
PH YS ICAL R EVI EW VOLUM E 133, MUM B Ek 3A 3 FEBRUARY &964

Magnetization Curve at Zero Temperature for the Antiferromagnetie
Heisenberg Linear Chain*
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Ursioerssly of Caleforrl'a, Sal Diego, La Jollae Calsforrlia

(Received 9 September 1963)

The highest and lowest energies as a function of the total spin are computed for the class of "unbound"
states in the Bethe formalism for the linear chain of spin-$ atoms with a Heisenberg exchange interaction
between nearest neighbors. The lowest energies are used to compute the magnetization curve for the infinite
antiferromagnetic chain in the limit of zero temperature. At zero temperature and in zero field, the magnetic
susceptibility has the value 0.050661 g'p, '/J, where p is the Bohr magneton, g the electron g factor, and the
interaction between neighboring spins is of the form 2JSI S2.

I. INTRODUCTION

'HK properties of antiferromagnetic insulators are
often discussed on the basis of the Heisenberg

model of exchange between neighboring atoms. Calcu-
lations for two and three dimensions invariably proceed
by means of approximations whose validity is difBcult
to judge. Hence, there is some interest in examining the
one-dimensional case, for which a certain amount of
progress has been made toward an exact solution.

Bethe' showed that the eigenvalue problem for a
chain of E spin--, atoms with Hamiltonian

Section II contains a summary of the Bethe formalism
for the eigenvalue problem. A proof of the existence of
real solutions to the Bethe equations for states in class C
is found in Appendix A. The derivation of Hulthen's
integral equation, upon which the work in Sec. III 3,
C, and D depends, is summarized in Sec. III A.

The results of our computations do not agree with
those of Ledinegg and Urban. ' The reason for this dis-

crepancy is discussed in Appendix B.

II. THE BETHE EQUATIONS

N

X=2J g S;.S~I,

SIv+I—=Sl, Eg=-'SJ,
Egs NJ(2 21n2) . —— —where S; is the spin operator for the ith atom and J

the "exchange integral, " could be reduced to that of
solving a set of coupled transcendental algebraic equa-
tions. Using this procedure, Hulthen' calculated the
exact ground-state energy for an inhnite antiferro-
magnetic (J&0) chain; and des Cloizeaux and Pearsons
have recently obtained the energies of the lowest lying
excitations or "spin waves. "

The class C' of "unbound" states in the Bethe for-
malism is of particular interest for the antiferromagnetic
chain, since it contains the ground state and the des
Cloizeaux and Pearson spin waves. In this paper we
compute (in Sec. III) the minimum and maximum
energies of states in class C with a given total spin S, as
a function of S.There is good reason to believe that the
states of minimum energy in class C are also the lowest
of all levels (for a given S) in the antiferromagnetic
chain. Assuming this to be the case, we calculate (in
Sec. IV) the magnetization as a function of magnetic
Geld at zero temperature.

The second equation' holds in the limit X—+ ~. For a
state with energy E, deGne the normalized energies'

2 = ,' (Err E)/JN, -—
21=21 (E Eg p)/JN=ln2 e—. —

With "up" and "down" deGned with respect to the
positive z axis, let %(sl,s2, . . . s„)be a state for which

the spins e~, e2, . . ., e, are down and all other spins
are up. Any eigenstate of (I) with z component of spin
equal to ~~X-r may be written as a linear combination of
such states:

+—P +(SI S2 . ~ ~ S )%(SIS2 ~ ~ ~ Se)

with summation over all sets of r (distinct) indices s;
The eigenfunctions discussed by Bethe' are of the

foHIl

(
e(e.. .e,)= Z e pi~~ r k,ee;+-'r, p ), (5)

I'=I 4 i=1 i«
~ Supported in part by the U. S. Once of Naval Research.
t' National Science Foundation Postdoctoral Fellow.
' H. Bethe, Z. Physik 71, 205 (1931).
~ L. Hulthen, Arkiv Mat. Astron. Fysik 26A, No. 11, (1938).' J. des Cloizeaux and I. J. Pearson, Phys. Rev. 128, 2131

(1962).
4 This notation comes from Ref. 3 and is explained in detail i

Sec. II.

where the summation extends over all permutations of
the integers 1, 2, . . ., r, and Pj is the image of j under

