8JS,"(S)—4ES,"(S), (2.3)

where (S) is the time-average value of the spin on each
lattice site. We thus replace each neighbor spin 8;by its
time average value and the spin S;, therefore, behaves
as if it were in an "effective" magnetic Geld H, gg given

by
H.(,= (gJy4E)(S)/gP, (2.4)

(S,)=(S)=SB,[gPSH.«/ur], (2.5)

where 5 is the spin quantum number and 8, is the
Brillouin function for spin S. Near the Curie tempera-
ture T„(S)—+0 and hence H, gg~0. In this limit
Eq. (2.5) may be written

gPS(5+1)H,« S(S+1)(8J+4E)(S)
(S) = (2.6)

3kT 3kT

"J.H, Van Vleck, J. Chem. Phys. 9, 85 (1941).

where g is the Lande factor and P the Bohr magneton.
The time-average value of a spin S, in a field H, ig at a

temperature T is well known from the theory of para-
magnetism and is



and hence
kT, =S(S+1)(8J+4K)/3. (2.7)

For the antiferromagnetic case we proceed in an
exactly similar manner, but this time the spins are
separated into two sublattices with a spin S; having all
its nearest neighbors S; on the opposite sublattice such
that (S,)=(—S,)=(—S). Using the Hamiltonian (2.2)
we find

H.rr= (8—J+4K)(s)/gP, (2 8)

and in thelimit of T going to the Neel point T we have

gPS(S+1)H,rr —S(S+1)(8J+4K)(S)
(s') =(-s)=

3kT3kT
(2.9)

and hence
kT =S(S+1)(8J+4K)/3, (2.10)

which is exactly the result obtained for kT, from
Hamiltonian (2.1).

In the present paper we shall concern ourselves
primarily with the spin -,'case; the above results reduc-
ing, for this case, to

kT,/J=kT„/J= 2+K/J=2+y. (2.11)

As previously noted, the values y =0 and y= 1 have a
particular significance representing, respectively, the
set of quadratic layers and the sc lattice. We may also
easily verify that, in the molecular-6eld approximation,
the result for y=2 is exactly that which the method
would predict for the bcc lattice. In other words, the
present method is not able to distinguish between the
y=2 case and the bcc lattice.

The weakness of the molecular-field method for calcu-
lating Curie temperatures may now be observed by
comparing the y=1 and y=2 values with those ob-
tained by Rushbrooke and Wood' for the sc and bcc
spin —', eases. We 6nd that the molecular-6eld results are
respectively factors of I.76 and 1.54 too high, A funda-
mental weakness is also indicated by the p= 0 case for
which spin-wave methods indicate that the correct
values for T, and T are almost certainly zero. It is
evident that the molecular-6eld results are poor, and
become progressively poorer as y decreases until we get
a complete breakdown in the limit of isolated layers.

It is dear that the problem of calculating transition
temperatures for lattices of weakly interacting layers
can only adequately be treated by a method which is
at least able to predict the instability of long-range
order in plane-layer lattices. This requirement im-
mediately rules out the Opechowski method which
would seem to indicate, ' ' for the layer lattices, a normal
series convergence behaviour leading to 6nite transition
temperatures. A value kT,/J=: 1.0 is reported' for the
quadratic-layer lattice. Because of this unsatisfactory
behaviour in the y=0 limit, and bearing in mind the
unsuitability of the method for locating antiferro-
magnetic transition temperatures in genexal, we con-

elude that the method is not suited for attacking the
layer problem and we have not pursued it for the present
problem.

3. THE BETHE-PEIERLS-WEISS METHOD

One well-tried approach to the magnetic cooperative
problems which does correctly predict no long-range
order for the hexagonal and the quadratic-layer lattices
is the cluster method of Bethe-Peierls-Weiss. The
method was applied to ferromagnetism by Weiss, '
and to antiferromagnetism by I.i', and has since been
used by many authors. Although, as Anderson has
pointed out, " the BPW criterion for the existence of
long-range order is not, in any obvious way, connected
with dimensionality (but only with certain topological
conditions concerning near neighbors), the fact that it
does give the correct results for the above-mentioned
layer structures tempts us to consider it for our case.

In the BPW method one considers a cluster of spins
in the effective 6eld of the rest of the lattice. The
cluster is usually taken to include a centre spin and all
of its nearest neighbors. The exchange interactions
within the cluster are treated in a correct quantum-
mechanical manner, but the interactions of the cluster
with the rest of the lattice are replaced by internal
fields.

