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In experiments reported elsewhere, adiabatic rapid passage (ARP) has been performed on multilevel
electron-paramagnetic crystals having three equally spaced energy levels separated by Acro. All transitions
among the three levels are allowed due to crystalline electric-field mixing. of the pure spin states, Simul-
taneous ARP inversion of the two coincident transitions at coo produces a negative temperature simul-
taneously on all three transitions, at coo and 2~0. The present paper explains these results through an analysis
of adiabatic rapid passage in a spin system having an arbitrary spin-Hamiltonian with three equally spaced
energy levels. Previous treatments of ARP have been limited either to the multilevel case with pure spin
states or to the two-level case with mixed states. In the present analysis, the 3&&3 density matrix is trans-
formed to an equivalent matrix whose equation of motion contains a Hamiltonian which is real and con-
stant, even with the rf perturbation applied. The transformed matrix is expanded in terms of nine orthonor-
mal Hermitian basis matrices. Three of the expansion coeScients are directly related to state populations.
The time variation of the expansion coeKcients is calculated for ARP conditions. The transition probabili-
ties of the two coo transitions are not required to be equal. The final values of the three relevant expansion
coeKcients indicate negative temperatures on all three transitions.

INTRODUCTION

' OST experimental work on adiabatic rapid passage
(ARP) in electron-paramagnetic solids has been

concerned with magnetic resonance either in two-level
systems'~ or in two-level transitions of multilevel
systems. ~' This work has been conceptually based on
the motion of the macroscopic magnetization vector as
described by the Bloch equations. ' Strictly speaking, the
Bloch equations are applicable only to solids for which
the crystalline electric held does not appear as a term in
the spin Hamiltonian. For such cases the undamped
portions of the Bloch equations,

(d/dt)(M) =y(M)XH, (1)

are equivalent to the time-dependent Schrodinger equa-
tion which describes the motion of the pure spin states
in the presence of the external magnetic field. Equations
(1) then lead to ARP inversion of (M,) for both the two-
level and the multilevel cases.

However, when a crystalline term appears, the expec-
tation components (M,),(M„), and (M,) of the mag-
netization vector no longer obey Eqs. (1) unless the
operator for the crystalline term commutes with the
vector spin operator. ' For this reason, Eqs. (1) are
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not usually valid for solids. When they are not, the
Schrodinger equation can still be cast in a form identical
to Eqs. (1) as long as the rf fields induce transitions
between only two states. " The two-state motion is
given by

(d/dt)r= ta &(r. (2)

'OR. P. Feynman, F. L. Vernon, Jr., and R. W. Hellwarth,
J. Appl. Phys. 28, 49 (1957)."P. E.Wagner, J. G. Castle, Jr., and P. F. Chester, in Quantum
Electronics, edited by C. H. Townes (Columbia University Press,
New York, 1960), p. 509.

"P.E. Wagner, J. G. Castle, Jr., and P. F. Chester, J. Appl.
Phys. 31, 1498 (1960)."R. J. Morris, see Ref. 9, Chap. V.

Components of the vector r are appropriate combina-
tions of the state coe@cients which describe the time
development of the complete quantum state for the two
levels involved, when that state is expanded in terms of
the two corresponding stationary eigenstates of the
stationary spin Hamiltonian. This description has
allowed the Bloch equations to be conceptually used by
workers who have performed ARP experiments on
isolated pairs of energy levels in multilevel crystals.

A notable exception is an experiment of Wagner,
Castle, and Chester" "which was performed at a point
in the paramagnetic spectrum where the crystalline and
Zeeman terms were comparable, and where three succes-
sive energy levels (Ei,Es,Es) were equally spaced. An
adiabatic rapid passage was simultaneously performed
on the 1-2 and 2-3 transitions. Before passage, the
system was in equilibrium with a thermal bath, but
after passage, each of the three transitions (1-2, 2-3, and
1-3) achieved a negative spin temperature. The author
has continued this work, " and has found, under the
experimental condition (Es—E&)=(Es—Er)(kTbeth,
that the negative spin temperatures are approximately
equal. Since both experiments were performed under
conditions where the crystalline and Zeeman terms were
comparable, and where transitions were simultaneously
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induced between more than two spin states, neither
Eqs. (1) nor Eqs. (2) are applicable. The experiments
therefore pose a new problem in magnetic resonance.

Wagner, Castle, and Chester" postulated an explana-
tion of the simultaneous ARP inversion phenomenon.
They assumed, following Red6eld, ' that spin tempera-
tures can be defined for the 1-2 and 2-3 transitions in
the rotating frame, even in the presence of the large rf
field required for ARP. They further assumed that spin-
spin coupling between the superposed lines holds them
at the same spin temperature throughout the passage,
and thereby concluded that if either transition is in-
verted by ARP, the other will be inverted by spin-spin
coupling to the 6rst. No theoretical analysis has been
presented in support of their argument.

The author questions the validity of their approach in
cases where a crystalline term appears, for the following
reasons. RedGeld's spin Hamiltonian contains Zeeman
and spin-spin terms but does not contain crystalline-
electric terms. He was therefore able to remove the rf
time dependence in the Hamiltonian by transforming
the problem to a frame which rotates with the circularly-
polarized rf Geld. Had crystalline terms been present,
the rotating-frame transformation would not have
removed the time dependence. Instead, it would have
introduced additional rf variations due to the static-
Zeeman or static-electric terms, or both, depending on
the choice of rotation axis. Therefore, RedGeld's calcula-
tion does not directly apply to the simultaneous ARP
experiments, and the assumption that a rotating-frame
spin temperature can be de6ned for these experiments
is unsupported if the transformation is to be performed
in real space. Some other transformation which sup-
presses the time dependence might possibly lead to the
de6nition of a spin temperature for large rf Gelds, but
it would be closely linked with the three-state dynamics
of the system of noninteracting spins, which is the
subject of this paper.