' E.Ledinegg and P. Urban, Acta Phys. Austriaca 6, 257 (1953).
n Our definition of e is smaller than that given in Refs. 1, 2, and

3 by a factor of N '.
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Let Ep and E~p be the largest and smallest eigen-

(I) values of the Hamiltonian (1) with J)0, corresponding
to the ferro- and antiferromagnetic ground states,
respectively:
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the 2th permutation. The "wave vectors" k; (real or By a similar argument, the state of maximum energy

complex) satisfy the equations in class C should correspond to

%kg ——2irhg+ Z 4gi

&(~i)

1)2j )r j (6)

where the X's are integers between 0 and E-1, and the
p's are defined by

(12)

cot-,'p;i =-,'(cot-,'k; —cot-,'hi),

The energy of the state (5) is equal to

For S=O there is only one state in class C, the anti-

(7)
ferromagnetic ground state,

Xi= 1, X2 3, X3=5, . . ., XNi2=1V —1. (13)

X;+i&X;+2, (10)

or the eigenstates (5) corresponding to these sets. The
importance of class C comes from the following
properties.

1. For each set (X;} in class C there is a solution to
(6) for which all the k; are real and no two are equal.
[When two k's are equal, the state (5) vanishes
identically. ]

2. For a given total spin 8, the state with the lowest
energy (J&0) belongs to class C.

Appendix A contains a rigorous proof of the first
property, together with a general discussion of the be-
havior of the solutions (k;} of (6) as a function of the
sets (X;}.The second property has not yet been proved,
but it is very plausible on the basis of arguments by
Bethe' and Orbach, ~ and calculations on finite chains by
des Cloizeaux and Pearson, ' and the author.

For an antiferromagnetic chain, the energy of a state
is lowest when e [see (3)] is largest, and vice versa. Now
by Eq. (8), e is largest, for a given r, when the k, cluster
near the center of the interval [0,2ir]. This may be
expected, according to plausible arguments in
Appendix A, when the X; cluster near the center of
[0,1V], subject to the constraint (10). Hence, for a
given total spin S=~X-r, the state of minimum energy
in class C should correspond to

&i=-',X—r+1, 4=4+2, Xg
——4+2, . . .,

X,=-,'llr+r —1. (11)
' R. Orbach, Phys. Rev. 112, 309 (1958).
R. B. GriKths (unpublished).

The order of the X's associated with a state (5)
through Eq. (6) is unimportant. Furthermore, a state
with some X's equal to zero has the same energy and
total spin as the corresponding state in which the zero
X's have been eliminated. ' Hence, without loss of gen-
erality we may assume that

O&X,&X,« "X&E (9)

By "class C" we denote either the sets (X,} satisfying,
in addition to (9), the restriction

We have tacitly assumed in writing (11), (12), and (13)
that E and r are even; minor modifications are re-

quired if one or the other is odd.
There also exist solutions of (6) for which two or

more of the k; are not real but complex. For the case
r=2, Bethe' showed that complex k values result in a
state (5) for which ~u(ei, e2) ~' decreases exponentially
as ~N2 ni~ —increases, and thus has the form of two

spin waves interacting to form a bound state. We shall,
for convenience, refer to any state for which some of the

k; are complex as a "bound" state, and to states for
which all k; are real as "unbound" states. Some of the
unbound states are not contained in class C, though
Bethe's discussion indicates that these are relatively
few in number as E becomes infinite.

k(x) =2~x+-', y(x,y)dy,

cot-,'Q(x, y) = -', [cot-',k (x)—cot-', k (y)], (15)

eo
——-', [1—cosk(x)]dx, (16)

where X; has been replaced by Ex and k; by k(x).
By differentiating both sides of (14) with respect to

x, Hulthen2 obtained an integral equation linear in the
function dx/dk:

dx
1=m—+csc'(-,'k)

dk

(dx/dk') dk'
(17)

4+ (cot-',k—cot-', k')'

which, by means of the substitution

$= cot-,'k,

fp(&) = —dx/dP,

III. THE HULTHEN INTEGRAL EQUATION

A. The Antiferromagnetie Ground State

In the limit of large X it is reasonable to replace (6),
(7), (8) for the set X; given by (13) by the equations
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where

(37) disagreement with results published by Ledinegg and
Urban, ' which we believe to be in error. For further dis-

cussion, see Appendix B.

