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Band Structure and Fermi Surface of Beryllium*
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Using a self-consistent potential, the energy eigenvalues along the symmetry edges, on the zone faces, and
at the equivalent of 5184 general points in the first Brillouin zone were calculated for beryllium by expanding
the conduction electron wave functions in a linear combination of 23 orthogonalized plane waves. From
this the Fermi energy and density of states were calculated and the Fermi surface constructed. The density
of states is in agreement with soft x-ray emission and absorption data and with the experimental low-
temperature specific heat coefFicient. The Fermi surface consists of three pieces: A region of unoccupied
states in the first double zone which resembles a coronet, and two identical pockets of electrons in the
second double zone similar in shape to a cigar with a triangular cross section. The de Haas-van Alphen fre-
quencies in 1/H predicted from the Fermi surface are in good agreement with those measured experimentally.

INTRODUCTION

~~HE band structure and other electronic properties
of beryllium were first calculated by Herring

and Hill (HH) in the initial application of the orthogo-
nalized plane wave (OPW) method. Their pioneering
effort has served as the basis for many more subsequent
energy band calculations using this method. ' ' Since
techniques for investigating the Fermi surface directly
have only been developed within the last decade, a test
of their work has generally been restricted to the com-
parison of the density-of-states curve for the conduction
electrons with experiments dependent on this quantity.
For example, the soft x-ray spectroscopy of beryllium
has been found to be in qualitative agreement with the
work of HH. Although they predicted a value for the
density of states at the Fermi energy which was much
lower than the free-electron value, it agreed quite well
with the experimental values of the low-temperature
electronic specific heat coeKcient determined by Hill
and Smith in 1953.~

A more critical test, however, of their energy bands
has only recently become available. Watts' proposed a
Fermi surface for beryllium based on de Haas —van
Alphen measurements. The Fermi surface based on
HH's band structure agrees qualitatively with these
experiments only if one arbitrarily choses a Fermi
energy different from the one they propose. The present
work on beryllium had been started before the experi-
ments of Watts pointed out this disagreement between
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the theoretical calculation and experiment. In the fol-
lowing paragraphs we indicate the ways the calculations
needed to be improved.

A first step toward improving the calculations was
in the construction of the crystal potential. Aside from
the usual Coul. ombic terms the following have now been
included: correlation between ion-core electrons, ex-
change and correlation between conduction electrons
and a correction for deviation from spherical symmetry
around the core. Furthermore, the potential is felt to
be the most self-consistent yet produced. For the con-
duction electrons single OPW wave functions (solved
using the potential itself) were used in all the appro-
priate terms contributing to the potential. The core-
state wave functions occurring in the potential terms
were taken to be the ground-state solutions of the
crystal potential itself. The potential was thus con-
structed by a series of four iterations until the conduc-
tion and core wave functions used to construct the
potential were in fact solutions to it.

Furthermore, enough general points (equivalent to
5184) were computed in the first Brillouin zone (BZ)
to define more accurately both the density of states and
the Fermi energy. At all of these points a 23)&23 secular
determinant was solved for the lowest lying eigenvalues.
The energy bands along all the symmetry edges and the
zone faces were also determined in this manner. This
information made possible a more exact determination
of the Fermi energy, density of states, and the Fermi
surface.

THEORY

Hexagonal Close-Packed Lattice

In dealing with the direct and reciprocal lattices it is
convenient to use the following representations:

(a,b,c)=ati+bts+cts

[a,b,cj=aKi+bKs+cKs

The t basis defines the unit cell in the direct lattice such
that
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where 4, y, and k are unit orthogonal vectors (see Fig.
1). c and u are the lattice parameters; the values used
in this calculation are given by Schwarzenberger':

c=6.77152, u= 4.32109.

The units are ddined by 5=1, e'= 2 and m=-,') energy
in rydbergs and length in units of the Bohr radius. The
unit cell contains two atoms (4 conduction electrons)
located at (0,0,0) and (re, er, ee). The volume of the unit
cell is

Oe= tr t2&(te= a'n8/2= 109.5.
The atomic radius, r,=2.37, is defined by

4 3 1n—F00 ~

The K basis defines the reciprocal space lattice:

K,"t;=2~&;; e, q=1, 2, 3.
Thus,

Kr ——(2e/c)k,

Ke ——(2e/aV3) (j+,v3r,),
Ke——(4e/u3) j.