In the following analysis we treat the ARP behavior
of a triplet of spin states having equally-spaced energy
levels. The system is driven by a weak, sinusoidally
time-dependent perturbation of angular frequency
co =coo, where Acro is the energy spacing between adjacent
levels. An adiabatic passage is simulated by slowly
sweeping or through coo, with coo fixed, such that A~
=~0—co adiabatically passes through zero. The rapid
condition of ARP is satisfied by assuming that the
total passage time is much smaller than all relevant
spin-lattice relaxation times. The three-state analysis is
not restricted to a simple triplet. If no other transition
frequencies are near coo, it is equally applicable to three
simultaneously resonant levels in a general (25+1)-
state multiplet for which S&1.'

The approach taken in this paper is essentially an
extension of Eq. (2) to three equally spaced levels.

"A. G. RedGeld, Phys. Rev. 98, 1787 (1955).
"R.J. Morris, see Ref. 9, Chap. III.

Density matrix formalism is used, the matrix representa-
tion of operators being that for which the static spin
Hamiltonian is diagonal. Use of this representation
implies that the eigenstates of the static spin Hamil-
tonian are basic to the subsequent calculation of
perturbations induced by a weak rf Geld. The chosen
form of the static spin Hamiltonian is arbitrary in order
that both Zeeman and crystalline electric terms be in-
cluded in a general fashion. Solutions for the energy
levels and rf perturbation matrix elements of particular
paramagnetic crystals are presumably available else-
where in the literature.

The Grst half of the paper is devoted to obtaining an
equation of motion analogous to Kq. (2), and the second
half to its ARP solutions. In our treatment the three-
dimensional vector r of Eq. (2) is replaced by a nine-
dimensional vector y. The components p, of y are
appropriate combinations of the density-matrix ele-
ments. Both the equation of motion for 9, Eq. (33), and
the one for r, Kq. (2), de6ne orthogonal transformations
in their respective vector spaces. They both possess
time-dependent solutions which are precessions around
their steady-state solutions. As a result, the ARP motion
of g will be similar to that of r.

The components of g are de6ned such that three of
them (pe, ps, and p4) collectively specify the three-state
populations. Solutions are obtained for these compo-
nents at the end of an adiabatic passage in terms of their
initial values. The predicted Gnal-state populations
agree with existing experimental observations. Because
of this agreement, it appears that the phenomenon of
simultaneous ARP inversion is a property to be associ-
ated with the dynamics of individual three-level static-
6eld spin systems and that it does not depend on extra-
neous spin-relaxation processes. "

QUANTUM-MECHANICAL MODEL

We consider an ensemble of identical paramagnetic
ions of effective spin S= 1 situated in a crystalline solid
and subjected to a uniform static magnetic 6eld,
identical static crystalline electric Gelds, and a uniform
rf magnetic field. The Hamiltonian operator consists of
two parts":

(3)

The operator Ho'P is the static spin Hamiltonian which
includes the effects of crystalline electric 6elds as well as
the static Zeeman energy. The operator V'& accounts
for the Zeeman energy of the spins when they are sub-
jected to a rf magnetic field. Since both terms in H'~
correspond to physical observables, II'r is a Hermitian
operator.

We assume that He'e has three eigenstates
~ f;) with

energy eigenvalues E,, such that

&e"I&)=& IA) (4)
'SWe designate an operator by A & and the corresponding

matrix by A.
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where j=p, q, r. Ke assume that the three-energy eigen-
values E» E„E„,are equally spaced with

E„=Ao)0,

E~=O,

+p= —L)0. (Sc)

DENSITY MATRIX AND EQUATIONS OF MOTION

The quantum dynamics are calculated by means of
the density-matrix formalism. ""This method includes
a statistical average over the assembly of expectation
values for the individual ions and thereby yields infor-
mation about observable macroscopic quantities. The
formalism greatly simpli6es the calculations since it
allows one to handle a large number of dynamical
variables in a systematic fashion. The physical signi6-
cance of the individual density-matrix elements de-

pends on the representation in which the matrix is
calculated. We use the representation in which Ho is
diagonal. The elements of the density matrix are, by
de6nition,

(7)

where p'I' is the density operator. "In this representa-
tion, the diagonal elements p;; are the ensemble-
averaged occupation probabilities for the states IP,). If
iV is the total number of ions in the ensemble (i.e., in

the crystal sample), the population. n, of a particular
state lg, ) is

e, =Ãp;, .
The off-diagonal elements p;I, give information about
the ensemble-averaged phases of the quantum states.
The matrix p is Hermitian.

Ke are principally interested in the behavior of the

'7 U. Fano, Rev. Mod. Phys. 29, 'l4 (1957).
'8 D. ter Haar, Rept. Prog. Phys. 24, 304 (1961).

The arbitrary zero reference level of the energy scale
has been chosen such that E,=O.

The rf magnetic field produces a time-dependent
interaction V"(t) which is assumed to be weak com-
pared to Ho'~ and sinusoidally varying at an angular
frequency ~=coo. We assume that the rf magnetic 6eld is
linearly polarized and is given by H&cosset. The rf
Zeeman energy operator of each ion is then

V'~(t) =gPHi S't' cosset, (6)

where g is the effective gyromagnetic ratio, p the Bohr
magneton, and S't' the effective spin operator.

The analysis ignores the various interactions between
the paramagnetic spins and the crystal lattice, and be-
tween the spins themselves. The present calculations

apply to any assembly of identical quantum systems,
each of which has a number of energy levels, three and
only three of which are equally spaced with spacing &0,
where the quantum systems are subjected to a weak
sinusoidal perturbation of frequency co=~0.