~(~)= p p(x)dx, (39)

b(n) = pr e~-'I'&~* p(x)dx. (40)

Since the kernel R(x) decreases as x ' f'or large x, it
is reasonable to suppose that the function p(x) is de-
termined primarily by the 6rst kernel in the integrand
in (36) when n is large. One can, in fact, show (we shall
not give the proof here) that as rp becomes infinite, "

C. States of Maximum Energy

For a given total spin S, the states of maximum

energy in class C are associated with sets of integers of
the form (12). The integral equations in the limit
E—+ ~ are obtained in close analogy to the results in
part 8, so we shall omit details. Corresponding to
Eqs. (32)—(34) one has

f(E) =:p(5) —[&(5 ~)+&(5+v)]f(n)~n. (46)

a(n) =a [1+(2 n)-']+0(inn/ '),
b (n) =bp+0(n-'),

da(n)/dn= 0(n—'),
db(n)/dn= 0(n—')

(41)

P=

f(k)g p($)dk,

f(k)A,

(47)

where ap and bp are obtained from (39) and (40) when and, corresponding to Eqs. (32a)—(34a),
p(x) is replaced by q(x), the solution to the equation

f(()=fp(&)+ ~(k n)f(n)—dn, (46a)
q(x) = e&

—'i'i + R(x—y) q(y) dy. (43)

Equation (43) has been solved numerically" using a
computer program with several internal checks. We
believe the results,

fp(k)f(5)dE, (47a)

ap ——0.48394,

ho= 1.15573
(44)

When o. or 0 is small we have

(48a)

are correct to five decimal places. Combining (37),
(38), (41), and (44), we have, for large n or for small p.,

q= (4.9348L1—(7m) ']+0(inn/n'))a',

1
=4.9348 1+ cr' 0

2 lno-

p' In(~ lnp ~)

(lno.)'
(45b)

It is clear that p is not an analytic function of a at
p. =0. The constant 4.9348 agrees with 7r'/2 to five sig-
nificant figures, and there are certain plausible (though
far from rigorous) arguments based on the spin-wave
spectrum of des Cloizeaux and Pearson' which suggest
that the value should be 7r /2 exactly.

The asymptotic behavior given by (37), (38), and
(41) is in agreement with numerical calculations of
and p for finite n (discussed below in part D), but in

"Capital 0 stands for "of the order of" in the sense used by
E. T. Whittaker and G. ¹ Watson, A Course of Modern Analysis
{Cambridge University Press, Cambridge, England, 1927), 4th
ed. , p. 11.

"The actual computations were carried out, purely as a matter
of convenience, on an integral equation equivalent to (43), but
which used the kernel E instead of R.

whereas when n is large, and therefore p is small

x' P (50)

The results (49) and (50) have been confirmed by nu-
merical computations.

It must be emphasized that the energy is a maximum
only for states in. class C. In general, for a given value of
S, there will be states not belonging to class C with
energies both less than and greater than the maximum
for class C.

D. Numerical Solutions. of the
Integral Equations

The integral equations (32) and (46a) were approxi-
mated by a set of 41 coupled linear algebraic equations
which were solved using a Control Data Corporation
1604 digital computer. The results are shown in Fig. 1
where the normalized energies p and g Lsee (3)] are
plotted as a function of p. =s/X, where 5 is the total.
spin of the state, and p= ~

—0,
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0—

0 =S/N

0',

—0

of S lie above the lower curve in Fig. 1 for %=3, 5, 7,
and 9, and below the curve for %=2, 4, 6, 8, and j.0.
Points for E=9, 10 are shown. in Fig. 1 (open and solid
circles, respectively) and lie quite close to the com-
puted curve, which should represent the limit as E
becomes infinite.

A strict upper bound on the minimum energy curve
is provided by the work of Bulaevskii. "At zero tem-
perature he, in e6ect, finds, in a particular representa-
tion, the lowest diagonal element of the Hamiltonian
(1) in a subspace containing all states with a given s
component of total spin. Of course, the lowest diagonal
element must be larger than the lowest eigenvalue. The
energy so obtained is, in our notation,

ri~ ——a' —~ ' cos7ra —(s. ' coss.a)s+ln2 —st. (51)
FIG. 1. Highest and lowest energies for states in class C as a

function of the total spin S. The circles represent the lowest
energies for fInite chains containing 9 and 10 atoms.

