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Green's Function Theory of Multimode Cavities
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Schwinger has applied his generalized quantum action principle and the method of thermodynamic
Green's functions to an harmonic oscillator. He has shown how this technique describes the buildup of cavity
oscillations in a simple model of the maser. This paper applies Schwa. nger s technique to multimode cavities.
The energy, autocorrelation {orcoherence), and spectral distribution of individual cavity modes in the steady
state, their rate of buildup and their response to external signals have been calculated. Conditions for the
buildup and for the steady state of laser action are stated. It has been shown that the steady-state laser
radiation in each cavity mode can be described in terms of spontaneous and induced emissions, the latter
one containing a coherent and an incoherent part.

I. INTRODUCTION

HE technique of thermodynamic Green's func-
tions has been applied extensively in the theories

of the many-body problem and in quantum statistical
mechanics. ' A great advantage of this method is that it
exhibits the structural relationship among various
quantities very clearly. Thus, it provides an effective
way to treat different aspects of a physical system by a
uni6ed approach. The dynamics of the system can be
derived from Schwinger's action principle. ' '

Schwinger has applied these methods to a simple
model of the maser. ' He assumed a single lossless cavity
mode to interact with a system of E two level atoms in
complete resonance with each other. The spontaneous
emission line shape of the atoms was given by a 8 func-
tion. Independently of the maser problem, Schwinger
has also treated the coupling of an oscillator to a loss
mechanism. ' One can relax the assumptions of the com-
plete resonance and of the 5-function spontaneous emis-
sion line shape and also couple a set of oscillators to both
the atoms and a loss mechanism, simultaneously. Then
one has a model for multimode cavities. This is done in
the present paper.

The application of the Green's function technique to
this problem is logical. One is treating a many-body
problem in which photons interact with atoms. Since
one starts from 6rst principles, intuitive extensions of
concepts applicable to the radiation of single atoms are
not necessary. The extension of such concepts ought to
be justified. The separation of the radiation of the S-
atom system into spontaneous and induced parts will be
a natural consequence of the theory. The various
quantities described in the abstract will be obtained as
we go along without having to plan individual methods
for their calculation.

The present work is related to that of Senitzky, 4 and

*This work was done while the author was at American-
Standard, Research Division, Union, New Jersey.' See, e.g., Leo P. Kadanoff and Gordon Baym, QNuntlm Stu-
tsstscal 3Iechaascs (W. A. Benjamin, Inc. , New York, 1962),where
references to the literature can be found.

s Julian Schwinger, Proc. Natl. Acad. Sci. U. S. 37, 452 (1951).
3 Julian Schwinger, Brandeis University Summer Institute in

Theoretical Physics, 1960 (unpublished); J. Math. Phys. 2, 407
(1961).

of Wagner and Birnbaum. ' These authors do not apply
Schwinger's method, but share some of our interests.
Senitzky's work is, however, restricted to single mode
cavities. Wagner and Birnbaum only treat the steady-
state radiation.

We thought it useful to brieQy summarize Schwinger's
technique in this paper. This is done in Secs. IV—VI.

II. THE MODEL OF THE MULTIMODE CAVITY

The transverse 6eld in cavities can be represented in
terms of harmonic oscillators. These harmonic oscil-
lators are not free, but interact with two external sys-
tems. One of these systems consists of the resonant
atoms which produce the cavity radiation. The other
one is the loss mechanism. This may consist of the walls
of the cavity and of the external space to which the
radiation is coupled out.

The resonant atoms may have an arbitrary number of
energy levels which are indirectly involved in the pro-
duction of cavity radiation. We assume, however, that
there are only two levels, an upper and a lower one, be-
tween which the radiative transitions take place.

The resonant atoms, besides being coupled to the
oscillators, may also be coupled to one other system.
This latter interaction may determine the electronic
current autocorrelation in the atoms. We assume that
this interaction provides an exponential relaxation
mechanism for the current autocorrelation in the atoms,
which leads to a Lorentzian spontaneous emission line
shape. An example for such a mechanism is provided in
the case of a solid-state laser by the interaction of the
active impurity atoms with the host lattice. (If more
than two levels are involved in the resonant radiative
transitions, the Lorentzian spontaneous line shape can
be masked by the energy distribution of upper and lower
energy level groups. )

The spatial distribution of the resonant atoms is as-
sumed to be random. If the coupling of the oscillators to
the loss mechanism is not too strong, the oscillators can
be treated as independent of each other.

4 I. R. Senitzky, Phys. Rev. 127, 1638 (1962).This paper refers
to Senitzky's earlier work.

s W. G. Wagner and G. Birnbaum, J. Appl. Phys. 32, 1185
(1961).
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III. THE LAGRANGIAN OF THE FORCED
ELECTROMAGNETIC OSCILLATORS

dynamic Green's-functions. ' The transformation func-
tion for the closed time path t~ ~ f~ ~ t2 is

t3o 1j——kTo= 1/tto.