The time variation of p is obtained directly from the
time-dependent Schrodinger equation:

dp
(Hp —pH) . —

tk

Here H is the matrix of H"(t) when calculated with

respect to the eigenstates of Ho'~. Since p and H are
Hermitian matrices containing three rows and columns,

Eq. (9) is equivalent to a system of nine coupled differ-

ential equations in nine real variables, eight of which

are in general independent.
The elements of H are

The matrix Ho is diagonal with real diagonal elements

E;, and V contains elements most of which are complex
and all of which are in general nonzero. The elements of

V are:

V, t, (t) =gpss, IHt S'&I&,) costAt=gpHtp7, cos(at, (11)

where H, =
I I,I, and pj»s the magnetic dip»e-mat»x

element calculated between states Ittt, ) and Itt t, ) for an

rf field of unit amplitude. The complex quantities p;I,
have magnitudes of order unity or less, and are de-

pendent upon the particular transition j-k, upon the
direction of Hy, and upon the point in the paramagnetic
spectrum for which they are calculated. We further

write:
V t, (t) =Au»tt t.(e'"t+e '"')—(12)

where rot
——(1/2h) gPH t,

TRANSFORMATION OF EQUATIONS OF MOTION

Solution of Eq. (9) will be simpli6ed if we introduce

the following transformation:

where

p
&

(t) t, tA ar t
p (t) &

tA ttt-
Vt(t) ~tAtttV(t)s tArut—(13a)

(13b)

Ho
A=— = 0 0 0

0
0 0

(13c)

diagonal elements. However, since the motion of these
elements is closely coupled. to that of the oQ-diagonal

elements, we must deal with the matrix as a whole. For
our case p is a Hermitian matrix with three rows and
columns, and contains nine real variables which are in

general distinct. Only eight of these variables are inde-

pendent since the sum of the diagonal elements must be
unity in order to conserve probability. If the spin
system is in thermal equilibrium, with V't'(t) =—0, the
density matrix is diagonal in our representation and

p» exp( ——E,/kT—) .
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ps+ (Ajj—&kIs) &

t)

pic = pii ~

(15a)

(15b)

The matrix equation (14) is a system of coupled
diRerential equations with time-varying coeKcients.
The elements p;I,

' may be regarded as coordinates in an
oscillatory system with nine degrees of freedom. In this
picture the transformed unperturbed Hamiltonian
AhcoA determines the natural oscillations of the system,
and the perturbation V' drives the oscillations via a set
of sinusoidally time-varying coeS.cients in the equations
of motion.

The natural frequencies of Eq. (14) can be identif1ed
by setting V'=0. Computation of the commutator
(A p' —p'A) leads to the following motion:

~ f
Pj.l = P22 =P33 =~) (168)

Computation of the derivative of p' leads to

dp'/dt= (1/171)[(AA(dA+ V') p' —p'(kh(0A+ V')]. (14)

The parameter A~=cop —~ specifies the extent to which
the driving frequency co de'ers from the magnetic reso-
nance frequency coo of the p-q and It-r transitions. We
shall assume that. ~ is dose enough to ~p that hen is much
smaller than either co or G)p.

Except for the factor Ace, the transformation has
accomplished the removal of the unperturbed Hamil-
tonian H p from the equations. We shall also see that it
has removed the time dependence from some of the
terms in the perturbation matrix V. This transformation
is analogous to the rotating-frame transformation that
is commonly used in magnetic resonance problems
where the spin Hamiltonian contains only Zeeman
terms. The advantage of the formulation is that the
equations of motion explicitly contain the parameter
Ace. By solving for the motion of p' assuming that Ace is
arbitrary and fixed, and then by considering the be-
havior of p' as Ace slowly passes through a succession of
quasifixed values, we will be able to obtain the occupa-
tion probabilities of the states p, q, and r at the end of
an adiabatic passage in terms of their initial values. The
transformed matrix p' will be sufficient for this purpose
because its diagonal elements are identical with those of
the original matrix p:

If we denote the driving frequencies by

~1~+ =~(A,;—A~k+1), (»)
and not, e that Apy= —$, g =0, and g„„=$ we find

at v&q+, vq~, vq&+, and v„q are zero, and that the
other frequencies present are &co, ~2~, and ~3'.

We shall retain only the zero-frequency terms of V'
since the other terms have frequencies which are sub-
stantially diRerent from the natural oscillation fre-
quencies and will, therefore, have a negligible eRect on
the motion, provided the perturbation is small. Dis-
carding the high-frequency terms is analogous to
neglecting the counter-rotating component of a linearly
polarized transverse driving field in a simple magnetic
resonance problem. For our case the procedure may be
rigorously justified to first order in the perturbation by
a method from the theory of nonlinear oscillations.

Suppose the matrix elements p;k' are the components
x, of a vector x in a nine-dimensional vector space. When
~

A&a
~

&~)&&or, Eqs. (14) have the form:

dx/dt=co1+ e'""X (x) (19)

Here co~ is assumed to be small and the components of
the vector X,(x) do not explicitly depend on time. The
quantities v. are the different values taken by the fre-
quencies v;y~. One of these is zero while all the others
have magnitudes much greater than ~1. Equation (19)
is the standard form discussed at length by Bogoliubov
and Mitropolsky. " These authors show that the ap-
proximate solution to Eq (19) .is, to first order in (01,
the same as the solution of

0
V"=Ace& P, q~

0

Huq

0 pqg

grq
(21)

dx/dt =or1XO(x), (20)

where XD(x) is the vector coeKcient of the zero fre-
quency term in the summation of Fq. (19).

We may therefore replace the time-dependent matrix
V'(t) by a constant matrix V" in which all elements are
zero except those that correspond to the constant terms
in V'(t). The new matrix is

P12 (t) = P12 (o)&'

pals'(t) = p13'(0)~""'~

(t) (0)~1211+1

(16b)

(16c)

(16d)

In general, the elements in V"are all complex, but we
need not work with a complex driving matrix. We write
the complex elements of V" in terms of their magnitudes
and phases:

The natural frequencies are hen and 2hco which are both
very small compared to co and arp.