The vohlIQe of the BZ ls
16xVS 8s'

Qg-Kg K2yK3-
3a'c ~0

The radius of the free-electron Fermi sphere is denned
by

3gko —2Q+ )

since with four conduction electrons per unit cell the

o,o,o) t&

WUtW~v wwW
M ~

MIGROZONE

I'IG. 2. Subdivision of 1/24th zone into 216 microzones
and location of representative point.

volume of occupied states is equal to twice that of the
BZ. This gives ho= 1.027.

Because of symmetry it is necessary to consider only
1/24th of the BZ. This 1/24th zone is outlined in Fig, 1

by the points of high symmetry I'EMMY. . This zone
was partitioned into 216 microzones by subdividing
each of the sides into 6 equal parts. A point in the
"center" of each of these triangular prisms was assigned
to represent the states contained in the microzone (see
Fig. 2). The BZ is thus represented by 216&&24=5184
general points.

OPW Method

'z

I'IG. 1. Unit cell
in hexagonal close-
packed lattice show-
ing locations of the
two atoms; Grst
Brillouin zone with
I/24th zone out-
lined by points of
high symmetry
IX%I.HA.

The theory of the OP% method has been reviewed
frequently, with the most detailed discussion given by
Woodruff. 4 Essentially it amounts to treating the co-
eKcients of a truncated reciprocal lattice expansion of
the wave function as variational parameters which are
chosen such that the energy is minimized. The basis
for the expansion is taken to be plane waves which have
been orthogonalized to the core states. Dispensing with
the details, the matrix elements of the secular deter-
minant are given by

Hg= —',A gg(6;;){kP8g+ (8s./Qe)

&(LkA. (g; k,)A. (g; k, )—A(h; G;~)]},

6;,= —(4s-/Qe)A;A;|'(6;, )A. (g; k;)A(g; k;),
where

a(1; x) = sin(xr)
1(r) dr,

' D. R. Schwerzenberger, PhiL Meg. 4, 1242 (1959).

f'(1 '*)=1+expL2~~(2ir+ eie+ eie)j,
6"=6—O'= Lj~,ie,jej
k;= it+6;,
A =L1—(8~/O)X&(g u)]-&~'
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k is the wave vector of the electron and 6; is a reciprocal
lattice vector [l,m, nj, where l, m, I are integers. g(») is
defined by

4(»)= (4 ) '"g(»)/»

where f(») is the normalized core wave function. When
the total potential is written as the sum of atomic-like
potentials centered on the lattice sites,

U(»)= Z V(lr —R-I),
lattice

then h(») is defined by

h(») = —»V (») .

X is the absolute value of the core eigenvalue, i.e.,
solutions of Schrodinger's equation for the potential
V (»). The conduction state eigenvalues are determined
by finding those values of E such that

~e,,-ZS;;~ =0.

Potential

As mentioned in the Introduction, the potential
constructed for this band calculation is felt to be
reasonably self-consistent. Explicitly, to the extent that
the conduction electrons can be represented by a
spherically symmetric single OPW and that core
electrons are represented by the ground-state solution
of Schrodinger s equation using the atomic-like po-
tential V(»), and to this extent only, is the potential
self-consistent. Limited as this framework might be it
is a step in the right direction. The remaining step must
bring in dependence on k and ultimately dependence
on the band. This, of course, is out of the question
today. It should be mentioned, however, that an
attempt was made to make the potential

~

k
~

-dependent.
To do this the momentum range between zero and ko

was divided into eight equal intervals. In the exchange
terms (conduction-core and conduction-conduction) the
k dependence was retained and eight different potentials
were constructed. As the conduction eigenvalues were
being determined for an arbitrary point in the BZ, the
magnitude of k was used to call in the appropriate
potential curve. The difhculty with this procedure was
that the energy bands had discontinuities at the points
where a change between potential curves was made.
Eight division were not sufficient to smoothly represent
the k dependence. One could, of course, smooth these
steps out in an arbitrary fashion or even take more than
eight divisions, but it was felt that the additional com-
plication was not warranted at the present. The change
to an average value of k produced only small changes in
the potential.

To construct a self-consistent potential one would
probably treat the conduction electrons as plane waves
and the core electrons as those in the free atom. How-
ever for beryllium the Grst iteration had already been

performed by Pomerantz and Das."In calculating the
Geld gradient at the nucleus they constructed a po-
tential with the following terms:

(1) Core Coulombic potential due to the charge Z
on the nucleus and is electrons taken to be the same as
for the neutral Be atom. "

(2) Core-conduction exchange potential due to a
weighted mean between a 2s electron in the 1s'2s'
configuration and a 2P, electron in the 1s'2P,s con-
figuration.