A strict lower bound on the minimum energy curve
may be obtained if we write the Hamiltonian (1) as

Table I contains values of 0- and q for the lower curve
in Fig. 1. If the arguments alluded to in Sec. II are
correct, these energies, for a given 0-, should not only be
the lowest in class C, but also the lowest for all states
in the antiferromagnetic chain. Fortunately, there are
some independent checks on this property.

where
X=Xs+Xt,

Xs——2J Q (S,*S~ '+S,vS;~P),

Xt——2J Q S;*S;+t',

(53)

(54)
TABLE I. The minimum energy q of levels in class C for various

values of 0 =S/N. At zero temperature, o- is proportional to the
magnetization and 2'/do- is proportional to the applied magnetic
Geld.

0.000000
0.001280
0.002407
0.004531
0.006218
0.008538
0.011728
0.016117
0,02216
0.02600
0,03050
0.03579
0.04200
0.04931
0.05789
0.06799
0.07986
0.09382
0.11020
0.11943
0.12943
0.14025
0.15194
0.16458

0.00000
0.02362
0.04412
0.08235
0.11245
0.15349
0.2094
0,2855
0.3887
0.4534
0.5285
0.6156
0.7166
0.8333
0.9677
1.1220
1.2980
1.4975
1.7214
1.8425
1.9695
2.102
2.240
2.383

0.00000000
0.00000759
0.00002668
0.00009387
0.00017608
0.0003303
0.0006198
0.0011630
0.002182
0.002989
0.004095
0.005607
0.007678
0.010509
0.014377
0.019654
0.02684
0.03659
0,04979
0.05802
0.06754
0.07855
0.09125
0.10586

0.17822
0.19293
0.2088
0.2258
0.2441
0.2636
0.2845
0.2955
0.3068
0.3184
0.3304
0.3428
0.3554
0.3685
0.3818
0.3955
0.4095
0.4239
0.4385
0.4535
0.4687
0.4842
0.5000

0.12262 2.529
0.14177 2.677
0.16357 2.828
0.)8829 2.977
0.2162 3.125
0.2475 3.268
0.2823 3.405
0.3012 3.470
0.3209 3.533
0.3417 3.593
0.3634 3.650
0.3861 3.703
0.4097 3.753
0.4343 3.798
0.4598 3.840
0.4862 3.877
0.5135 3.909
0.5416 3.937
0.5706 3.960
0.6002 3.977
0.6306 3.990
0.6616 3.997
0.6931 4.000

Energies for finite chains containing %=2, 3, 4, . . . ,
10 atoms have been computed directly from the
Hamiltonian (1).'""The lowest energies as a function

"R.Orbach, Phys. Rev. 115, 1181 (1959)."J.C. Bonner and M. E. Fisher (to be published).

ria(o) &q(o) &rig(o), (56)

and, indeed, the values of q in Table I lie within the
specified bounds. For instance, at 0 =0.3554 we have

g~ =0.4103,

q =0.4097,

ye=0 4089

For larger values of 0- the bounds are even closer
together, since rl~ —ga goes to zero as (-,' —a)' as a.

'4 L. N. Bulaevskii, Zh. Eksperim. i Teor. Fiz. 43, 968 {1962)
Ltranslation: Soviet Phys. —JETP 16, 685 (1963lj.

'5 K. Lieb, T. Schultz, and D. Mattis, Ann. Phys. (N. Y.) 16,407
(1961);S. Katsura, Phys. Rev. 127, 1508 (1962); see also Ref. 14.