In the simple one-exchange parameter problems only
one internal 6eld is required and hence only one condi-
tion concerning it is needed to determine the problem.
This condition, for ferromagnetism, is usually taken to
be that the average component of spin on a centre site
should be equal to that on a 6rst-shell site, both of
which can be written down in terms of the partition
function for the cluster. This condition enables T, to
be located without further assumption concerning the
internal 6eld.

The layer problem of See. 2 can, in principle, be
treated in an exactly similar way. Because of the two
different exchange parameters it is necessary to intro-
duce two different internal fields. One can, however,
choose two conditions to determine the problem by
equating the average moment of a center spin, in tuxn,
to that of an xy-plane neighbor spin, and to that of a
s-axis neighbor spin. The task of calculating the
partition-function and inserting the consistency condi-
tions, however, proves to be considerably more difIicult
than for the single-parameter case. Because of this, we
have simpli6ed the problem by reducing the size of the
cluster to exclude the s-axis neighbors. This obviously
necessitates a modi6cation of one of the consistency
conditions. We proceed as follows, treating 6rstly
ferromagnetism and considering only the case of spin
half and of zero external magnetic 6eld.

Taking a cluster of splns consisting of a center spin
so and its four nearest-neighbor xy spins, we treat the
interactions within the cluster in a proper quantum-

"P.W. Anderson, Phys. Rev. 80, 922 (1950).



(3.12)

To determine the problem, we need only specify the
ratio He//Ht. Using the internal-Geld concept, we as-
sume that we may write equations of the form

X,=—2Jss St—ss'He —St'Ht, (3.1)

where S~ is the total spin of the four 6rst-shell neigh-
bors, and where He and Ht (we write H in place of
gPH for brevity) are the s components of the internal
fields acting, respectively, upon the centre and 6rst-
shell spins. The problem of diagonalizing a Hamiltonian
of the form (3.1) has been discussed, for the case of
spin s', by Weiss', who gives the eigenvalues E(St&S,S*),
where 8 is the total spin of the cluster, as a power series
in Jr= Hi —Ho of the form

Ht =C(3J+2E), (3.13)

where C is a temperature-dependent proportionality
constant. %e have, therefore,

X=2E/3J =2y/3. (3.14)

A detailed examination of Eq. (3.9) shows that, for a
general value of 7, it possesses either two real solutions
(representing the Curie point and the well-known anti-
Curie point) or no real solutions. In Fig. 1 we show a
plot of Curie temperature versus y which has been
obtained by solving the Eq. (3.9) by machine. We
observe that the HPW method indicates a sudden dis-
appearance of ordered states for values of y less than a
limiting value which has been computed to be y =0.154.
At this point of minimum inter-plane interaction for
the onset of long-range order, we 6nd a value of
kT,/J'=0. 623.

For the larger values of y we 6nd that the anti-Curie
temperature is many times smaller than T, so that, for
these cases, unphysical behaviour does not occur until
the temperature is well below T.. As y decreases, how-
ever, T, decreases and the anti-Curie temperature
increases, so that the unphysical behaviour sets in at
temperatures nearer and nearer to T,. Finally, when
y=0.154, the two critical temperatures coincide, and
for still smaller values of the interplane interactions, the
unphysical behaviour sets in. at temperatures above
T, in such a way that the method incorrectly predicts
the absence of long-range order in the three-dimensional
lattice. For y=1, and for 7=2, the results obtained
from the present method are very close to those ob-
tained by gneiss' for the sc and the bcc lattices taking
clusters of seven and nine spins, respectively. The values

E(St,S,+-'„m) =E~—taHs+ g e +H", (3.2)

where
(3.3)&+=—JSt, & =J(St+1),

(3 4)ei+= —m 1%-
2St+1

and

(3 5)1—
4J(2St+1) (2St+1)'-

The partition function for the cluster may be written in

the form

I'(Hs, Ht, T)= P te(St) Q Q expL —E(St,S,m)/kT],
81 S

(3.6)

where St can take the values 0, 1, 2; where Q~ is over
the values S=St&-'„and where M(0)=2, &o(1)=3,
a&(2) =1. The average values of spin on a centre and on

a 6rst-shell site are, respectively,

(3.'l)rn, =gPkT 1n(E),
a&o

mechanical manner, but replace the interactions be- and where we have introduced the parameter
tween the cluster and the rest of the lattice by effective
internal fields. For the Hamiltonian of the cluster we X=Hs/(Ht —Hp) .
write