We also determine the driving frequencies of V'. From
Eq. (13b), we have

y. ~ y. &s~(A;;—AI,I,)tjk — j.I

Using Eq. (12) this becomes

V / ft~~ [~icy(dt~ —Akk+1) 1+et(a(Aig A1/g 1) tj (17)—

Vyq =AGO]ppq= AM&3Eyq8 ~nq
~ (22a)

V,~"=&1)1,~=h(o13f„,e'i'ne, (22b-)

~qr ~~&Pqr ~y~qr& ~q& (22c)

t)/rq ~l prq hG)p~qr~ s~e1' (22(l)
» N. N, Bogohubov and Y. A. Mitropolsky, Asymptotic Jrt/Iethods

in the Theory of Ron-Linear Oscillutions, translated from Russian
(Hindustan Publishing Corporation, Delhi, India, 1961), Chap. 5.
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In these equations, M„, and M„are real numbers. We
define a 3X3 diagonal matrix C whose only nonzero
elements are C»=+&„,and C„,= —p„,

five have been devised by the author such that they are
each orthogonal to the first four and to each other.

'1 0 0'
~~i= 7i~i(~~A na ~~A a.) .

Ke define a new transformation a,s follows:

~
—sC p~~+sa

(23)

(24a)

Uo ———0 1 0

'.0 0 1-

(27a)

ye &
—tCy~~&+sC

0
V'= ha)) M„~

0

3f„q 0
0 M,„

Mq„0
We take the time derivative of Eq. (24a), use Eq.

(i4) with V' replaced by V", and define a new matrix
JIo = PLAQ)A. The resulting equation of motion for p' is

(24b)

Because of the definition of p', the diagonal elements of
p' are p;,'=p;, for j=p, q, r Th.ey are the average
occupation probabilities for the states ~P„), ~P,), and

~P,), respectively. The matrix elements of V' may be
obtained by using Eqs. (22), (23), and (24b), which
gives

.0 1 0-
0 0-

1 1
U3 ———0 0 0 =—S„

V2 v2.0 0

0 1 0
1 1

Ug= — 1 0 1 =—S,
2 V2.0 1 0-

~0 —1 0
z 1

U2= — 1 0 —1 =—Sy,
2 V2

(27b)

(27c)

(27d)

dp'
=—(&'p' —p'&')

dt ih
(25)

0 0
1

U4= — 0 —2 0 (27e)

EXPANSION IN BASIS MATRICES

A powerful method exists for solving problems of
density matrix dynamics. "One expands the matrix as a
series in a complete set of orthonormal Hermitian basis
matrices U;. The coeKcients of expansion are real
numbers, and their time variation rejects the motion
of the original matrix. If the basis matrices are judi-
ciously chosen, one or more of the expansion coeKcients
will have a physical significance useful for a particular
problem. The basis matrices are orthonormal in the
sense that

Tr(U~U;) = bg. (26)

where O'=Ho'+V' is a real, constant matrix. The
matrices p' and II' may be regarded as the effective
density matrix and the effective Hamiltonian. Equa, —

tions (25), which relate them, are suKciently reduced
for our problem. The remainder of this paper is devoted
to their solution.

,0 0 1-

i0 1 0

U5 ——-1 0 —1
2 .0 —1 0.

0 1 0 '

Z

U6 ——— —1 0 —1
2 . 0 1 0-

0 0 1"

Uv= —0 0 0
v2 .1 0 0.

'0 0 1'
z

U8 ———0 00.
v2

'-—1 0 0.

(27f)

(27g)

(27h)

(27i)

If the series expansion is to be a complete description
of the original matrix, there must be as many different

expansion coeflicients as there are independent real

parameters in the original matrix. For an arbitrary /X t

Hermitian matrix, the set of basis matrices is a complete
set (for purposes of expansion) when it contains P
orthogonal'matrices. For describing the motion of the
3)&3 effective density matrix p', we need a set of nine

3)&3 orthonormal Hermitian basis matrices. Such a set
is given below. The erst four matrices are the identity
matrix and the three Pauli-spin matrices. The remaining

p'=Q piUg. (2g)

The quantities p~ are real numbers, not matrices.

p, =Trace(p'U;) . (29)

The coefficients p; are the projections of the effective

density matrix p' onto the various orthogonal basis
matrices U;.

We expand the effective density matrix p' in a series
of the matrices U~.
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p2= (1/~) (p..—p-), (30b)

p4=6 "(ppp 2p2.-+p-)
=6 '"L(pnn p2 ) (p22 —p .)j (3oc)

These two quantities are measures of population differ-
ences and can be directly observed in magnetic
resonance experiments. The first of these (p2) is the
population difference for the outside pair of levels. We
shall see that the equations of motion predict that p3 is
inverted under conditions of simultaneous adiabatic
rapid passage.

Three of the basis matrices are diagonal, namely
Up, U3 U4. The corresponding expansion coeKcients
(p2, p2, p4) have direct physical significance. The first
coefficient is

po= (1/~) (p.n+ p-+ p-) (30a)

This quantity is a measure of the total number of spins
in states ~$2,), ~f,), and ~p„), and will prove to be
independent of time. The other two coefficients are

t 2 3 4 5 6 7 8

0 h hid 0 0 0 0 0 Vg

2 -h~ 0

0 V)

-V,

-/gyes

0 0

0 0 0 -Vg

Vp 0

0 0

4 0 ~5V, 0 0 0 -very, 0 0

5 0 0 0 0 0 -h~ 0 -V)

6 0 0 Vg M3Vl ~ hih 0 V(

7 0 -Vg

8 -V2 0

0 0 0 -V1 0 -2k+

0 0 Vl 0 2 shih 0

Fio. 1. The matrix Q.