16 Pointed out, for example, by P. W. Anderson, Phys. Rev. SB,
1260 {1951).

and the superscripts denote the x, y, and s components
of the spin operators. The Hamiltonian (53) has been
solved exactly" and the minimum energy obtained as a
function of the 2' component of total spin. Of course
(54) is just the Ising Hamiltonian. The sum of the mini-
mum energies for these two Hamiltonians,

ria=
~

a
~

—m. ' cosrra+ln2 —-,',
is a lower bound on the minimum energy for (1), since
the lowest eigenvalue of the sum of two Hermitian
matrices is larger than the sum of the lowest eigenvalues
of the summands. "

We therefore expect that
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5.0 I I 1 I I I I commutes with the exchange energy (1).Here p, is the
Bohr magneton, g the electron g factor, and S,' the s
component of the ith spin. The lowest level of the chain
with a given total spin S will have an energy

Ejr (S)= Z& (S) gfiHS—,

4.5-
where E(S) is the lowest energy in the absence of a
magnetic field,

E(S)= 2N Jri(S/N)+Egr . (59)

4.1
0 0.5

1/fx
1,0

FIG. 2. The ratio q/e for the states of minimum energy in
class C as a function of 1/a. The dashed line at the left side gives
the asymptotic behavior as n ' goes to zero.

approaches —,'. These bounds are not of much value
when 0- is small.

The numerical calculations also con6rm the asymp-
totic behavior of rf and o for large n given by Eqs. (37)—
(42). In Fig. 2 the ratio

b(n)/a(n)'= rf/os

is plotted as a function of 1/n. Results for n)4 were
not very accurate and have not been included in the
graph. But there is no reason to doubt that the curve
approaches the asymptotic limit, shown by a dotted
line, smoothly as a ' approaches zero.

By rf(S/N) =ri(o) we mean the function corresponding
to the lower curve in Fig. 1 and the values in Table I.

Let So=No s be the value of S for which Esi(S) is a
minimum. It is determined by setting the derivative
with respect to S of the right-hand side of (58) equal to
zero, with the result

gf Hl J=2n'(oo)

0.065

MJ

g2p.'H

0.060

0.055

008
IV. MAGNETIC MOMENT AND SUSCEPTIBILITY 1 2

AT ZERO TEMPERATURE gpH/J

FIG. 4. The ratio of magnetization to magnetic field as a
Let there be a magnetic field H along the positive s function of the field, at zero temperature. The circle at the

axis. The Zeeman energy left side /obtained from Eq. 1621$ shows the ratio in the limit
as H goes to zero.

5-

X,=glrH Q S,*

l l l i l I 1 l

(57)
Here r/(o) stands for dri/do; this quantity is tabulated
as a function of 0- in Table I. At zero temperature, the
free energy of the chain F is equal to Esr(Ss), and the
average magnetization per spin, M, is given by

M = N'dF/dH =gaia—o. '(61)

Figure 3 shows M as a function of B.As II goes to zero,
the ratio M/H approaches a limiting value, 'r the zero
6eld susceptibility:

x =0.050661g'ps/I (62)

2

g 11 H/J

FIG. 3. The magnetization as a function of magnetic field for the
antiferromagnetic chain at zero temperature.

The numerical constant in (62), as/4bs, is equal to
(2vrs) ' to five significant figures. /See the remark follow-

ing (45b).$
The ratio M/H as a function of H is shown in Fig. 4.

A peculiar feature of this curve is that it approaches the
limiting value at H=O with infinite slope [as may be

' The reader may verify this using (37), (38), (41), and (42)
to evaluate dq jdo- for large values of n.
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verified by means of (41) and (42)7, a result of the fact
that g(e) is not an analytic function near o =0.
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APPENDIX A. EXISTENCE OF SOLUTIONS OF
EQUATION (6) FOR STATES IN CLASS C

It is convenient to regard (6) as a nonlinear trans-
formation of the vector (ki, k2, . . ., k„) into another
vector with components

k, '=2~N 9,;+N ' Q p(k;, ki),
& (&7')

(A1)

where for p;i we have written P(k;,ki). A solution to (6)
is a fixed point of the transformation (A1). If we at-
ternpted to solve (A1) by iteration, a sensible starting
value for the k; would be 2vrS 9,, which lies within the
interval (0,2~). The function p(k;, ki) is positive for
k~) k; and negative for k;) k~ if k; and k~ are real and

V. CONCLUSION

The principal results of the present paper are found
in Fig. 1 (and Table I) which shows the upper and lower
limits of the energies of states in class C as a function
of the total spin of the state, in the limit S~ ~. From
the lower limit we have computed the magnetization as
a function of field in the limit of zero temperature.