8
rn, = ,'gPkT —ln(E), -

BIIj
(3.8)

and, requiring these to be equal as the condition for
ferromagnetism, we look for a solution in the limit of the
effective Gelds approaching zero (T~ T.). Detailed
calculation gives

P (S,) g g (~s++a,+/kT) expL —EgkT)=0, (3.9)
SI m

where
(3.10)

0
2

FxG. j.. The Curie tem-
perature for spin ~& calcu-
lated as a function of y
(=E/J) by using the mo-
lecular field, Oguchi, and
Bethe-Peierls-Weiss meth-
ods. The ringed points shower

the Rushbrooke and Wood~
values for the sc and bcc
cases.



CURI E TEM PE RATURES FOR LA YER STRU'+TURF S

TAnLz I. Values for kT,/J.

bcc

limit of the internal field going to zero (T~ T„),
we again obtain an equation of the form (3.9), but
where now

Rushbrooke and Wood'
Weissb
This section

a See Ref. 2.
b See Ref. 8.

j..7
1.85
1.82

2.60
2.91
2.89

(3.19)

at+= —fmpt+(X+)) —(xe)fit} —(et+)', (3.20)

and where this time the parameter X is dcGncd by

X=He /(HP+He )=HeP/(HtP+HeP) . (3.21)
(see table 1) are also within 10% of the Rushbrooke
and Rood' results.

If we used a Gve-spin cluster to investigate the transi-
tion temperature for the bcc lattice, wc should proceed
exactly as in Eqs. (3.1) to (3.12), but we should relate
the parameter ) to the exchange J by putting Ho pro-
portional to 4J, and H1 proportional to 7J. This gives a
value }= -'„and from (3.14) we see that this is just the
value which is required for the y=2 case in the layer
problem. Thus, the five-spin cluster method is not able
to distinguish the y = 2 case from the bcc problem. It is
also very easy to show that, for the larger values of

y in the layer problem, the present method gives results
which approach the molecular-Geld ones as y increases.

For the antiferromagnetic case we may proceed in a
very similar manner using the same cluster and the
same notation as for the ferromagnetic problem, but
reversing the sign of the exchange interactions. Once
again we obtain a partition function in the form (3.6),
and the equations (3.1) to (3.5) are still valid but with
the opposite sign for J. %c now distinguish two diBer-
ent types of lattice site, the "spin up" or e sites, and
the "spin down" or P sites. For a cluster with a center
n site and firs-shell P sites, we write a partition-
funct1OQ

P p P(He, HtP, T——), (3.15)

and for a cluster with centre P and first-shell a sites, we
Wl 1tC

Pp
=P(HeP, Hi~, T) . (3.16)

The average magnetic moments on the n and P centre
sites may be expressed in terms of these partition func-
tions in the form

Using Kq. (3.13), we have

X=2E/(3J+4E), y =3K/(2 —4X). (3.22)

Again we fin that the consistency equation (3.9) has
either two real solutions or none. The critical values of
y and Neel temperature below which no long-range
order occurs are this time found to be y=0.765 and
kT„/7=1.439. The situation concerning the Neel and
anti-Weel temperatures is similar to that for the Curie
and anti-Curie temperatures in the ferromagnetic case,
but the detailed solution of (3.9) for T„(shown in
Fig. 2) shows clearly that the 3PW method is consider-
ably less suited for dealing with the antifcrromagnetic
problem. Ke see that there is a very large range of
y values for which the method breaks down completely,
this rRngc bclng alnlost Gvc t1mes thc size of thc cqulva"
lent ferromagnetic one.

If one goes, in the series expansion (3.2), to higher
terms than those so far considered, it is possible to
obtain expressions for the internal Gelds near to the
transition temperature (when it exists), and to relate
these Mds to the average sublattice spin. %C find that
the relationship is not the simple molecular-Geld one
of the type used in Sec. 2. It follows that such a simple
molecular-GcM relationship between the cluster and the
rest of the lattice would not satisfy the BP%consistency
conditions. %Nevertheless, an approximation is some-
times+used (and was introduced by Oguchi") which
uses just th1s molecular-Geld cr1tcrlon to obtain RQ

approximate solution for the cluster problem. Thus,

rn, =gPkT
Bao

8
ln(P p), rn.p=gpkT ln(Pp ),

BIJo&
(3.17)