(3) Conduction Coulombic potential due to two
electrons in the Wigner-Seitz sphere in single OPW
states (constructed using Be atom core states and free-
electron conduction states).

The core-conduction exchange bumps were then
smoothed out, and the resulting potential was used to
calculate a new single OPW charge density for the
conduction states. Using this final potential (see Fig. 3
in Ref. 10) we repeated the last stage of their calcu-
lations as a check and began from this point the
iterations toward a self-consistent potential.

The various contributions which were considered in
the construction of the self-consistent potential were:

h, (»)—potential due to the ion-core,
hs(») —correlation among core electrons,
h, (»)—exchange between conduction and core elec-

trons,
hs(»)—potential due to the conduction electrons,
Is, (»)—potential due to deviation from spherical

symmetry,
h~(»)—exchange and correlation among conduction

electrons.

Each of these will now be discussed in some detail.
We begin with the ordinary Coulombic potential due

to the positive charge Z=4 on the nucleus; the other
contribution to the ion-core potential comes from the
core electrons. Once the core wave functions are known,
the potential follows from Poisson's equation. To get
the wave functions Schrodinger s equation was inte-
grated numerically using the computed form of the
self-consistent potential. These two numerical pro-
cedures are by now quite standard and will not be
discussed here."The final core wave function is shown
in Fig. 3. It is interesting that it is nearly identical to
the 1s wave function for neutral beryllium as deter-
mined by Roothan, Sachs, and Weiss" using a gen-
eralized self-consistent Geld (SCF) formalism. The most
sensitive parameter in the iteration procedure for the

"M. Pomerantz and T. P. Das, Phys. Rev. 119, '/0 (1960)."P.M. Morse, L. A. Voung, and E. S. Haurwitz, Phys. Rev.
48, 948 (1935).

1' For details in numerical procedures see T. L. Loucks, Ph.D.
thesis, The Pennsylvania State University, 1963 (unpublished).» C. C. J. Roothan, L M. Sachs, ance A, &, Weiss, Rev, Mod.
Phys. 32, 186 (1960).
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FIG. 3. Radial part of core wave function in
self-consistent potential.
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potential was ) . Therefore, it was used to determine the
extent to which self-consistency had been obtained.
The values at different stages of the iteration are shown
in Table I. The starting and final values of this con-
tribution to the total potential are shown in Fig. 4.
The change resulting from the potential iteration is not
large. The principal effect has been to establish a
stabilized self-consistent value of X. This is important
because of the sensitivity of the OPW matrix elements
to this parameter. The numerical values of the final
ion-core potential are listed as k, (r) in Table II.

Correlation energy between core electrons as calcu-
lated in the present work is a very small contribution
to the total potential. Correlation between core elec-
trons was assumed to be the same as that between the
two electrons in doubly ionized beryllium. It was
decided to use the Be++ wave functions computed by
Lowdin and Redei'4 which include correlation 'by as-
suming a wave function of the form

f(r&,rp) =N(r~)N(rp)(1+nrgp),

N(r) = (~) "'(~ s ""+~ ~ "")
The one-electron charge density was found by inte-
grating P(r~, rp) over the coordinates of one of the
electrons. The diGerence between the resulting charge
density and that given by the self-consistent field type
calculation was used in Poisson's equation to determine
the potential due to correlation. The three parameter
empirical formula given by Green, Mulder, Lewis, and
Woll" was used for the SCF solution. This contribution
is listed as kp(r) in Table II. It was taken to be the same
at each stage of the potential iteration.

Exchange between core and conduction electrons was
treated by evaluating the exchange integral to second
order in spherical harmonic expansions. The potential
is given by

4'. (x)
V, (x,k)= —2

Qopw(x, k)

where the angular brackets indicate an average over
the angle between x and k. f&, is the numerically tabu-
lated core wave function from the most recent stage
in the potential iteration. Popw takes the usual form

Popw(t, k) = (2/Qp)'" exp(ik t)—B&f&,(t),

where the BI, are the orthogonalization coefFicients

B,=(g /n, )'t&X(g k)

In the evaluation of the exchange integral the spherical
harmonic expansion for (~x—t~) 'and Bauer's formula
for the exponential term were used. Only the first two
terms in the resulting expansion were retained since a
calculation showed that in the range of interest the
second-order contribution was always less than ~~th the
first-order term. The OPW wave function in the de-
nominator was then expressed as a sum of real and
imaginary parts; the 6nal result can be summarized as
follows:

V,„(x,k) = sinPV, (x,k,P)dP,

UBlpR+ V l4'r
V,„(x,k,P) = —2gg, (x)

4s'+Sr'

V~=(2/Qp) (Sp Bpf(x),

Vr = (2/Qp)Sg,

P~ = (2/Qp)'" cos(xk cosP) —B&ff (x),

Pr = (2/Op)'" sin(xk cosP),

4n. * /sinkt)
So=— f, (t)~ ~tdtx, &k&

.2 4 .6 .8 I,O I.2 sink(
+4x P„(t) dt,

FIG. 4. Coulombic potential of core electrons: dashed line first
iteration, solid line self-consistent potential.