The magnetization curve is exact in the sense that
we have made no approximations in treating the
Hamiltonian (1) other than the neglect of terms which
vanish (or are expected to vanish) as N becomes infinite
relative to the terms retained. Nevertheless, certain
hypotheses which enter into the Bethe formalism and
our use thereof are, at present, supported by plausible
arguments rather than rigorous proof. Perhaps we may
say that the energies and magnetization curve com-
puted above are "exact" in the same sense that
Hulthen's value for the ground-state energy or the des
Cloizeaux and Pearson spin-wave spectrum are "exact."

The problem of determining the magnetization and
other thermodynamic quantities at low (nonzero) tem-
peratures for the antiferromagnetic chain remains un-
solved. (At high temperatures, the numerical results
obtained for finite chains are probably adequate for
most purposes. ' ") Unfortunately, if this problem is to
be attacked within the framework of the Bethe for-
malism, it appears necessary to calculate energies for
states outside class C, a rather dificult task since the
k, are in general complex.

fall in the interval (0,2~). Hence the second term on the
right side of (Ai) represents an "attractive force"
between pairs of wave vectors, whereas the term
2~S 9; tends to "anchor" k; near its starting position.

When the starting values of k; and k;+~ are too close
together, successive iteration may result in a "colli-
sion": k;+i ——k;. But a solution to (6) for which two k's
coincide is trivial: The corresponding wave function (5)
vanishes identically. A possible remedy in this situation
is to make k, and k,+i complex. However, condition (10)
for states in class C ensures that the initial values of the
k; are far enough apart to make "collisions" impossible,
and hence one may expect a solution to (6) for which
all the k's are real. We shall now make these intuitive
notions more precise.

Let V be the real r-dimensional space of vectors of
the form (ki, k2, . . ., k,) and let E be the subset of
those vectors whose components satisfy the inequalities

k,)2~N —' k, (2m. (1—N ')

k,+~—k, &2m% ', j=1, 2, . . ., r—1.
(A2)

APPENDIX B. THE LEDINEGG-URBAN
CALCULATION

For convenience, we enclose equation numbers from
the paper by Ledinegg and Urban' in square brackets,
and transcribe the equations in our notation. They
obtain the following asymptotic behavior for 0- and q
as a function of n for large n using Eqs. (32)—(34):

~~{)5$8g(—I/2) era

0 398e& "'&~"/n'

L38dj

[37]
The result L38dg agrees with our calculations —see

(38), (41), and (44)—except for the numerical constant.

' G. T. Whyburn, Analytic Topology, American Mathematical
Society Colloquium Publications, Vol. XXVIII (American Mathe-
matical Society, New York, 1942), p. 243.

The function g(k;, ki) [see (7)j is, in absolute value,
less than or equal to x. It is continuous for all k;,kl in
the interval (0,2m. ) except at the points k;= ki. Thus, the
transformation (A1) is continuous on the set E. The
inequality

k,~i' k,') 27rN '—p,,+i X,) 2N 'p—(k;, k—;~i) (A3)

is a consequence of the fact that the function p(k, ,ki)
in either the region k, &k~ or the region k;) k~ is mono-
tone increasing in k; and decreasing in k~.

The li, for states in class C satisfy the inequalities (9)
and (10). This, together with the inequality (A3) and
the properties of p mentioned above, implies that the
k satisfy the inequalities (A2). In other words, the
transformation (A1) carries the set E into itself. The
set E is closed, convex, and bounded; and, since the
transformation (A1) is continuous on E, there must'
exist at least one 6xed point by Brouwer's theorem. "
We have not been able to show that the solution is
unique.
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l~(~) I/fo(~)«1, [24c]

However, [37] is in disagreement with (37) and (41);
in particular, the exponent in the former is half that in
the latter. The numerical solutions to Eqs. (32)—(34)
support (37) and (41) rather than [37].

Ledinegg and Urban obtain their asymptotic esti-
mate as follows. The function f($) in (32) (their
Eq. [23]) is set equal to

f(~) =so(~)+~(~), [24a]

where fs($) is the solution of (19) given by (23). They
assume that

stating that this inequality will be justified through an
explicit calculation of the function P. The justification
for [24c] is contained in their Eq. [33a]which indicates
that [24c] is correct, but only for $ ~

&n B.ut they have
already used [24c] for

~ $~ greater than n in order to
deduce an approximate integral equation for p, [26b].
Thus their treatment is not internally consistent.