8 8
In(Pp„), tran, P=xegPkT ln(P p).rrt, ~= rtgPkT

BH1

(3.1S)

If we write consistency conditions A, =A, , and
m, ~=m, ,&, we 6nd that there exist solutions for which
Bo = —Ho&, and II1 = —H1&. For this case, in the

and, in the same way, we have for the equivalent Grst-
shell moments

FIG. 2. The Noel temper-
ature for spin $ calculated
as a function of y (=E/J}
by using the molecular 6eld,
Oguchi, and Bethe-Peierls-
Weiss methods. The crosses
indicate the values ob-
ta1ned by Lie fol the sc and
bcc cases.

I 2

"T.Oguchi, Progr. Theoret. Phys. (Kyoto} 18, 148 (1955}.
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a+= —J'(m+ei+) (4m' —6ei+) . (3.25)

This equation may be solved for T, as a function of y
and the results are shown in Fig. 1. No anti-Curie
temperature occurs, there being only one real solution
for each value of y. In general, however, we see that the
results are considerably poorer than those obtained by
the BPK method and, though better than the molec-
ular-6eld values, they retain the latter's weakness of
predicting long-range order in the quadratic layer.

Similar results are obtained by applying the Oguchi
conditions to the antiferromagnetic case. Letting the
spin on a centre n site have an average value 8, we have

8= kT 1n(I'.e).
BIIO~

(3.26)

Replac111g Ho by 4E8, alld Hie by —(6J+4E)8~ we

may again obtain Eq. (3.9) but where

ao+=1+2e2+(6+Sy)J, (3.27)

uP = —J(m+eP) [4m'+ (6+Sy)eP]. (3.2S)

Solving this equation for T„as a function of y we get
just one solution for each y, and the detailed results are
shown in Fig. 2. Again we see that in the region for
which both the BPW method and the Oguchi method
give results, the BPK values are almost certainly the
better. In the weakly interacting layer region where the
BPW method breaks down, we can have little confidence
in the Oguchi results because of the incorrect prediction
of long-range order for the quadratic-layer (y=0)
case. We must conclude that neither of the cluster
methods discussed in this section is able to give a re-
liable estimate of transition temperature for the case of
weakly interacting layers.

Some improvement could certainly be brought
about by performing a proper BPW approximation on
the full seven-spin cluster (formed by a centre spin and
its six nearest neighbors) instead of treating a smaller
duster as the work of the present section does. One
obvious de6ciency of the smaller cluster method which

interactions within the cluster are treated correctly,
but the interactions between the cluster and the rest of
the lattice are replaced by effective 6elds which are
related to the average lattice (or sub-lattice) magnetiza-
tion by the molecular-field condition.

In the remaining part of this section we have applied
the Oguchi method to the cluster used above for the
BPW method. For the ferromagnetic case, using the
equations (3.1) to (3.I), we write m, =gP8 and obtain

8=ATES/BHp ln (I'). (3.23)

Replacing II~—IIO by its molecular-6eld value 6J8,
we may again obtain an equation of the form (3.9) but
where now

(3.24)

could be overcome in this way is its inability to dis.
tinguish between the y=2 case and the bcc lattice-
Since, however, the breakdown for small values of y
stems directly from the occurrence in the method of an
antitransition temperature, and this unphysical be-
haviour exists also when the full cluster is used, ' ' the
method remains basically unsuited for dealing with
problems concerning weakly interacting layers.

4. THE CONSTANT-COUPLING APPROXIMATION

A cluster method which is mathematically less com-
plex than the BPW method and the results of which
are, at least for the sc and the bcc lattices, almost
identical with the latter, was developed by Kasteleijn
and Van Kranendonk' and called by them the constant-
coupling approximation. It deals with a simple pair
cluster and has, for ferromagnetism, an advantage over
BPW in that it does not exhibit unphysical behaviour at
low temperatures. For antiferromagnetism the method
is less satisfactory when an anti-Weel temperature does
occur. For the spin ~~ case, which is our main concern,
the method correctly predicts a disordered quadratic-
layer lattice but, like the BPW method, its criterion for
the existence of an ordered state has no obvious con-
nection with dimensionality; and it is, for example, in-
correct in predicting a long-range order for the hex-
agonal-layer lattice.