The transverse electromagnetic field in the cavity,
( ~ ) +(1 „„,&,)+( ~

)z„
represented by the vector potential (A), interacts with
the transverse components of the current (jz). This

where
situation is described by the wave equation (4 2)

1 O'A(r, t) 4s.—|7'A(r, t) =—jr(r, t).
C2 gP C

(3.1)

Both vector functions can be decomposed into ortho-
normal series:

and
A(r, t) =c' P), qi, (t)fi, (r)ug

C

jr(r, t) =—P jg(t) fi(r)ug,
4~ ~

(3 2)

(3 3)

where the summation over the wave vector X is under-
stood to include summation over the transverse polar-
izations. The fq(r) are orthonormal functions which
represent the cavity modes. q&, (t) and jz(t) are the
corresponding time amplitudes. The uq are unit vectors
orthogonal to X. The wave equation can be replaced now

by
qi, (t)pug'qg(t) = ji, (t) . (3 4)

There are two such equations for each wave vector.
The equations above do not take into account that

the cavity is 6lled with a solid. This can be helped by
multiplying the first term in Eq. (3.1) and the right-
hand side in Eq. (3.3) by the square of the refractive
index. In this way Eq. (3.4) becomes valid also for the
solid.

The Lagrangian of the equations of motion for the
forced electromagnetic oscillators is

This transformation function refers to the assembly of
oscillators, each at the same temperature To at the
initial instant t2. The external forces Fq might be
different in the forward transformation t2~$~ from
those in the backward transformation t~ —+t2. These
forces are Iiz+ and Iiz, respectively. For the system
under consideration these forces originate from the ex-
ternal currents. The n), represents the energy states of
the oscillator by indicating the number of photons in it.

Let us supply the interaction terms in the Lagrangian
with an adjustable factor 0., such that for 0.=0 we have
free oscillators, and for n= 1 the actual physical situa-
tion is restored. Thus the Lagrangian appears in the
form

I-=z~ E2(6'—»'&')+~qij~(t)+oAJi(t)) (4 3)

The action principle then states that the variation of the
transformation function over the closed time path is

&(& It )=-(t I& de+
i

—
&~I &e-) I

t), (4.4)

8 z—(t It) o
=-«

I

BG
dt H (qi,[j~(t)+J~(t))1+

where L+ and L may differ because qz, jz, and Jz can
be different on the positive and negative segments of the
transformation. If the variation is with respect to a then

~=Zi, pl (q '—»,'qx')+ qi j&,(t)) . (3.5) —qit j.(t)+Ji(t)) I-& I to)o (4~)

The transformation function has to be evaluated for the
initial thermal mixture and 0,=1 will reproduce the
actual physical system. One may try to approximate
this expression by replacing the current time amplitudes
by their expectation values. This is a satisfactory pro-
cedure for jz(t) which is externally imposed and is a
known function of time. Jz (t) is only statistically known
and its expectation value is zero independent of t. (A
possible additive constant would cause trivial complica-
tions. ) The next approximation then leads to

by the Ji (t) time amplitudes. Thus the Lagrangian

BQ
I-=Z&, P& (q&,

'—~&,'qi')+q&j~(t)+pic(t)). (3 6)

There are various possibilities concerning ji, (t). It may
be necessary to add the Lagrangian of the current
carrying system to the one above and consider the
entire dynamical system as one unit. The jz(t) may also
be known. functions of time. Finally, the correlation
functions of the jz(t) may be known functions of time.
We will only consider the last two possibilities.

Let us assume that there are two kinds of currents.
One kind is a known function of time and its amplitudes
will continue to be denoted by j&,(t). The other kind is
determined by its known correlations and will be de-
noted
1s

IV. THE QUANTUM ACTION PRINCIPLE

1 t

= ——« III
pp

dtdt'((q) J),(t)q&J), (t'))~+

The general dynamical problem can be formulated
and solved in the framework of Schwinger's quantum
action principle which involves the technique of thermo-

+[q)J),(t)q) J~(t')) —$q) J),(t)) [q)J),(t'))+

—Lq.J.(t'))-Lq.J.(t)).)It.), (4 6)
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princip e o s
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d2—+~o' Iq+(t) —i
dto

and

d2—+ ')v-o)+~
dt2

ty

dt'[A (t t')q—(t')
2

A+ -(t t)q-(t')3=i+(t), (51)

dt'[A (t—t')q (t')

in solid-state systems and will beparticular is valid in so i -s a e
discussed in Sec. I.

1
(t—t') =-([~~(t)~~(t') j++)&++ (4.7a)

—A (t—t')q+(t')j= j (t). (5.2)

1
A (t—t')=-(P~(t)J~(t')j ),Ay t—

-(t—t') =-(~~-(t')~~+(t))X+—

e uation for each oscillator. The indexWh o uc q

db th r' ot toeigenfrequency is describe y e g4 7b) elge r

ndi
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~ ~ ~The thermal time boundary con i io
t e t2 are

(4.7c)

(q++q ) (to) =i/(uo coth(-,'Pohceo) —(q —q+, &, , 5.3

A — (t—t') =-(~~-(t)~~+(t'))X—+ (4.7d)
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2+
of the two time segments at tj yie s t e
conditions

dt[2(q&, —
cd&, qy n y

' ')+~q~i~(t) I+—~qv~(t) I-3
(q-—q+) (t~) =0, (5 5)

z tg tg

I~«'[q~(t) q~(t') 3+A ~++(t—t
tm to

q (t)q (t')3-A~—(t—t') —
q -(t)q (t')

d
-(q--q+) I ~-~ =0
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(5.6)
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q+) (t) =
t2