To evaluate Q, we expand the effective Hamiltonian
in a series of the matrices UI,

H'=Q h2U2

where h2 ——Trace(H'U2). The two terms of H' have the
simple expansions

MOTION OF EKPANSION COEFFICIENTS Hp' ——h3U3= —V2&cvU3, (35a)
The time dependence of p' can be converted into

motion of the set of expansion coeKcients p;. To do so,
we insert Eq. (28) into Eq. (25) and define a new,
antisymmetric, real matrix Q as follows:

1
Q 2= ——Trace[&'(U; U2 U2U;) j. —

ib
(31)

The equations of motion for the expansion coeKcients
of Eq. (28) then become

p;=2 Q;2p~.
k

(32)

Suppose we define the coeKcients p; to be the compo-
nents of a column vector g in a nine-dimensional vector
space. The equation of motion for y is

dy/Ch=Qh2,

(y+dti) = (1+QCh) ti.
(33)

Since Q is antisymmetric and real, (1+Qdh) is an
inhnitesimal orthogonal transformation on p." An
orthogonal transformation leaves scalar products un-
changed. Therefore, in the nine-dimensional space,
lengths of vectors and angles between them are constant
as the vectors move in the space, provided that they
satisfy Eq. (33). If y' is a solution of Eq. (33) which is
constant in time, and if p is any time-dependent solu-
tion, the length of y and the angle between g and y' are
both constants of the motion. We may therefore view
all time-dependent solutions y as precessions about the
steady-state solution y'.

20 H. Goldstein, CLassicuL Mechanics (Addison-Wesley Publish-
ing Company, Inc. , Reading, Massachusetts, 1959), pp. 124—127.

pl —+(dp2+ V2ps,

p2 ~~pl Vlp3 i3V2p4+ V2p2 p

p3 t/ lp2 ~2p6 p

(37a)

(37b)

(37c)

V'= hiU1+h2U2 ——&2k V1U1+V2A V2U2. (35b)

We have here defined two new quantities, V~ and V2.

Vi ——(coi/K2) (M„,+M,„), (36a)

V2: (coi/V2) (M, 2 M2 ) (36b)

The various elements in Q are obtained by evaluating
the traces in Eq. (31).To do this, we use the values of
the commutators (U;U2 —U2U;) which are presented in
the Appendix. The commutators are all either zero or a
constant multiple of some one basis matrix, except in
two cases where they are a linear combination of two
basis matrices. Because H' is composed of only three of
the basis matrices many of the commutators are
orthogon. al to H'.

Using the expansion

H'= hiU1+I22U2+h2U2,

and the commutation relationships, we obtain the
matrix elements of Q shown in Fig. 1. The row and
column containing elements Qjp and Qpj, have been
omitted because all of these elements are zero. Since all
elements Qpp are zero, pp

——0, which means that the total
occupation probability for the states ~f~), ~f,), ~f,) is
a constant of the motion. Only the coefficients p&,

p2, ~ ~, p8 are dependent on time. Thus it is sufhcient
to work with an SX8 matrix Q and the corresponding
system of eight coupled differential equations.

Neglecting the trivial equation p&
——0, Eqs. (32)

become
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r /p p2 ——C2 cosWt —(W/Vq)C~ sinWt,

p3 ——C~ cosWI+ (Vi/W)C2 sinWf+r~.

(40b)

(40c)

FIG. 2. Adiabatic passage inversion in the 6rst space for M'„~=M«.

p4
——V3 V2p2 —v3 Vg pe,

pg
———Ace p6—Vg p8 )

ps= V2p3+~~Vip4+»p6+Vlp71

pv= —V2pg —Vgpe —26~pa,

(37d)

(37e)

SOLUTION FOR EQUAL PERTURBATION
MATRIX ELEMENTS

When the matrix elements M„, and M,„are equal,
V~ is zero, and Eqs. {37)break into two uncoupled sets.
The problem in an eight-dimensional space reduces to
two independent problems in smaller spaces.

First space:

Second space:

p] = AMp2 )

p2
———A~pg —Vgp3,

p3= Vxp2.

(38a)

(38b)

(38c)

p4= —43Vgpe,

p5 = —Aco p6 —Vy ps, (39b)

P6=~&Vip4+»ps+Vipv, (39c)

p7 =—Vjp6—2660ps,

pg
——Vgpg+2» pv.

(39d)

Ke consider the motion in the 6rst space. Equations
(38) have the form of Eq. (33), where g is now a three-
element column vector (p~, p, ,p3). Since the matrix 0,
which corresponds to Eqs. (38), is antisymmetric and

real, the quantity

i pi =pP+ p2 +p3

is a constant of the motion. Also, all time-dependent
solutions of Eqs. (38) are precessions about the steady-
state solution. The general solution to Eqs. (38) is

ps= —V2pt+ V ipse+ 2»pr (37h)

These equations determine the dynamical behavior of
the system. Ke investigate their solution under some

speci al conditions.

Here, W= )VP+(»)'1'~' and C2, C&, and r, are three
arbitrary constants which are determined by initial
conditions.

We consider ARP inversion in the three levels, still
under the equal-matrix element or V2 ——0 condition. We
assume that the system is initially in a state which is
characterized by a diagonal density matrix, and an rf
magnetic field is applied whose frequency is o6 reso-
nance such that (»)'&)VP. At /=0, p~ and p2 are zero,
and p3 has a particular initial value p3', which leads to
the following initial constants:

r, = L(V,/»)'+1]-'p, o, (41a)

C,=0, (41b)

Ca ——(Vg/»)'r3. {41c)

For (V~/»)'&&1, r~= pso, and consequently C3(&pP.
Since C~ is zero and C3 is electively zero, application of
the oR-resonance driving Geld does not appreciably
excite the oscillatory solutions. Equations (40) show

that p~ and p2 are negligibly small for 3I&0, provided
(»)'» VP and therefore the quantity

~ p ~
is essentially

equal to the initial population difference p30.

Now, suppose we slowly sweep the driving frequency
through the magnetic resonance frequency, or vice
versa, so that A~ passes through zero. If the sweep is
slow enough, the exact motion is very nearly given by
the steady-state solution when that solution is used for
each value of Ace in the sweep. The steady-state
solution is

pg ———(Vg/»)ra,

pg=0

pa= r3.