In this section, we treat the layer problem using the
constant coupling method. We consider only the spin
-,'case for ferromagnetism and for antiferromagnetism.
For both cases we have followed closely the arguments
of Kasteleijn and Van Kranendonk, " but we have
modided the work to allow an approximation to be
made for use with Hamiltonians containing more than
one exchange parameter. In the original work'0 the
cooperative problem is reduced to the evaluation of E,
the average value of energy of states of the E-spin
system which have a given value 5 of the s component
of total spin. For the one-parameter problem (nearest-
neighbor isotropic exchange J) this energy E is shown
to be of the form

E=,'Ãz Tr(pgXg), - (4.1)

where pJ is a density matrix of an. ensemble of pairs of
spins, where XJ is the Hamiltonian for a neighboring
pair of spins, and where s is the number of nearest
neighbors of any one spin. In general, pJ is an extremely
complicated function of both 5 and temperature, and
the problem is made tractable by approximating it by a
particularly simple form (the constant-coupling ap-
proximation) which is correct in the hmit of high
temperatures.

In the two-parameter layer problem, as set out in
Sec. 2, we again have isotropic nearest-neighbor inter-
actions, and we may write the average energy E (de-
fined above) in the form

,'Xsg Tr(pzKJ)+ibex Tr(px-Kx), (4.2)
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where pJ and Kg have the same meanings as in Eq.
(4.1), where px and Kx diRer from these only in refer-

ring to pairs of spins with exchange interactions E
instead of J, and where sg and sg are the number of
nearest neighbors with exchange interactions J and E,
respectively (sJ=4, sx=2, for the problem in ques-

tion). If we now approximate pq as for the one param-
eter problem, and we make for p~ an exactly equivalent
approximation (with E in place of J), we may go on to
evaluate transition temperatures for both the ferro-

magnetic and antiferromagnetic cases. We omit the
details of the calculation, which exactly parallels the
original" and give only the resulting equations which

are, for ferromagnetism

Fio. 3. The Curie tem-
perature for spin —', calcu-
lated as a function of
p (=E/J) bg us1ng the
method of Green functions
icurve i), and the constant-
coupling approximation
(curve ii). The ringed points
shower the Rushbrooke and
%'ood~ values for the sc and
bcc cases.

2e v+e»=1, (4.3)

where y =2J/kT„and for antiferromagnetism

10(e& 1)(—e» l) —
2y. (—e&+3) (e» 1) —yy(—e»+3)

(e"—1)=0, (4.4)
where y=2J/kT .

Equation (4.3) has one real solution for T, for every
real value of y and the detailed solution is plotted in

Fig. 3. Ke see that the constant-coupling method gives
acceptable results right down to the smallest values of
interplane interaction where it correctly shows T, —+ 0
as y —+ 0. That this correct limiting behaviour is fortui-
tous is, however, immediately evident from the work of
Kasteleijn and Van Kranendonk, They show that, in

the simple single-exchange ferromagnetic problem for
the case of spin -„ the condition for ferromagnetism is
just that the number of nearest neighbors should be
greater than four. The method would therefore give
incorrect results both for the hexagonal-layer lattice and
also for the diamond structure. Also, for values of spin
5&-', the method predicts a finite Curie temperature for
the y=0 case. Thus, although the results are acceptable
for the present example and, as such, are the best which
we have so far obtained, we nevertheless ought not to
put too much trust in the quantitative manner of the
approach of T, to zero for the y —+ 0 limit, One pleasing
result, however, is that the constant-coupling approxi-
mation is able to distinguish between the y= 2 case and
the bcc lattice. For the latter case the equation for the

Curie-temperature is "
e"=2) (4 5)

from which it foHows that kT./J= 2.89, and this may be

compared with the result for y=2 which, from Eq.
(4.3), is kT./J = 2.27. We have here a demonstration of
the greater stability of ferromagnetism when the ex-
change in.teractions are symmetrically distributed in
three dimensions.

Comparing Fig. 1 and Fig. 3 we see that the shapes of
the 8P%' and constant-coupling curves are quite
different. Although the methods are in good agreement
at y= 1 (the sc case), we find that, in general, the latter
method gives the smaller Curie temperatures when

'/(e" —1)—2y(e&+3) =0, (4.6)

and is kT„/J= 3.16.
We have now exhausted the well-tried cluster tech-

niques for dealing with the magnetic cooperative
problem and we have found that, with the possible
exception of the constant-coupling approach for spin —,

'
and ferromagnetic-interacting quadratic layers, there is
no cluster method which can deal with the problem of
weakly interacting layers.