Green's function,( t') th—e advanced Gree 'where G.(t-
solution of the equation

d2

l
—+cop2 lG. (t—t'—

&dt2 i

00

tldrA. (t r)G.—(r t—
=8(t—t') for t(t',

ions between modes been
'
includedH d the crosscorrelat'o

'
eluding nondiagona e e

crosscorrelations re uces
series o sing e-f le-mode problems.(5.13)

l

—+o&p2 lG„(t—t')—
d2

kdt2

00
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VII. CORRELATIONS IN THE EXTERNAL SYSTEMS

The general method of the last three sections becomes
applicable to multimode cavities if the external systems
are identiled with the resonant atoms and the loss
mechanism, respectively. The retarded and symmetrical
current autocorrelations in these systems must be
determined.

Let us start with the atoms. The correlation functions
required are of the form

&»(t)» (t))=I — f.(r)f'(')
kc

)(&(n)Jr(r, t)) (n), J+(r', t')))d'rd'r'. (7.1)

If the atomic system is isotropic, the wavelength is long
compared to the size of the atoms, the current correla-
tions are localized within the randomly distributed
atoms and different modes are uncorrelated, then

)4)rq' X
&»(t)»(t'))=I —

I (J,(r—,t)J,(r,t')), if &(=& '
Ec) V

=0, if & QV. (7 2)

N/V is the number of atoms per unit volume and the
expectation value refers to the current correlation be-
longing to any one of the polarizations within any one of
the atoms. Different modes are, in fact, uncorrelated.
This follows from the random distribution of the atoms
and the orthogonality of the modes. '

No attention has been paid to time ordering yet. The
four possible orders of time were exhibited in Eq. (4.7).
In order to construct A, (t—t') and a(t t') we seem to-
need three of these. Since

A++(t—t') =A +(t—t') for (7.3)

we may write

A, (t—t')=i(A +(t—t') —A+ (t—t')) for t)t',
=0 for t(t', (7 4)

a(t t') =A+ (t t')+A—+(t t'). — (7.5)—
Thus it follows that A+ and A + suKce. We have to
evaluate them now. The calculation is described in
Appendix 1.The physical picture is the following.

' The word "symmetrical" will later be dropped when it cannot
lead to confusion.

is obtained. The second variational derivates of the
same equations, evaluated. also at (j —j+) (t) =0 lead
to the symmetrical autocorrelation' of the oscillator
coordinate

lq(t), q(t') J+=hw(t —t2, t' —t2) . (6.6)

It is to be noted that the coupling of different modes
would lead to crosscorrelations between the various
modes.

A sr +(t t') = (1/h—)(4m—/c)'2V/V
I & I jr I) I

'L
I
a

I
'e'"&('—'&

+ la I2e (()|(& &')ge krl&—&'I (7 7)

The subscript X signi6es that these quantities refer to
the g atoms. The squared matrix element refers to the
current transition matrix element for one polarization in
the atom between the upper and lower levels, with
amplitudes a„and a), respectively. Ia I'+ la)l'=1 for
two level atoms and possibly smaller for more levels.

I
a„ I

' and
I
a)

I

' are assumed to be constants. The energy
difference of the two states is AQ&. The decay of the
current correlations is exponential and has the reciprocal
time constant I'/2. The retarded and symmetrical
correlation functions are

A ~(t—')= (t/@) (4~/c)'(&/V)
I &I jl) I'(I a- I'—

I «I')
y feio1(r—s')+.e

—(o|(&—r)j
X.-~'«-~'& for tyt

=0 for (7.8)
and

(t—t') = (1/&) (4~/c) (X/V) I & I jl) I'(I a.I'+
I «I')

)(Le ()1(~ r)+e Q1((t t )je fr[ 5—() (7
—9)—

for the atomic current.
Under appropriate circumstances, specified by Sch-

winger, ' the effect of the loss mechanism can be repre-
sented very simply. The retarded current correlation
function is effectively equal to the damping constant y
multiplied by the time diQerential operator and is local
in time.

A, r, (t t') =yb(t t')d/dt' for- —
=0 fol t(t ~ (7.10)

The active atoms interact with two systems: (1) the
solid, and. (2) the cavity oscillators. Each atom in the
solid suffers a thermal phonon collision about every 10 "
sec. This time is orders of magnitude shorter than the
time of an electromagnetic transition. The phonons
leave the average populations of the electronic states
invariant, they only randomize the phases of the elec-
tronic state vectors very rapidly. The cavity oscillators
have just the opposite effect. They cause transitions
between the electronic states but change the phases of
the electronic state vectors slowly. The effect of the
transitions is offset by some external pumping mechan-
ism which keeps the electronic state populations con-
stant over the ensemble of active atoms. The phase
changes caused by the oscillators are entirely negligible
compared to the randomization of these phases by the
phonons. Thus the cavity oscillators have no net effect
on the atomic ensemble, as it was anticipated in Sec.
IV. The atomic current autocorrelations can be calcu-
lated from the interaction of the atoms and the solid.
The results are