' P, Q. Lowdin and L. Redei, Phys. Rev. )14, 752 {1959).
"L.Green, M. Mulder, M. Lewis, and J, Moll, Phys. Rev. 93,

757 {1954).
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4n. cosp
Sg ——

fsinkt —kt coskt)
p„(t)~ — ~tdt

)
TABLE I. Core-state eigenvalues in the crystal potential at

different stages of the iteration.

f(x) =

sinkt —kt coskt
+47xrcosp pi. (t) ct,

$2t2

Pg,2 (t)d't

[x—ti

Stage of iteration

First
Second
Third
Fourth

Core-electron eigenvalue
(arbitrary zero of energy)

—5.4387—7.0497—6.7648—6.7653

f(x) was found by solving Poisson's equation

Pf= —47nt g,2.

V,„(x,k) was evaluated using k=4ko as an average
value. The results for k, (r)= rV, (r) a—re shown in
Fig. 5 and the final self-consistent results are tabulated
in Table II.

The Coulombic potential due to the conduction
electrons was calculated using the charge density

Op

t (~)=
Sx'

~
P(k, r) ('d'k

in Poisson's equation. Here the integration was taken

TmLE II. The self-consistent crystal potential.

0.00
0.04
0.08
0.12
0.16
0.20
0.24
0.28
0.32
0.36
0.40
0.44
0.48
0.52
0.56
0.60
0.64
0.68
0.72
0.76
0.80
0.84
0.88
0.92
0.96
1.00
1.08
1.16
1.24
1.32
1.40
1.48
1.56
1.64
1.72
1.80
1,88
1.96
2.04
2.10
2.20
2.30
2.40
2.50
2.60
2.70
2.80
2.90
3.02

h, (r)

8.000
7.422
6.883
6,399
5.978
5.618
5.315
5.063
4.855
4.685
4.548
4.437
4.347
4.276
4.220
4.175
4.139
4.110
4.088
4.069
4.055
4.044
4.035
4.027
4.022
4.017
4.011
4.006
4.004
4.002
4.001
4.001
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000

0.000—0.054—0.081—0.091—0.092—0.087—0.080—0.072—0.063—0.055—0,047—0.040—0.034—0,028—0.024—0.020—0.016—0.013—0.011—0.009—0.007—0.006—0.005—0.004—0.003—0.002—0.001—0.001—0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.168
0.326
0.467
0.589
0.694
0.786
0.871
0.955
1.048
1,163
1.318
1.533
1.821
0.620—0.658—0.443—0.301—0.208—0.145—0.102—0.072—0.050—0.035—0.024—0.016—0.006—0.001
0.001
0.002
0.002
0.002
0.002
0.002
0.001
0.001
0.001
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000—0.109—0.216—0.320—0.421—0.520—0.615—0.710—0.802
—0.894—0.985—1.075—1.165—1.256
—1.346—1.435—1.525
—1.615—1.705—1.794—1.883—1.971—2.059—2.146—2.232—2.317—2.485—2.647
—2.803—2.953—3.095—3.230—3.355—3.472—3.578—3.674—3.758—3.830—3.892—3.929—3.974—3.997—4.000—4.000—4.000
—4,000—4.000—4.000—4.000

0.000
0.006
0.012
0.018
0.024
0.030
0.036
0.042
0.048
0.053
0.059
0.065
0.071
0.077
0.083
0,089
0.095
0.101
0.107
0.113
0.119
0.125
0.131
0.137
0.143
0.149
0.160
0.172
0.184
0.196
0.208
0,220
0.232
0.244
0.255
0.267
0.279
0.291
0.303
0.312
0.304
0.256
0.203
0.148
0.150
0.127
0.090
0.050
0.000

0.000
0.043
0.071
0.087
0.093
0.090
0.080
0.062
0.039
0.011—0.022—0.059—0.098—0.135—0.159