When A~ is slowly swept, we replace the steady-state
solution, which is exact for 6xed A~, by a quasisteady-
state solution. We know that ~y~ remains constant
throughout such a sweep. Assuming C2 and C3 are zero
for all values of », the quantity

~ y~
' is given by

—VP+ (»)'-
(»)'

(43)

Using the quasisteady-state solution and the condition

i yi = constant, we calculate the component ra of p for
each value of 2 z, assuming that the sweep takes Acr from

one side of resonance to the other, and that both the
initial and final values of A~ are suKciently far o6
resonance that each satisfies the inequality {»)')&VP.

Applying the initial condition
~ y~

= pao to Eq. (43),
we obtain

ps = (»/W) C2 sin Wt

+ (»/Vg)Cg cosW) —{Vg/»)r3, {40a)

+ (»/Vg)
'f3 = p3 ~

L1+ (»/Vi)'7"
(44)



THEORY OI AD IABATI C RAP I D PASSAGE

This relation is plotted in Fig. 2. The choice of sign
depends on whether Ace is initially negative or positive.
Since initially r3 ——p~, we take the negative sign if Ace is
initially negative and the positive sign if hen is initially
positive. In particular, when d,~ is initially a large
negative value and is slowly swept through resonance,
r3 approaches the final value —p36, and the P-r popula-
tion-difference inverts.

Use of the quasisteady-state solution is justified by
the assumption that the passage through resonance is an
adiabatic one. That is to say, the passage is assumed to
be slow enough that the quasisteady-state solution is a
good approximation to the exact behavior. It can be
shown" that the adiabatic condition on the passage rate
d(»)/dt is the following:

l
d(»)/dtl « t VP+ (»)2]. (45)

We turn to the second space: Eqs. (39). The general
solution, which is given elsewhere, "consists of a com-
plex precessional motion superimposed on a steady-
state solution. We expect the precession to be negligible
in an adiabatic passage with appropriate initial condi-
tions; the steady-state solution should be sufficient. We
will denote the steady-state solution by p;= r;(i =4 to 8).
The components r6 and r8 are zero, and the nonzero
components r4, r5, r~ are related thus:

4

FIG. 3. Adiabatic passage in the second space for 3f„,=3f42,.

the values of the expansion coefficients before and after
passage by p,' and p, f, respectively. From the above
discussion, we have

po =po, (48a)

P3 = P3 7

p4 =+P4 ~

(48b)

(48c)

These expansion coeffic ents are given in terms of the
diagonal density matrix elements by Eqs. (30), which
are in turn related to the state populations by Eq. (8).
If the populations before and after an adiabatic passage
are denoted by 7376 and 73;7', respectively, Eqs. (48) lead
to the result

—v3 Vi'

LVP —2(»)2]
re

2@3(»)Vi
rg r4 )

[VP—2(»)2]

SP S) 7
f 0

~ f=~o
(49a)

(49b)

e„f=a„o. (49c)

(46b) The populations of states p and r interchange, and the
population of state q remains the same.

In the absence of precession, the quantity
SOLUTION FOR ONE-PERTURBATION

MATRIX-ELEMENT ZERO

is simply (r4'+r6'+r7')

4[VP+ (»)2j2
I
el'= r4 ~

L-V '—2(»)2j2

We denote the initial value of p4 by a quantity p4',
corresponding to (»)2» Vp, and obtain

2 (»/Vi)' —1
r4 p4

2L(»/V, )2+ 1]

The negative sign is taken in the square root, because
the expression multiplying p4' is an even function of d,co.

Equation (47) is plotted in Fig. 3. Note that r4 halfway
inverts midway through passage, but reinverts as the
passage is completed. There is no net inversion of p4 in
a complete adiabatic passage when V2=0.

Having solved for the expansion coefficients p; within
the two spaces in an adiabatic passage, the state popula-
tions after passage can be obtained directly. We denote

We assume that the element M,„is zero and that M~,
is nonzero. Then V2= Vi, and Eqs. (37) become

pl= »P2+ V1p8 7

p2= —»pi —Vip3 —v3 Vi p4+ Vip7,

p3= vxp2 —vip6,

p4=vsv, p,—v3v, p„
ps= —~~p6 —vip8)

P6 Vlp3+~~V1 P4+»P8+ V1Pi i

p; =—Vlp2 —Vl p6 —2~(ops )

P8 V1P1+ V1P6+2»p7 ~

(50a)

(50b)

(50c)

(50d)

(50e)

(50f)

(50g)

(50h)

pi'= (1/v2) (pi+ p,),
p

'= (1/~2)(p —p ),
P3'= 2 (P3+~~P4)

(51a)

(51b)

(51c)

It is useful to define three quantities p&', p2', and p&' as
follows:
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(55a)

(55b)

(55c)

(55d)

(55e)

(55f)

(55g)

(55h)

»r2+ V2r, =0,
h&vrq+ Ugr3+V3 U2r4 —V2rq =0,

V1r2—Vgr6 ——0,
P1'= ACOP2') (52a)

VZV2r2 VXV—,ra 0, ——

»rg+ V(rs ——0,

Vmr3+%3v~r4+»r5+ V~r7=0,

V2rg+ Vgre+2»rs 0,——

V2r1—V1rg—2h~r7 ——0.

p2' ———»pg' —2v2 Vg p3', (52b)

j3'——2v2vg p2'. (52c)

These equations are precisely the same as Kqs. (38),
provided we make the following notational replace-
ments: pq~ p(', p2~ ps', p3~ p3', and Vq —+2v2vq.
Therefore, p3 inverts in an adiabatic passage, which

implies that the population difference (r(~—r(,) inverts.
The population of state r is not affected by the passage
if M„=O. Therefore, the populations of states p and q

interchange, and the population of state r remains the
same.