ANp (t—t')=(1/A)(4s/c)'E/Vl&lprl)l'I la I'e '"&(' '&

+ I
a

I

'e ~(&~(' "je yr[ s—~
~ (7 6)



A74 G. KENEM Y

ar, (t—)")= ar5(i —t'),
where

where the subscript I.indicates the loss mechanism. The
symmetrical correlation function is

(7.11)

Exponentially increasing functions of (i—t') are allowed
by supplying f' with an appropriate positive imaginary
part. The transform of Eq. (8.2) is

y = ~ar, [tanh (-', fur pPr, )/(uo] (7.12) iyi—+(e,'+ G(f) = 1, (8.6)
n,2+ (r/2)' —ir|-—i-2

The quantity p. characterizes both the strength of the
coupling of the atoms to the oscillators and also the
inversion. The coupling of the oscillator to the two
systems modi6es its frequency to a small degree. We
imagine that Mo embodies this change. We maintain the
assumption that the upper and lower level occupation
probabilities la„l' and la)l' are constants. GQ') can be
expressed in the form

VIII. DETERMINATION OF THE RETARDED
GREEN'8 FUNCTION

The retarded current correlation A, (t—r), which
appears in the equation for the retarded Green's func-
tion (5.15) is the sum of the corresponding quantities
for the 1V atoms (7.8) and the loss mechanism (7.10).

and Pr, is the temperature of the loss mechanism. These
approximations describe the motion of the oscillators
near their eigenfrequencies adequately. We note that y
and a& are also generic notations and may have diferent

Qg
values for diferent oscillators just as ~0 has.

. (8.8)

&&e '*r(' ')+y—b(t
—

7) ,
—for —t)r,dr'

=0 for t& v-.

The equation for the retarded Green's function (5.15)
then appears by the substitution of (8.1) as fr=+[2 (~0'+~i') 3'"

~,= y[flPy (1/2)2jU2.

(8.10)

p
d' d q i /4)rq'

l

—+y—+(eo' lG, (t—t') —-l —
l

EdP dt I ))i(, e ]
(8.11)

The approximation is based on the assumption that
p, , y, 1' and

l (ei—coo
l

are all much smaller than coo and &ui.

The Fourier transformed Green's function can be
exhibited in the factorized form

E
&&
—l(lil&l'(I ~-I'—lail')
V

We find in Appendix 2 that the four poles of G(i) are
approximately given by

(8.1) |.= ~fl —(i/2) {l(&+1')
~[) '+ (~—1')'/4 —(~i—~0)']'"} (8.9)

(i T)[eiQI( t—r) +e—ioi( t—r)) G(g)=(, —'ri —t )/II(|' —i,), (8.12)

and
G,.(i—i') = 0 for i & t'.

The definition of ))~(i—~) is

r)+(t 7.)=1 for ),')7, —
=0 for t(v-.

where the t i are the four poles. The inverse transform is
determined by

(8.2a)
G„(t—t')= — dte 'r(' ')((eP iFi g')—/—

2m

(8.3)

f(t ) = d(~—~')e'"''- 'f(~—
~ ) (8.4)

and
1

f(i ~')= d(e "'" "'f0)—
2Ã

(8 5)

The solution of the differential equation can be obtained
by Fourier transformation which is de6ned by

The integral should be nonzero for t) t'. The integrand
will not diverge over the in6nite semicircle completing
the path if it is taken in the lower half of the complex
t plane Thus the con.tour integral runs counterclockwise
parallel to the real axis above the poles and is closed by
this semicircle. For t& t' the advanced Green's function
di6'ers from zero. In this case the contour runs parallel
to the real axis below the poles and the infinite semi-
circle lies in the upper half of the complex t plane. Using
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Cauchy's theorem we obtain, approximately,

sinQ(t —t')
G.(t t—') =n+(t t—')

&F„+r
X P e( r+2r")(& & (8 14)

where
(8.15)

I'„=+Lr~'+ (p/2)' —4yr —((pg —(pp)'/4)'('. (8.16)

The approximation in Eq. (8.14) is based on the same
assumptions as those that led to Eq. (8.9). For (dy=(d p

and, y= F= 0 the retardecl Green's function becomes
identical with the one given by Schwinger. ' The re-
tarded Green's function is related to a kernel used by
Senitzky with ~j=coo and F=O.

IX. THE RESPONSE OF AN ELECTROMAGNETIC
OSCILLATOR TO CURRENT

The response of an electromagnetic oscillator to cur-
rent was given in Eq. (6.5) in general terms. Suppose the
current time amplitudes are Fourier analyzed and can
be exhibited in the form

ship is equivalent to

tl &7F+((pa—Mp) ~ (9.4)

A part of the response is thus built up if the strength of
the atomic-oscillator coupling and the atomic inversion
can overcome the joint effects of the atomic and
oscillator dampings and of the imperfect resonance be-
tween the atoms and the oscillator. The built-up part of
the response has the frequency of the combined atomic-
osci:lator system and not that of the forcing current. If
there is no buildup, the response tends to a constant
amplitude as t —&~ with the forcing frequency. Thus a
steady state is reached. If the equality in the last
relationship is satisfied one finds asymptotically that

jp F
q(t) = ——(sinQ't —sinQt), for t +~ . (9—.5)