-0.160—0.150—0.137—0.125—0.113—0.102—0.092—0.083—0.075—0.068—0.061—0.049—0.040—0.032—0.026—0.020—0.016—0.013—0.010—0.008—0.006—0.005—0.004—0.003—0.002—0.001
0,000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

Total h(r)

8.000
7.476
6.995
6.560
6.170
5.824
5.520
5.256
5.031
4.849
4.717
4.646
4.654
4.755
3.395
1.991
2.100
2.144
2.146
2.122
2.080
2.028
1.969
1.905
1.838
1.769
1.629
1.490
1.354
1.222
1.096
0.977
0.866
0.764
0.671
0.589
0.517
0.457
0.409
0.382
0.329
0.258
0.203
0.148
0.150
0,127
0.090
0.050
0.000
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Fzo. 5. Exchange potential between core and conduction electrons:
dashed line Grst iteration, solid line self-consistent potential.

np
p(r) = Agk'-dk +By'Pg '(r)—

2Ã Q Qp

t'2 'I' sinkr—2I — Bgyg, (r)
&no kr

over the spherical Fermi surface of radius kp, the wave
function being a single OPW

contribution of the conduction electrons to the total
potential is listed as hq(r) in Table II.

The potential due to deviation from spherical sym-
metry has been treated in detail by both Heine and
Falicov. Briefly, it is the potential due to the difference
between two charge densities: (i) the charge density
due to a lattice of protons and a uniform background of
electrons; (ii) the charge density due to Wigner-Seitz
spheres of electrons centered on the positive lattice sites.
The uniform spheres of charge overlap in some regions
while failing to cover others at all. By performing an
Ewald-type sum at various points between the lattice
sites one can develop a potential which takes account
of the actual crystal lattice. The resulting correction
term is listed as h, (r) in Table II. It is a small correction
except in the region between the lattice sites where it
has the eGect of making the potential more binding.
This contribution was kept constant during the po-
tential iteration.

The Gnal contribution to the crystal potential is that
due to exchange and correlation among the conduction
electrons. These two effects mere included together by
using a screened p'~' exchange. The justification of this
follows from treating the electron density as a variable
in the Pines expression for the average exchange energy
per electron. "The result takes the form

1,0-

P(r)

~
OI--

FxG. 6. Conduc-
tion electron charge
density: dashed line
erst iteration, solid
line self-consistent
charge density.

~001
1,0 I.5 2.0 2.5

At each stage of the iteration this integration was per-
formed numerically using the current values of 3&, I3&

and P&,. The resulting potential diGered only slightly
with each stage of the iteration, and the fInal result was
essentially the same given by assuming an uniform
distribution of electrons. Hence using OPW's did not
ef'feet this contribution to the crystal potential. The
final charge density for the conduction electrons is
shown in Fig. 6. The dip due to orthogonalization with
the core state does not greatly affect the potential
because it occurs near the origin and occupies such a
small fraction of the total charge distribution. The final

where p(r) is the conduction charge density discussed
above. When P is determined by minimizing the long-
range correlation energy it is given by

p —~r 1/2

where o =0.35 and the electronic radius, r, ,is defined by

—,'mr/=Op/4.

If the electron-plasmon interaction is taken into
account, then the value of n is 0.40. One can show by
quantum-mechanical considerations that the upper
bound to the value of n is 0.47. Thus, there seems to be
some arbitrariness in the selection of p, but for this part
of the calculation it was decided to use n=0.35 which
gives P=0.482. This choice of P agrees with the value
obtained from characteristic energy loss measurements
on thin 6lms of beryllium. Since energy is measured
from an arbitrary origin, the screened exchange po-
tential was shifted so that it was zero in the region
between the lattice sites where the charge density is
uniforln. The contribution to the total potential is
listed as hr(r) in Table II.

There was a certain reluctance to use the screened
p'~ exchange potential because of its known approxi-
mate form. An attempt was made to calculate the
exchange between single OPW wave functions using

"D. Pines, Phys. Rev. 92) 626 (1953).