It is clear that we must turn from the cluster tech-
niques and look for a method for which the criterion for
the existence of long-range order is one concerning
dimensionality. One such method has recently been

y&i and the larger Curie temperatures when y&1.
There is good reason to suppose that this difference in
shape is largely due to the smallness of the cluster which
was used in Sec. 3. We should almost certainly expect
the full seven-spin cluster BPW treatment to be in a
better agreement with the constant-coupling method,
particularly so for the higher y values where the
method using the smaller five-spin cluster replaces the
major interactions by effective fields.

As was the case for the BPW method, we again find
that the approximation is less satisfactory for anti-
ferromagnetism. The Eq. (4.4), like its BPW counter-
part, has either two real solutions or none, thus provid-
ing us with both a Neel and an anti-Neel temperature.
The detailed solution of (4.4) for the Neel temperature
is plotted as kT /J against y in Fig. 4, and the transi-
tion temperature becomes imaginary for values of
y below 0.307 (which may be compared with the value
y=0.765 for the BPW approximation). The Neel
temperature, as calculated from (4.4), also becomes
imaginary for large y values. This is the breakdown for
the weakly interacting chains problem, but we shall not
consider it further in the present paper. At the limiting
value y=0.307, the Neel temperature is given by
kT„/J= 1.102. We may again note the difference
between the y=2 case (kT„/J=2.37) and the bcc case,
for which the transition temperature may be calculated
from'0
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investigated by Bogolyubov and Tyablikov, " and by
Tahir-Kheli and ter Haar. "It is the method of Green
functions. Another is the spherical model which has
been investigated by Lax.'6 We shall discuss only the
former, although the expressions for transition tempera-
tures which we shall derive [Eqs. (5.18} and (5.33)]
could also be obtained from the spherical approximation.

S. THE METHOD OF GREEN FUNCTIONS

Recently, a number of authors have used the proper-
ties of the double-time temperature-dependent Green
functions in order to attack the magnetic-cooperative
problem. They 6nd, even using a simple random-phase
decoupling approximation, that a formula may be
obtained for magnetization which is valid over the entire
range of temperature, and which is in reasonable agree-
ment both at low temperatures with the spin-wave
theories, and also at high temperatures with the exact
expansion method. The spin-wave-like behavior at low

temperatures means that the Green function method, in
contrast with the methods previously discussed, is
able to take into account the spatial positions of the
spins; and to distinguish, for example, between the
diamond lattice and the quadratic-layer lattice. We
also find that the conditions for the existence of long-

range order are the spin-wave condition, s which are the
best which have yet been obtained for Heisenberg
ferromagnets and antiferromagnets.

The double-time temperature-dependent Green func-
tions have been discussed at length by Zubarev. "The
Green function method for magnetism requires only
two of the relations concerning them, and we shall

write these down without discussion referring the reader
to Zubarev" or to Bonch-Bruevich and Tyablikov" for
their derivation. We shall denote the Fourier transform
of the Green function involving the Heisenberg op-
erators A(t) and B(t') by ((A; B&). The equation of
motion for this function may be written

E((A;B)&=—([A,B] )+(&[A,X];B&), (5.1)
2Ã

where the single pointed brackets indicate averages
over a canonical ensemble, and where the square
brackets indicate commutation relationships as follows

Prom the analytical properties of the Green functions,

'4 N. N. Bogolyubov and S. V. Tyablikov, Dokl. Acad. Nauk.
SSSR 126, 55 (1959) Ltranslation: Soviet Phys. —Doklady 4, 589
(1959)g."R.A. Tahir-Kheli and D. ter Haar, Phys. Rev. 127, 88 and
95 (1962).

'6 M. Lax, Phys. Rev. 97, 629 (1955).
"D. N. Zubarev, Usp. Fis. Nauk 71, 'l1 (1960) /translation:

Soviet Phys. —Usp. 3, 32Q (1960)j.' V. L. II'onch-Bruevieh and S. V. Tyablikov, The Green Fgnc-
tiae Metttod ie Statistica'/ Mssttaeics (North-Holland Publishing
Company, Amsterdam, 1961).

" «A ' B)) =.+'.—«AB» -.-'.
y e iv(!—t'ld—~ (5 3)

erst /kT

Equations (5.1) and (5.3) are the only basic equations
from the Green function theory which will be required
for the present calculations.