2Q F+y Q —Q'

q(t) = (jo/2Q) (r/F+p)t, for t ~~ (9.6)

This contains only the +F„term. The —I'„ term would
add a steady-state type of an expression. The part
exhibited above oscillates with a small frequency at
great amplitudes. For the resonant case 0'=0 a linear
increase

j(t) =P (jo sinQ't+ jn ' cosQ't) for t) 0

= 0 for t(0. (9.1)

XVe compute the average response to one particular
component, sin(Q't), with the retarded Green's function
given in Eq. (8.14). The average response is found to be

X ( (Q —Q') LsinQ't —sinQte( —r++r~& ']

+ (—r+&F„)LcosQ't —cosQte' r++r"]) for t) 0

= 0 for t(0. (9.2)

This expression contains a Lorentzian resonance de-
nominator as a function of the forcing frequency O'. As
a function of the frequency 0 of the combined system,
the denominator is not I orentzian. F„and F+ are
functions of the parameters ~0 and y which vary from
one oscillator to another. Thus we have a variable
width.

The oscillator response contains two kinds of periodic
terms with the frequencies 0' and 0, respectively. The
latter kind contains two exponential factors. One of
these can be built-up, constant or damped, depending on
whether

(9.3)

and the other one is always damped. This last relation-

' I. R. Senitzky, Phvs. Rev. 123. 1525 (1961).

is obtained.
The possibly very great response to external current

at the frequency 0 is a consequence of the instability of
the system at large inversions. This response is similar
to the build-up obtained in the absence of external cur-
rents, as we will see in Sec. XI. There the buildup will
be a consequence of current Auctuations in the atoms
and in the loss mechanism and of the initial fluctuations
in the cavity field. The rate of exponential buildup will
be found there to be twice as great as it is here.

The response at the frequency 0' of the current does
not contain an exponential term but is purely periodic.
Nevertheless, a great amount of energy can be coupled
out of the cavity at this frequency under favorable
circumstances. The amplified energy coupled out from a
mode increases with y and with the squares of the
amplitudes of the periodic factors in Eq. (9.2). This y
includes the eBect of both the wall losses and of the
coupling out of the energy. y can be increased arbitrarily
and still get amplification as long as the amplitude
factors do not decrease. This can be achieved by in-
creasing the inversion to keep the balance. Note, how-
ever, that the amplitudes themselves cannot be arbi-
trarily increased by increasing the inversion. This would
lead in the limit to F„~~ and the amplitude wouM
vanish.

The buildup has to cease eventually when the popula-
tions get adjusted at such a level that r„&F+ for aH.

modes. Then, after the transients have died out, only
the 0' frequency terms are present in the response and
the amplification appears all by itself. If I'„ is pnly
s lightly sma]ler than F+ only few oscillators, with
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The oscillator autocorrelation can be computed by
using Eqs. (6.6) and(5. 19).G, is given in Eq. (8.14).G,
is determined from Eq. (5.15). The symmetrical
autocorrelation of the external systems is given in Eqs.
(7.9) and (7.11).We will use the notation

a'=(1/h)(4~/c)'Ã/vl&I jl) I'(I~~I'+ I«I') (10 1)

(10.2)w(f —$2, ' —f2) =wg+wv+wo.

Cumbersome elementary calculations lead to the follow-
ing lengthy results. The term originating from the loss
mechanism is

coupled system frequency 0 close to 0', will respond to as the constant amplitude of the atomic correlation.
the external current. The oscillator autocorrelation can be exhibited as a

sum of three terms which originate from the autocorrela-
X. CALCULATION OF THE OSCILLATOR

AUTOCORRELATION FUNCTION tions of the loss mechanism (w'), of the atoms (wv) and
the initial oscillator autocorrelations (wo), respectively.

~r +r ~2'(—r++r„)(&'—&) &(
—1'+'r„)(&+&')

wg(t, t') = (ag/16Q') cosn(t —') Q'r„~r„ r,~r„
(~r)2 r 2'—r+(&'—o '—r+(&+&')

e+"" '); for t'&t»n'. (103)
(~r„)

The atomic contribution itself is best exhibited as a sum

we= w~+++w"+ +xw— (10.4)

The subscripts refer to the signs of 1 „in this formula. m~++ contains both I'„s with positive signs, m~ has both
with negative signs and vvN+ has them with mixed signs. Ke find

/~r+r — '
w~++(~, ~')+w~--(~, ~') = Z Zl e+'"('-')

16Q'+rheo' +r„
e(—r+gre)(t' t) e(—r+yr„) (t'+ t)

2(r,~r„)

X
~'(n, —n)+r, ~r„~r/2 ~z(n —n)+r, ~r„—r/2

e(—r++rp) t'e[+&(~1 ")—r/2] t e(—r+krp)(t+t')

[~i(n —n)+r ~r„—r/2][~i(n —n)+r ~r„+r/2]
el:T-t(Qg—0)—r/2](t' —t) equi(~l —0)—r/2] t'e(—r++r~) t

t')t»n ' (10.5)
[~~(n,—n)+r, ~r„+r/2][~i(n, —n)yr„~r„—r/2]

'

a~ F„2—I' 2

w (~~')= Q Pe+'"" "
160' F„'

e(r++r ) (t—t') ear (t—t') e
—r+(t+t')