BAND STRUCTURE AN D F ERM I SURFACE OF Be

an exponential screening factor in the exchange integral.
An expansion to second order in spherical harmonics
was again used, as in the exchange integral between
core and conduction electrons. However, the expressions
were much more complicated, and the running time on
the computer for a single value of the radius vector was
far out of pmportion to the improvement this approach
could be expected to make. However, the values for
small r were found using k= 43ko, and they were about
half as large near the origin as those given by the
screened p'~'. These results diGered further in that
instead of a single dip, as appears in p(r), there was a
dip and a bump, much as in the case of core-conduction
exchange,

A k-dependent exchange and correlation between
conduction electmns was tried initially using the
Bohm-Pines (BP) one-electron correlation formula for
the free-electron gas. This procedure was used by
Heine on aluminum and Falicov on magnesium, so the
equations will not be repeated here tsee Eq. (2.14),
Falicov']. In the computation, P was the same as in

the screened p'" expression. The use of the BP &-

dependent exchange-correlation energy in this manner
did not, however, give a correct Fermi surface for
beryllium. The surface that resulted using the k-
dependent BP term and P=0.482 consisted of: (i) a
hole region in the first double zone which resembled a
3-toothed gear mounted in the center of an axle which
is larger in the middle and tapers to rounded ends,

(ii) a pocket of electrons similar to two milk saucers,
one inverted on the other, and (iii) six identical little
pockets of electmns with the shape and relative size of
a cashew nut. At first it was thought that this surface,
although quite diGercnt from the free-electron model,
might yieM the experimental de Haas-van Alphen
frequencies. This was not found to be the case. By
neglecting the Pines k-dependent screened exchange
the resulting Fermi surface was found to be in very good
agreement with all known experiments. This is really
the only defense oGered for this procedure.

The last column of Table II is the total crystal
potential which was used to determine the OP% ex-
pansion matrix elements. These results are shown in
Fig. 7 along with thc potential used by other lnvcstl"
gators. The potential used by Jacques" is not shown
since it is essentially the same as that of HH.

Calculation of Energy Eigenvalues

The computer program for generating the energy
eigenvalues begins by reading the coordinates of a
point in k space. It then constructs four 23rd-order
matrices: the real and imaginary parts of both the
Hamiltonian and overlap matrices as described in the
section on the OP% method. The same 23 reciprocal
lattice vectors (those closest to the origin) were used
for all points in the 1/24th zone. This process took

» R. Jacques, Cahiers Phys. 70, 71, 72 (1956).

I.O 2.0 xo
r

Fxo. 7. Crystal potential: small dashed curve is the present
work, dot-dash curve that of Pomerantz and Das before smooth-
ing, large dashes Pomerantz and Das after smoothing and solid
line the results of Herring and Hill.

about 50 sec on the IBM 707'4. The next step is 6nding
the lowest mots of the secular determinant. The
method employed for this was simply to examine the
determinant as a function of E and 6nd the places at
which it crossed the axis. This was a very CKcient
pmcedure when the mots were nondegenerate and well

separated since one could then take fairly large steps
throughout the region of interest and, once a change in
sign was detected, zero in on the root by the method of
false position. This approach became impractical, how-

ever, when the roots were close together or degenerate.
For steps small enough to detect the mots there was a
great deal of wasted computation in the regions away
from the roots. Hence for those points which yielded no
roots using a reasonable step size, it was necessary to
resort to plotting the determinant and finding the
approximate location of the roots graphically. It was
then practical to scan through this limited region with
a small enough scanning step to be able to locate the
crossing of the axis. If two mots are truly doubly
degenerate the determinant would be tangent to the
axis and would not change sign. It turned out, however,
that either due to numerical approximations or because
not enough OP%'s were taken in the expansion, all of
the roots which are known to be degenerate from group
theory were actually two roots very close together.
Hence in practice it was possible to detect them by
testing for a change in sign.

The above procedure requires an enormous amount
of computation because of the numerous times that the
determinant of a 23rd-order complex (Hermitian)
matrix must be evaluated. These determinants were
solved in the usual way of getting all zeros under the
diagonal elements by adding and subtracting multiples
of the rows to one another. The determinant of the
resulting triangular matrix is simply the product of
the diagonal elements. If the original matrix elements
are d„„ then the matrix elements of the desired tri-
angular matrix can be written
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per unit cell, we obtain
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FIG. 8. Density of
states g (E): solid
line is the result of
the present compu-
tation and the
dashed line is that of
Herring and Hill.
The Fermi energy is
indicated by vertical
dashed lines.

g(E)dE=
0 ~o

The energy range was divided into increments hE and
the number of energy levels in each increment, M(E),
determined. The density of states was then calculated
using

g(E) =4JM'(E)/Qo(2X216)&E.

The values of g(E) were plotted in the center of the
energy increment which they represented. A smooth
curve was then drawn through these points. This was
done for DE=0.03, 0.04 . . 0.10. The curves are
slightly diferent in each case because we are approxi-
mating a very dense distribution with onl.y 216 points.