The other case (M„,=O) is treated in. a similar

fashion. When M~, =O, we define three appropriate
quantities:

The above set is a system of linear homogeneous
algebraic equations which has a nontrivial solution only
if the determinant of the coefFicient matrix is zero. The
determinant is obviously zero, because two rows are
linear combinations of other rows. Since there are two
dependent rows, the largest nonzero determinant, which
is contained in this matrix, must be of order six or less.
The order is six, because direct evaluation shows that
none of the sixth-order determinants vanish, provided
V2 is not equal to zero or &V1. Therefore, the rank of
the coeKcient matrix is six. A system of 8 linear
homogeneous algebraic equations in 8 unknowns, with a
coefficient matrix of rank 6, has 2 and only 2 linearly
independent solutions. Each solution contains an arbi-
trary constant. We let the two constants be r3 and r4.
The erst solution is obtained by setting r4 ——0 in Eqs.
(55), and the second by setting r3 ——0.

Solution for r4 ——0:

(
i"= (&/v2) (pl ps)

p2 (l/~2) (02+p6)

ua"=k((3 ~~4) ~

One can show that p3" inverts in an adiabatic passage,
and thus the populations of states q and r interchange
while the population of state p remains the same.

The foregoing two-level dynamics are to be expected,
because when either M„, or M,„ is zero, the whole

problem can be solved on a two-level basis. "

From Kqs. (30b) and (30c), we see that pa' ——(1/&2) time derivatives are zero. Then we have
X (p»—

p~q) and is therefore a measure of the popula-
tion difference for the p-q transition. By adding the
proper pairs of Eqs. (50), we can cast the dynamical
equations in the form

SOLUTION FOR THE GENERAL CASE

We assume that- M„, and M„are unequal and are

both nonzero. We use the general Eqs. (37). Although

there are eight equations, only six of these are linearly

independent. The dependent relations are Eqs. (37c)
and (37d). One can readily verify the following depend-

ence relations:

r( ———(V(/»)r„
r,= —(U2/»)r„
r2 ——r6 ——r7 ——r8——0.

Solution for r3——0:
2v3 V2[(»)'—Vp]

rl f4)
»[Vp+ U2' —2 (»)']

(56a)

(56b)

(56c)

(57a)

V1 V2
P3 Pl+ Pb )

ho) Ao)
(53)

2v3vg[(»)' —Vp]
f i) f4)

»[VP+ VP —2 (»)']
(57b)

2vzv, [(~ )2—vp]
p4= P1

»[2(»)'—(VP+ VP)]

2~3U,[(»)'—VP]

~3(») (VP—VP)
r7- f4 )

»[VP+ VP —2 (»)']
(57c)

r2=rs=r8=0. (57(l)
ps»[2(»)' —(VP+ VP)]

V3 (») (VP—VP)

Adiabatic passage for r4=0:

We look for adiabatic-passage inversion in each of the
above solutions. Our approach directly follows the non-

p, . (54) precessional V2 ——0 case.
»[2(»)'—(U,'+ U,')]

Consider possible steady-state solutions for which

there is no precession. Let (r, , r2, , r,) be the values

of (p(, p.. .. p,) which satisfy Eqs. (37) when the

Up+ U2'+ (»)'
r3'.

(~ )'
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[V 2+ V' 2+ (g~)2]l/2
p3

When (6&0)2)&(V22+V22), lpl =r2 .Therefore, we set

I yl = p,o and obtain
This result is identical with Eq. (44), which applies to
the case V&=0, except that V&' is replaced by
(V22+ V22). Therefore, pl inverts in an adiabatic passage
when V2/0 or &V&, provided that p4 is initially zero
and remains zero throughout the passage.

Adiabatic passage for r3=0.

12V22[(ha&) 2 —Vl2j2+ 12V22[(ha&) 2 —V22]2+3 (Aa&) 2 (V22 —V22) 2

lel'= +1 r,'.
(~ )'[V'+V"—2Q )'3'

When (642)2)&(V22+V22), we have
l yl =r4. Therefore, we set

l pl = p42, and obtain

+642[V22+ V22 —2 (l4l(o)2jp 2

r4 (59)
(12V 2[(QM)2 V12j2+ 12V42[(QQ&)2 V22j2+3(Q~)2(V 2 V22)2+ (g~)2[V 2+ V' 2 2(g~)2]2}l/2

Because the expression which multiplies p4' in the above
equation is an odd function of Acr, p4 inverts in an
adiabatic passage for V2&0 or ~V~, provided that p3 is
initially zero and remains zero throughout the passage.

If p3 and p4 both have nonzero values before the
passage, the steady-state solution is a linear combina-
tion of the two independent solutions in Eqs. (56) and
(57). Unfortunately, the quasi-steady-state method used
in the r4 ——0 and r3 ——0 cases does not lead to an adiabatic-
passage solution when r3 and r4 are both nonzero. One
can take an arbitrary linear combination of the solutions
in Eqs. (56) and (57) and add the squares of the compo-
nents of the resulting general r vector to get l

pl'. How-
ever, this sum will involve terms in r3', r3r4, and r4', and
it will not yield separate expressions for r3 and r4 in
terms of p3' and p4". If we use the quasisteady-state
approach we must be satis6ed with either the r4=0 or
the r3 ——0 solutions.

The r4=0 solution has the greatest practical signifi-
cance. In order that p4 be initially zero, the initial
population distribution must be a linear function of the
energy for the states p, q, r. This is approximately true in
thermal equilibrium if Acro is small compared to kT, be-
cause the exponential Boltzmann distribution is nearly
linear over the energies E„, E„and E„. We may
reasonably assume that if p4 is zero before passage, it
will remain so throughout. This is expected, because p2

and p6 are zero during the passage, and therefore at all
points we have from Eq. (37d)

p4 ——V3 V2p2 —V3 Vl p2 ——0.
Thus, if p4 is zero before the passage is started, then to
the extent that the passage is adiabatic, p4 remains zero,
and we obtain inversion of p3. As in the M„,=Sf,„case,
inversion of pl means that the p-q, q-r, and p-r tran-
sitions are simultaneously inverted. When 0&M„,
&3f,„&0,and Acvo(& AT, our dynamics have shownthat
the populations after passage are related to the popula-
tions before by Eqs. (49).