2I'+

X
~z(n, —n)+r„~r„+r/2 ~z(n, —n)+r, ~r„—r/2

e tW'(n~ —n) —r/2](t' —t) t+'(01—0)—r/2] t' (—r+yr„) t—e 'e

[~z(n,—n)~r, ~r„~r/2][~z(n, —n)+r ~r„—r/2]
e[+s(01 ~)—r/'l te(—r++rp) t' e

—r+(t+t')earp(t' —t)

t'&t»n-'. (10.6)
[~z(n, —n)+r, ~r „—r/2][~z(n, —n)+r ~r„+r/2]

'

These expressions are real despite their complex form. interchanged. The summations over 0 and F„are inde-
ehavechosent'&teventhoughreallym&issymmetri- pendent of each other and allow four distinct sign
cal in t and t'. For t&t' the roles of t and t' must be combinations. Finally the original atomic autocorrela-
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tion is given by

cosn(t —t')
wo(t, t') = coth(-', POA(eo)

~r„+F q'
y g "

~

e(—r++r„)(~+~')+r„~r„)
F 2 F 2

+. e r+—(t+t')e+r„(t t')-
)

F 2

is damped. There is no contradiction here. The auto-
correlation for the steady state depends on time only in
the form ~t t'—~. The energy is proportional to this
quantity at

~
t t'j —=P and thus it does not depend on

time at all.

XI. BUILDUP OF THE OSCILLATOR ENERGY

The electromagnetic energy in one oscillator is given

by
E=0'c'((I'(t)) .

t, t'»0-'. (1P.7) We find from Eq. (6.6) that

We have neglected the difference between coo and 0 in
the last expression. We have everywhere taken the
initial time $2=0.

The oscillator autocorrelation must be investigated
separately for the three possibilities shown by (9.3)
or (9.4).

We will find that for F„&F+ the energy of an oscil-
lator will increase in time (Sec.XI).This buildup cannot
continue indefinitely. Eventually the atomic popula-
tions must adjust themselves such that F„(F+ and
further buildup will cease. The atoms will still transfer
energy to the oscillators but this will be compensated by
the coupling to the loss mechanism. Thus a steady state
with constant energy will be established (Sec. XII).
When the autocorrelation for the steady state will be
examined (Sec.XIII) it will be found that this quantity

Thus w(t, t) is proportional to the energy of the oscillator.
We will write down now the energy of the oscillator if

F„&F+ long after the interactions w,'th the external
systems have been switched on. We are interested in the
asymptotic limit 2(F„—F+)t»1.

The loss mechanism term (1P.3) in the oscillator
autocorrelation yields

a I'„+F ' e2(r„—r )

w l. (t, t) =
160' F„F„—F+.

2(r„—r )t»1. (11.3)

Only m~++ out of the three parts of mN leads to a term
of comparable magnitude. Thus, asymptotically,

0N rp+r —)
w~(t, t) =

~

e2(r~ r+"
16n r„ )

Finally the initial thermal Quctuations lead to

(0)—0)'+ (F~—F„)'—(F/2)'-
2(r„—r+)t»1. (11..4)

(0,—0)'+ (F+—F„ar/2)'

wo(t, t) = Lcoth( —',kPoaro)/40](r„+F )'/I'„'e" ) r+"; 2(r„—r+)t»1.
The sum of the last three equations is

gL, 1 r,—r„wr/2
+())) Q(+)r„—r, r„—r+ + (0,—0)'+(r+—r„ar/2)'

1 tr„yr q
w(t, t) =

~ ~

e'(r~ r+) '—
16Q'( F„J

(0)—0)'+ (r+—Fu)' —(r/2)'
+2 Q +40 coth(-', APO(eo); 2(F„—F )t»1. (11.6)

ar (0,—0)'+ (F+—r„~r/2)'

We note, as before, that F„and F+ are diferent for
diBerent oscillators. Therefore not all oscillator energies
are built up and not all at the same rate. Besides the
diferent rates of buildup, the constant amplitudes also
bear the mark of resonance. The atomic term shows this
property but it is naturally absent in the loss mechanism
and original oscillator correlation terms. Since F„&F+ it
follows that F„&F and the amplitude of the above

expression does not vanish. It certainly is the leading
asymptotic term. It is interesting that the three sources
of the oscillator autocorrelation, namely the loss mech-
anism, the atomic and the original oscillator correlations,
all contribute to the oscillator energy in the asymptotic
limit. This is due to the strong buildup in the case
F„&F+.

For the special case F„=F+ the energy increase is only



G. KEMEN Y

linear. We obtain

t I'„+r r
w(t, t) = ay+ay

8no r„(n,—n)o+(r/2)o

I'„=I', rt»1 (11.7)

in the asymptotic limit. The initial oscillator correlation
does not contribute this time.

Comparing the results of this section with Eqs. (9.3)
and (9.4) the condition for buildup is

(11.8)
or

p'& Vr+ (o)).—ooo)'. (11.9)

For the upper sign exponential, for the lower one linear
buildup is obtained. Since p,

' is proportional to the in-
version according to Eq. (8.7), the eigenfrequency
interval in which ampli6cation occurs increases quad-
ratically with the inversion. If p,'&7r there is no
amplification at any frequency.