We shall again investigate the layer problem of
ferromagnetism and of antiferromagnetism using the
same defining Hamiltonians as for the previous sections
[that is, Eqs. (2.1) and (2.2)].Let us first consider the
ferromagnetic case. We shall investigate the motion of
the function ((S,+;Ss )) where S,+ stands for the
operator S,+iS„for the spin at site g, and where S„—
stands for the operator 5 —iS„ for the spin at site h.
Using the Hamiltonian (2.1) together with the familiar
commutation relationships for the components of spin,
the equation of motion for ((S,+; Ss )) is

Ilbgg -(Z»+Z2~}
2Ã 8

X(((S,'S;+—S,+S ); Ss-)), (5.4)

where Q,„t means the sum over the four nearest
ne1ghbors j of g with connections ln an sp plane~
where g,t means the sum over the two nearest neigh-
bors j of g with connections in the s direction, where

5,~ is the Kronecker delta, and where

E=&[S,+,S;] ), (5.5)

Using the simplest random phase approximation, we
'decouple' this equation by writing

(&Sa*St' Ss &)=(Ss')(&Ss"Ss )& (5 6)

&(S."S"S ))=A")(&S."'S
)& (5'i)gQj

Pllttlllg (S *)=(S')=8 tile eqllatloll of IIlotloll
becomes

Jib y,—8 '2J '2X&((S.+'S ))=
2m

&&((&S;S.-))-&(S;;S.-))). (5 g)

Using the translational invariance of the lattice we
Fourier transform the Green functions with respect to
the reciprocal lattice and de6ne the function GK by the
equations

«Ss+'S. »=(1/&) 2 axe' (5.9)

6 = & «S.+'S )) """ (5 10)

the transforms may be shown to be directly related to
correlation functions in the following way

(B(t')A (t))= li m s
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G x=F/22'(E Eo')—,
where

Eo'=8Eo=8TSJ+4K 2J Q'c—'x'I "
(5.11)

where E is the number of spins in the lattice, where

g and h are the position vectors of the spins g and k,
and where K is a reciprocal lattice vector which may
take on E values (allowed by periodic boundary condi-
tions) in the first Brillouin zone of the reciprocal
lRttlcc. Expressed in tcl.IQs of GK, thc cquRtlon of
motion becomes

sllnilar xQRDncl. Thc cquRtlon of Dlotlon for the Glccn
functions is again given by (5.8), but where now we
must change the sign of the exchange parameters E and
J.Decoupling as in (5.6) and (5.7) we now proceed by
separating the lattice into two sublattices, the "up"
and the "down." sublattices with average spin vaues
8 and —8 on the respective sites. Transforming the
Green functions with respect to the reciprocal, sublattice
we define the functions G~K and G2K in the following way:
R) Wllcll g Rlld k Rl'c both 011 the sRIllc sublattlce)

((So+'S)l »=(2/&) 2 GI«"" ", (520)

2E Q—IC'x &j-&)$. (5.12)

Using tlic identity

lim — —= 2mib (—o) E. ), —(5.13)
o)+io Eo)—io E— —

together with (5.3), in the limit i—i'~ 0, we find

b) When g and k are on different sublattices,

((s,+; s -))=(2/x) p G (5.22)

(5.23)

p
(So

—
So+&=S(s+1)—8—(S.') =

~EO' IkT

(5.14)

where ( )x is the average value when K runs over its
X allowed values in the first Srillouin zone.

For the case of spin 22, we have (S.') =o, and we may
use (5.14) to give us an expression for the average value
of spin as a function of temperature. %C obtain

8= -', (1+24), (5.15)

(5.24)

(5.25)

where we have taken SI, to be on the "up" sublattice,
and where

X=2J g~c'" ll-&)+21' P~c'* &I-s), (5.26)

where now K runs over X/2 allowed values in the first
Brillouin zone of the reciprocal sublattice. The equation
of IQotlon xQRy now bc cxprcsscd 1D terms of G1K alid
G2K, when we obtain

(E-p8) GIx=F/22r+ XSG2K

(E+ll8)Gox= —NGI x,

~=(1/(""'"'-1)&
and

As T +T, from bel—ow, 8 becomes vanishingly small
and (5.15) reduces to

(5.27)

kT.= 1/(4/Eo) x,

which becomes, on using the familiar reciprocal lattice
vectors for the simple-cubic structure,