We can summarize all of the three-level calculations

in one statement: Except for the isolated cases Myq=0
and M,„=O, the dynamical equations predict simul-
taneous ARP inversion of the three transitions for all
combinations of the driving matrix elements, provided
Lro&&kT when 3f„,&3f~„.
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APPENDIX

A complete set of orthonormal Hermitian 3)(3 basis
matrices U, is presented in Eqs. (27). The commutators
[U;,Ulj = U;U2 U2U, are give—n here.

[U;,U2]=0 for j=1, 2, , 8

[Ul, U2J= (i/V2) U2

[U2, U2$ = (i/%2) Ul

[Ul,vl] = (i/V2) U2

[U2,U2] = (i/V2) U,

[U2,U2j= (i/~U2
[U2, U2$ = (i/~2U2

[Ul, U2$ = (i/V2) U2

[U2, U2] = (i/V2) Ul

[U2,vlf = (i/V2) U2

[Ul U4] = (i/~2V3U2

[v4,v,j= (i/v2) vsv,
[U6 vlf= (i/ /2) (v3U4+ Ul)

[Ul, vl]= (i/~2U2

[U2, U2$ = (i/~2 Ul



A750 R. J. MORRIS

[Us, Us] = (i/W2) Us

[U,,Us] = (i/K2) U,

[Us, Us]= (i/W2) U,

[U4,Us]=0

[U4,Ur] =0

[V4,Vs]=o
[V,,U,]= (i/K2) 2U;

[Us, Ur] = (i/v2)2Us

[U;,Us] = (i/V2) 2Us

[U4,U,]= (i/V2)&3Us

[U,,U4] = (i/92)&3Vs

[Us, Us] = (i/v2) (v3U4 —Ur)

[Us,V;]= (i/V2) Vs

[Ur, U,]= (i/v2) Us
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Resonance Scattering of Phonons by Molecular Impurity Centers*

MAX WAGNER)
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The scattering of phonons at polyatomic (molecular) impurity centers cannot be handled by the regular
Lifshitz method because of the additional degrees of freedom. A method is presented which makes it possible
to eliminate the molecular coordinates by means of a molecular Green's function. This Green's function
defines an effective disturbance in the lattice system with singular poles at the molecular frequencies. Thus
the low rank t matrix of the scattering formalism, defining the scattering amplitude, has sharp resonances
near the molecular frequencies. The abstract scattering formalism is applied to a simple example which
exhibits the influence of librational modes of a molecule with strong internal bindings on phonon scattering.
The t matrix for the chosen model is diagonalized by complete group theoretical reduction and reveals the
structure of the molecular resonances explicitly. It is found that the resonance is very sharp if the molecular
frequency is much smaller than the Debye frequency, and decreases for higher frequencies.

INTRODUCTION

ECENTLY, the problem of phonon resonance scat-
tering at impurity centers has attracted much in-

terest, mainly because these resonances give rise to in-
dentations in the curves of thermal conductivity versus
temperature. This was shown by Pohl' for the system
KCl:KNO&, and by Walker and PohP for systems like
KCl:KI, KCl:NaCl, etc. In the first case we have a mo-
lecular impurity center, in the second a monatomic one,
and both experiments can be explained rather well by a
quasiphenomenological theory given by the author in a
previous paper. ' But as this theory still contains adjust-
able parameters, so it is desirable to investigate the un-

derlying scattering process in full detail.
There is no difFiculty in handling the monatomic im-

purities, because the number of degrees of freedom in the
lattice is unchanged in this case and the application of
the Lifshitz4 method is straightforward. Very recent cal-
culations by Krumhansl, Klein, ' and Takeno have

* Supported by the U. S. OfBce of Naval Research.
f Present address: IBM Research Center, Yorktown Heights,

New York.
' R. O. Pohl, Phys. Rev. Letters 8, 481 (1962).
s C. T. ~alter and R. O. Pohl, Phys. Rev. 131, 1433 (1963).
3 M. Wagner, Phys. Rev. 131, 1443 (1963).
4 I. M. Lifshitz, Nuovo Cimento 3, Suppl. A1, 716 (1956).
~ J.A. Krumhansl, presented at the International Conference on

Lattice Dynamics, Copenhagen, Denmark, 1963 (to be published).' M. V. Klein, Phys. Rev. 131, 1500 (1963).' Sh. Takeno, Progr. Theoret. Phys. (Japan) 29, 191 (1963).

shown that there are, under certain conditions, reso-
nances in the phonon scattering at monatomic centers
due to the alterations in mass and force constants. These
resonances can be said to be more or less "accidental";
they correspond to quasilocalized modes within the pho-
non bands which dissipate slowly into the surrounding
lattice if the substitutional mass is very large, or if the
force constants are weakened drastically near the im-
purity center, e.g. , for U centers or F centers. 5

In contrast to that, there are, in general, more pro-
nounced resonances in the case of molecular impurities.
This problem, however, seems to be much more com-
plicated because of the new degrees of freedom brought
in by the molecular nuclei. The author' has shown how,
in principle, the additional coordinates can be excluded
by means of a molecular Green's function and the Lif-
shitz method is then easily applied to the remaining un-
changed number of lattice coordinates. But there is now
an additional effective disturbance which has poles at
the molecular frequencies via the molecular Green's
function. These poles will produce new sharp resonances
if they lie within the phonon bands.

The abstract formalism for the general problem is out-
lined in Secs. I—III. In the remaining sections we will
choose a particularly simple model of a molecule exhibit-

' R. Brout and W. Visscher, Phys. Rev. Letters 9, 54 (1962}.' M. Wagner, Phys. Rev. 131, 2520 (1963).