If the parameters Gop and 7 for the various oscillators

and co~ and r for the atoms are known and the rate of
exponential buildup measured, p,' can be calculated. As
time goes on p,' must decrease and only the less lossy and
more resonant modes will continue to be built up, until
6nally the buildup stops entirely. p,

' can be obtained as a
function of time either by following which modes cease
to take part in the buildup at a particular time or by
measuring the energy of the least lossy and most
resonant mode as a function of time. One may follow
several modes simultaneously to check whether all of
them can be described by the same p'. If the p' prove to
be different for different oscillators then the inversion
has to be dependent on the modes. If this is the case the
reaction of the oscillators on the atomic system has to be
calculated. '

XII. OSCILLATOR ENERGY IN THE STEADY STATE

We consider the oscillator autocorrelation function for
r„(r~. If we assume that (r+—I'„)(t+t')))1 and

l
t t'l ((t+—t' then, asymptotically, the oscillator auto-

correlation becomes a function of only l
t t'

l
. For t=—t'

this function is

1 -/~r„+r )' 1
~(t=t') =

ar„& r,~r„
(~r)2—r o 1-

(~r.)'
r ~r„yr/2 r wr„—r/2

x ~~+~~I
k(o o)'+ O' Tl' +I'l2)' 54—o)'+ o' WI'„—&/2)')-

-/ar„yr (n g
—n)'+ (r+w I'„)'—(I'/2)'

+2~N
l ~r„) L(n, —n)o+(r ~r„+r/2)o]L(n, —n)2+(r Wr„—r/2) ]

(~r)o r o (n,—n)2yr o+(~r„—r/2)o
t'& t»(r+ —r„)-'. (12.1)(~r„)o L-(n, —n)o+(r+~r„+r/2)o]l (n,—n)2y(r+Wr„—r/2)2]

Since u)(t=t') is independent of time a steady state is
reached. The formula above determines the energy of
the individual oscillators as a function of all the
parameters involved. We will analyze this complicated
expression. Let us assume that for the oscillators with
the greatest value of r„ the requirement

The importance of this inequality is due to the presence
of (r~—I'„) in w(t= t). This quantity can be exhibited
as

(I' —I'„) '= (r —Lr '+(p/2)' —-',yr
—(coy—o)o)'/4]'t'} ' (12.4)

r„&r (12.2) The maximum as a function of the oscillator frequency
is achieved at ~p=co~, and here

is just barely satis6ed, i.e., r„ is very close to r+. We
would like to know then how m(t= t') varies as a func-
tion of cop. We keep y the same for all modes considered
(for sake of argument). This will tell us about the energy
content of the various oscillators in the cavity. It will be
found that if r„ is slightly sxnaller than r+ for the
oscillators with the greatest value of r„, steady-state
laser action is achieved.

We have found that the inequality above can be
written in the form

(r+—r.) '= {r+—Lr '+(t /2)' —lvr]'"}-';
if o)o= coy. (12.5)

Half of this value is obtained by solving the equation

(r+—Lr+'+(t /2)' —-'&r—(M~—~o'/2)']'lo) '
= o(r+—

l r~'+(p/2)' —~yr]U'} ' (12.6)

for cop'. Since r~=r+ we may expand both sides and
obtain

(~i—uo)'/4= ~gyr —(p/2)' (12 7)

po(vr+ (~,—M,)'. (12.3) 8 H. Haken and H. Sauermann, Z. Physik 173, 261 (1963}.
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r,—r„—r/2= —r„—r (12.12)

I' +F„—I'/2=+F„—I', (12.13)

because (F+—F„) and (F++F„)are both positive num-

bers. When these widths vanish the amplitude of the
terms in which they occur also vanish and thus these
terms are entirely absent from Eq. (12.1).

The widths of the quasi-Lorentzians are not sensitive
to the variations of F„in the neighborhood of F+. These
widths are about r for the (I'+—r„+r/2) and about
(4F+&r/2) for the (r~+r„&F/2) terms. We see, then,

Thus the width of (F+—I'„) ' as a function of the
oscillator frequency coo is

2 [ (dr —o)()'
[
=4pyr —(ts/2)'g't'. (12.8)

This shows that the energy content of the oscillators as
a function of their eigenfrequency coo can be made
arbitrarily sharp by approaching the limit

(ts/2)' ~yr (12.9)

from the lower side. This function is centered at ~0= co~.

If
(ts/2)'= yr, (12.10)

a steady state is never reached for the perfectly resonant
oscillator with orp=or~, because this last equation is
equivalent to F„=I"+. Then one of the requirements of
the steady state, namely

(r+—r„)(t+t')»1, (12.11)

cannot be satisfied. The time necessary to establish the
steady state diverges.

One can demonstrate that among all the functions
which occur in w(t=t') only (F+—I'„) ' can be a sharp
function of coo. Among all the quasi-Lorentzian half-
widths only the following could vanish:

that the width of the energy content function of the
oscillators is identical with the width of (r+—I'„) '.