Solving these equations for GIK, we find

(1—A)F (1+A)F
42rGIx= +

E+Eo' E—Eo'
(5.28)

1
J/kT,=, (5.18)

2—CI—Co+ v(1—Co) K

cl= cos(Ec), c2= cos(Eo), co= cos(E,), (5.19)

and where the average (. &K is now over values of
E„E„,and E„each running between —x and x.
In the limit of very large X we replace the average by
an equivalent integral which may be evaluated to a
good approximation by computer. The resulting values
for kT,/J as a function of y are shown in Pig. 3. We
note that in the limit y —+0, then T, ~O as demanded
by spin-wave theory, the right-hand side of (5.18) di-
verging along the line c~=c2= 1.

The antiferromagnetic case may be treated in a very

A —~/(~2 l) 2) I/2 (5.29)

Eo'= 8Eo = 8(p2 —X2)112. (5.30)

Using (5.13) and (5.3) and proceeding as for the ferro-
magnetic case we 6nally obtain for the sublattice spin

1/8=2(A coth(Eo'/2kT)), (5.31)

and for the Neel temperature

kT„=1/(4A/Eo) „. (5.32)

Prom (5.26), (5.27), (5.29), and (5.30), we find that the
equation for the transition temperature takes the form

2+7
J/kT„=

(2+ c)'—(c +c,+ y )'&ccc
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Fzo. 4. The Noel temper-
ature for spin & calculated
as a function of y(=IC/J)
by using the method of
Green functions (curve i),
and the constant-coupling
approximation {curve ii).
The crosses indicate values
obtained by Li~ for the sc
and bcc cases.

~gf
C
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FIG. 5. The ratio
of the Curie temper-
atures as calculated
from the Green func-
tion and constant-
coupling methods
plotted as a function
of logic for the case
of spin —,'.

T } T

where ct, cs, and cs, are as defined in (5.19), and where

( )I is again an average value for E„E„,and E,
each running between —m. and x. By separating the right
hand side of (5.33) into two component fractions, we
observe that the results (5.18) and (5.33), for T, and T„,
respectively, are identical. Thus, like the molecular-field
theory, but unlike the cluster methods, the Green func-
tion approach predicts that the transition temperatures
for "equivalent" ferromagnetic and antiferromagnetic
structures are equal. The Green function results for
kT„/J as a function of y are therefore the same as those
shown in Fig. 3 for IrT,/J, and we have reproduced these
for the antiferromagnetic case in Fig. 4.

We find, therefore, that the method of Green func-
tions is able to treat the problem of weakly interacting
layer structures, and to give results which are qualita-
tively acceptable for both ferromagnetism and anti-
ferromagnetism. For antiferromagnetism we see from
Pigs. 2 and 4 that it is the only method from amongst
those considered which is even qualitatively satisfac-
tory. Thus, although there is no reason to suppose that
the Green function (or spherical model) estimate of
Neel temperature for the sc lattice is any more accurate
than, for example, the BPW or the constant-coupling
approximations, there are very good reasons for pre-
ferring it whenever the dominant interactions in a

lattice are con6ned to one or two dimensions. Even for
ferromagnetism, where its approximation for the sc
case (see Figs. 1 and 3) is certainly inferior to those of
the BPW and constant-coupling methods, the Green
function method is the only one which gives qualita-
tively satisfactory values for Curie temperatures in
layer problems. The method also has an important
additional advantage over the cluster techniques since
it is easily able to cope with Hamiltonians containing
several different exchange parameters, and it may
readily be adapted for use with complicated antiferro-
magnetic orders and with problems containing anisot-
ropy (see, for example, Lines").

Finally, it is interesting to compare the results of the
Green function and constant-coupling methods for the
spin —,

' ferromagnetic-layer problem (Fig. 3) for which
case the latter method fortuitously gives results which
are qualitatively acceptable in the limit of weakly inter-
acting layers. In Fig. 5, we plot a graph of the ratio of
the Green function Curie temperature T,«and the con-
stant-coupling Curie temperature T,"against logto(y).
We see that the ratio T.'f/T becomes progressively
larger as the interplane exchange is reduced. This
difference in shape between the curves in Fig. 3 might,
perhaps, be explained by saying that the E interactions,
when they are small, assume an extra importance,
because of their spatial position (out of the xy planes),
which the cluster method cannot take into account.

'9 M. E. Lines, Phys. Rev. 131, 540 (1963).