.2 .4 .6 .8
ENERGY, Ry

I.O

where I is the smaller of p and v. For starting values
One takeS DI„=dI„and D„I——d„I fOr v=I, 2, , 23.
Then the determinant is simply g, D;,. This procedure
was programmed for complex matrix elements and
required 3 or 4 sec execute time for the evaluation of
one 23rd-order determinant.
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RESULTS

Fermi Energy

Since the 1/24th zone was divided into 216 micro-
zones and since the volume of occupied states is equal
to twice that of the BZ, then if all the energy eigenvalues
computed at the general points are placed in ascending
order the Fermi energy must be the 432nd eigenvalue.
All the energies less than (and equal) to this value are
occupied and all those above are empty at the zero of
absolute temperature. This value was found to be

l.2—
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CL'
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iJJz .5LJj

FERMI
LEVEL

(a)

/ I
I

I
I/ I

/ /
/

/ I
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rr I
/

/

Ef=0.901 Ry

as measured from the bottom of the band. In this, and
in all other results unless speci6ed differently, a refer-
ence to energy will mean the values obtained from the
potential given in Fig. 7 without any correction for
k-dependent exchange. This was discussed in the section
on Potential.

Density of States

I.2—

I.O—

.8
K

.5

.4

I
/

/
I

/4ir

FERMI
LEVEL

r
C

Having ordered the eigenvalues to obtain the Fermi
energy it is a straight forward calculation to get the
density of states g(E). This function was normalized
so that the area representing occupied states would be
equal to the number of electrons per unit volume.
Since there are two electrons per atom and two atoms

(c)

FIG. 9. Conduction electron energy eigenvalues: the dashed
and solid lines denote nondegenerate and doubly degenerate
bands, respectively.
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TABLE III. Summary of theoretical bandwidth determinations. ,07

Free electron
Herring and Hill'
Jacques:b

Single OPW
OPW with variational parameter
APW method

Cornwell'
Present work
Skinners (experimental)

a See Ref. 1.
b See Ref. 17.
e See Ref. 23.
~ See Ref. 18.

Bandwidths (Ry)

1.055
0.865

0.956
0.919
0.840
0.780
0.901
1.01&0.07

,06--

.05--
tOI-

.04--

CL

,03--
Q)
K

.02--

OI--

Fzo. 14. Soft x-ray
emission spectra of
Fisher, Crisp, and
Williams. Ordinate
scale arbitrarily se-
lected so that maxi-
mum coincides with
theoretical results.

Fermi Energy and Density of States

Various calculations of the bandwidth or Fermi
energy have been listed in Table III. The experimental
result given by Skinner" in 1946 is included for com-
parison. We have not attributed much importance to
this comparison of our bandwidth with the experi-
mental result because of the difhculties inherent in the
extrapolation of the low-energy tail of the x-ray spectra.

The density-of-states curve of HH is shown in Fig. 8
along with our result. The experimental emission
spectra as determined by Fisher, Crisp, and Williams"
using a photon-counting, grazing incidence spectrometer
is shown in Fig. 14. Their results are in most respects
similar to those reported by other experimenters (see
Yakowitz and CuthilP' for a bibliography on soft x-ray
spectroscopy). The high-energy side of the spectrum

TABLE IV. Comparison of representative dimensions from the
theoretical and experimental (Watts) Fermi surfaces.

Designation
Distance

Theory Experiment

tnl
lk
ks
ab
be
no
gh
tgn

0.57
0.26
0.01
0.13
0.44
0.04
0.13
0.57

0.57
0.23
0.08
0.09
0.48
0.02
0.12
0.57

' H. W. B. Skinner, Phil. Trans. Roy. Soc. (London) A239, 95
(1946)."P. Fisher, R. S. Crisp, and S. E. Williams, Opt. Acta 5, 31
(1958).

~' H. Yakowitz and J. R. Cuthill, Nat. Bur. Std. (U.S.) Mono-
graph 52, (1962).

E2 is known to be a doubly degenerate level and the
secular determinant should be tangent to the axis at
the eigenvalue. This condition is very nearly satisfied
only with the maximum number of 23 OPW's. The
fact that the level does become degenerate as expected
is felt to be a good indication that the levels have
essentially converged with 23 OPW's.

,00
l25

I

I20 I I 5 I IO

"T. Sagawa, Sci. Rept. Tohoku Univ. , First Ser. 45, 232
(1961).