On the basis of our results it may be shown that f($)
decreases as $

' for large $; on the other hand, fs($)
decreases exponentially. Hence, in fact, [24c] does not
hold for $)n, and the integral equation [26b] is not
correct.
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Zero-Field Spin Absorption in Paramagnetic Salts*

ARNOI, D D. PICKARt

National Bureau of Standards, Washington, D. C., and University of Maryland, College Park, Maryland

(Received 25 July 1963)

The spin absorption spectrum in the absence of a static magnetic field has been observed in several para-
magnetic salts at liquid-helium temperatures. The absorptive component of the complex susceptibility g"
was measured as a continuous function of frequency over the range 130-4000 Mc/sec by observing the
inhuence of powdered samples on the transmission of a tunable coaxial resonant cavity. Exchange narrowing
in qualitative agreement with the theory of Wright was observed in cupric salts. Moments of the shape
functions obtained by expressing the results in terms of an empirical, fitted function yield, on the basis of
the theories of Wright and Caspers, values of the exchange constant A of 3.3 and 3.7 for the cupric potassium
and cupric ammonium Tutton salts, respectively. The cupric salt experimental curves are lower and broader
than the curves proposed by Locher and Gorter. The absorption band in chromic potassium alum has a
"Hat-topped" appearance, and a width approximately three times the dipolar relaxation frequency po. No
temperature dependence of the shape functions was observed.

I. INTRODUCTION

S PIN absorption refers to the absorption of energy
from an oscillating magnetic Geld by a system of

mutually interacting magnetic spins which occurs when-

ever the frequency of oscillation is sufFiciently high to
compete with the relaxation processes tending to main-
tain the internal statistical equilibrium of the system.
Two classes of spin systems have been investigated:
assemblies of atoms having nuclear magnetic dipole
moments and crystalline compounds containing mag-
netic ions. The nuclear magnetic case, for which the
spin absorption frequencies are of the order 104 cps,
has been discussed by Anderson. ' Magnetic ions in
concentrated magnetic salts have spin absorption fre-
quencies of the order 10' cps, and have been the subject
of a large number of investigations, ' ~ including the
experiments reported in the present paper.

*Based upon a thesis submitted to the University of Maryland
in partial fulfillment of the requirements for the degree of Doctor
of Philosophy, 1962.

f Present address: Portland State College, Portland, Oregon.
' A. G. Anderson, Phys. Rev. 125, 1517 (1962).
~ For a review of early work, see C. J. Gorter, .Paramagnetic

Relaxation (Elsevier Publishing Company, New York, 1947); C. J.
Gorter, Progress in I.ow Tergperatlre Physics (Interscience Pub-
lishers, Inc. , New York, 1957), Vol. II, p. 267.

In paramagnetic salts, for the case of small or zero
static magnetic 6elds, and at frequencies much higher
than the reciprocal of the spin-lattice relaxation time
(rr,

—'&10' cps at liquid-helium temperatures), the ab-
sorption of energy from the oscillating 6eld is a mani-
festation of the spin-spin relaxation processes. Even a
weak spin-lattice interaction is sufFicient to maintain
the spin system in good thermal contact with the lattice,
but slight departures from equilibrium completely
internal to the spin system give rise to a quadrature
component of the magnetization x".The resulting spin
absorption, proportional to x", may be thought of as
arising from transitions among energy levels each of
which corresponds to a stationary state of the crystal
as a whole. The frequency dependence of x" is expressed
in the form

x"= s~[vf(.)/hr], -

' L. J. Smits, H. E. Derksen, J. C. Verstelle, and C. J. Gorter,
Physica 22, 773 (1956).

4 J. C. Verstelle, G. W. J. Drewes, and C. J. Gorter, Physica 24,
632 (1958).

5 H. Hadders, P. R. Locher, and C. J. Gorter, Physica 24, 839
(1958).

6 P. R. Locher and C. J. Gorter, Physica 27, 997 (1961).' P. R. Locher and C. J. Gorter, Physica 28, 797 (1962); P. R.
Locher, thesis, Leiden, 1962 (unpublished),