~ R. W'. Johnston and D. H. Tomboulian, Phys. Rev. 94, 1585
(1954)."J.F. Cornwell, Proc. Roy. Soc. (London) A261 551 (1961).

usually has a slope less abrupt than that caused by the
sudden onset of vacant states above the Fermi energy.
This is felt to con6rm the dip in our theoretical density
of states. There is, in fact, a kink in the experimental
spectrum around 111.4 A which could. very well be due
to the Fermi energy occurring at the dip in the density
of states. This is certainly consistent with our results.
The results of HH predict a sharp increase in the spec-
trum just below the Fermi energy. This is not observed
in any of the spectra listed in Yakowitz and Cuthill.
On the low-energy side of the peak there are two dips
in our density of states. These seem to be reQected also
in the emission spectra (Fig. 14). A more recent meas-
urement of the valence band emission spectra by
Sagawa" also displays dips similar to these, but they
are attributed to Si Lzz, zzz absorption because of the
glass grating used. Hence there is some question as to
whether these dips would appear in the experimental
results after corrections were made for this anomaly.

An additional feature of the density-of-states curve
is felt to be confirmed by the experimental results of
Johnston and Tomboulian. " They have shown that
the absorption edge coincides with the high-energy
limit of the emission line. This confirms that there is no
forbidden zone in the density of states (i.e., beryllium
is an electrical conductor). Further, the absorption
data exhibits a sharp peak at the low-energy end which
is consistent with the peak in the density of states just
above the Fermi energy.

As a anal comparison, the density of states at the
Fermi energy was used to calculate the low-temperature
specific heat coe%cient. The result (for both our data
and HH) was 0.54X 10 4 cal/mole/deg' which is
identical to the experimental result given by Hill and
Smith. CornwelP' calculated 0.91X10-4cal/mole/deg s
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TasLz V. Comparison of frequency in 1/H from de Haas-van Alphen measurements (Watts)
and from the theoretical Fermi surface.

Orbit designation Direction Area
Frequency (10~ 0)

Theory Experiment

Cigars:

Coronet:
Inner circle
Outer path
Neck
Neck
Neck
Belly
Belly

L1120]
10' from [1120]to [1010]
20' from [1120]to [1010]

[10io]
[0001]

[0001]
[0001]
[1120]
[1120]
[10i0]
[1120]
[1120]

0.141
0.146
0.147
0.149
0.0245

1.04
1.47
0.0014
0.0006
0.0008
0.038
0.055

52.9
54.6
55.0
55.7
9.2

389.
550.

0.53
0.23
0.30

14.2
20.7

53,
53.
53.
53.
9.8

396,
not given

0.23
0.11
0.12

12.5
15.0

Fermi Surface

The Fermi surface consists of three pieces; we will

use the monarchial terminology of Watts' and describe
the hole region in the erst double zone as a coronet and
the electron pockets in the second double zone as cigars
(see Fig. 10). Watts deduced the Fermi surface from
de Haas-van Alphen measurements. It diGers from ours
only in the following ways:

(1) Our cigars are not as long as Watts' and are
triangular in cross section, becoming round only near
the ends.

(2) Our coronet is slightly larger than Watts'.

The general agreement, however, is felt to be very good.
Some extremal cross-sectional areas (A) were measured
from our Fermi surface and the frequency in 1/H was
calculated using the Onsager relation

f= ficA/2rre.

These values are compared in Table V with the experi-
mental frequencies given by Watts.

The two main differences listed above between our
surface and that of Watts can be improved by raising
the Fermi energy. However, this will still not make the
cigars circular in cross section and will make them
slightly too big around the waist. One could justly
question our right to move the Fermi energy at all
since it certainly is not arbitrary. However, it is possible
that our method of determining the Fermi energy
could be improved by selecting a more suKciently
representative set of points throughout the zone. This

is supported by the fact that the volume of the hole
region is somewhat bigger than that of the electron
pockets. By raising the Fermi energy these volumes
become equal. Further work in determining the Fermi
energy such that the volume of the hole region is
exactly equal to that of the electron pockets would be
warranted. This work would involve more cross sections
of the coronet than were done in, this work. (Note
added: Additional calculations have in fact already
been carried out. The equivalent of 60000 points in
the BZ have been computed. It is found that electron
and hole volumes are equal when

Eg ——0.909,
thus raising the Fermi energy slightly. )

Changes in the potential as well as improvements in
convergence of the OP% expansions could also con-
tribute to the diGerences discussed above.

It should be mentioned that the energy bands of
HH do not produce a coronet. The intersection of the
bands between M and I' occurs beneath their Fermi
energy, and hence the necks of the coronet are severed
leaving the bellies isolated. This model is anatomically
inhumane as well as incorrect since it can not account
for the observed X oscillations in the $0001$ direction.
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