We may, therefore, conclude that the only way to
energize only the most resonant modes is by increasing
the inversion until (y/2)' almost reaches the value yr.
Then the width of the energy content curve is
4pyr —(tt/2)'j'ts. If

4L~F—(„/2) 1 t &qr

is satis6ed, where F is the width of spontaneous emis-
sion, laser action is achieved. We call this the energy
content condition for steady-state laser action. A similar
criterion was given by Wagner and Birnbaum. '

XIII. COHERENCE OF THE OSCILLATORS

According to the theory of partial coherence of Born
and Wolf' the coherence of stationary 6elds is expressed
by their autocorrelation function. The autocorrelation
of a stationary f(eld depends only on

~
t t'~, by—defini-

tion. This corresponds to our steady state. The de6ni-
tion of coherence has recently been the subject of much
discussion. Coherence is related to correlation according
to the definitions of Mandel and Wolf' and of Glauber. "
Coherence is related to noise according to Senitzky. "

For the purposes of the present discussion it is not
necessary to get involved in this controversy. In
agreement with the definition of Born and Wolf,
coherence in this paper refers to the ability of each mode
to interfere with itself. This is expressed by the oscil-
lator autocorrelation function.

The oscillator autocorrelation function for the steady
state is the sum of the wr, (t t') and to)—s(t—t') terms.
These expressions both contain exponentially decaying
terms. The reciprocal time constants of decay are
(F+—I'„), F/2 and (I'++I'„). The terms are grouped
accordingly in the following form of to(t—t'):

1 t'&r„+r )' 1
gf(t p) = g e(—r+krJ)(&' —&)

160'+& ~r„) r,~r„
(&r„)'—F ' 1

(+r )' r

Gr, COSQ(t t)+GN
(Q —Q) sinQ(t' —t)+ (F Wr„+r/2) cosQ(t' —t)

(Q,—Q)s+ (r,~r„+r/2)'

(Q) —Q) sinQ(t' —t)+ (r+Wr„—F/2) cosQ(t' —t)
+2c—r)2(i —oz~

(Q,—Q)sy (r,~r„—r/2)s

t ~r„+r ' $(Q,—Q)'+(r+Wr„)' —(I'/2)'j cosQ, (t' —t)+F(Q,—Q) sinQ, (t' —t) (~r„)'—r '
x i ~F„L(Q,—Q)s+ (r+~r„+r/2)sjp(Q, —Q)s+ (r+~r„—r/2)q (~r„)s

I (Q,—Q)s+r+~+ (ar„—r/2)sj cosQ, (t' —t)+ (r+W2r„) (Q,—Q) sinQ, (t' —t)
X 1

((Q,—Q)s+(r,ar„+r/2)')$(Q, —Q)s+ (r,~r„—r/2)q )
t'& t»(rp+r„) '. (13.1)

' Max Born and Emil Wolf, Optics (Pergamon Press Inc. , New York, 1959).
'0 L. Mandel and E. Wolf, J. Opt. Soc. Am. 51, 815 (1961)."R. J. Glauber, Phys. Rev. 150, 2529 (1963).
's I. R. Senitzky, Phys. Rev. 128, 2864 (1962).
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One of the three time constants, namely (r/2) ', is the
same as the one for the decay of the atomic current
autocorrelation function. This is the quantity which
appears in spontaneous emission. Thus this term ex-
presses the degree of coherence in the oscillator due to
spontaneous emission. This part is considered to be
incoherent. The amplitude of the spontaneous term de-
pends on the inversion but its time constant does not.

The coherent radiation is described by the (r+—r„) '
time constant term. As F„~F+ from smaller values the
degree of coherence increases. For F„=F+ the coherence
time becomes infinite but we have seen that it takes
infinite length of time to establish such a steady state.

Finally the (r++r„) ' time constant term describes
the possibly most incoherent part of the radiation. It
may, in fact, be more incoherent than the spontaneous
emission is. It is interesting to note that the more
coherent the (I'+—I'„) ' part of the radiation becomes
the more incoherent the (I'++I'„) ' part will be.

We note that the atomic autocorrelation contributes
to all three time constant terms. The loss mechanism
autocorrelation contributes only to the coherent and
incoherent induced emissions but not to the spontaneous
emission. This supports the interpretation of the oscil-
lator autocorrelation function in terms of induced and
spontaneous emissions. The spontaneous emission is due
to a characteristic of the atoms, namely their current
autocorrelation, which is assumed to be independent of
the oscillators. Thus it is also independent of the
oscillator-loss mechanism coupling. The induced emi. s-
sion depends on the oscillators themselves which are, in
turn, influenced by both external systems. Additional
support for this interpretation can be found in the fact
that the spontaneous part of the oscillator autocorrela-
tion decays at a rate independent of the oscillator fre-
quency oro and oscillator damping constant 7 because F
is an independent parameter. The (—r++r„) ' and

(—r~—I'„) ' factors in the exponents depend on the
oscillator frequency through F„and on the oscillator
damping constant 7 through both F+ and F„.

The last equation also shows that the most coherent
term alone contains (r~—I'„) ' in an amplitude factor.
We have seen that (r+—r„) ' is a very sharp function
of the oscillator frequency ~0 if F„is almost as great as
F+ is. Thus the most coherent term occurs with the
greatest amplitude. If this term is considered as a
function of the oscillator frequency coo, it is found that
as F„approaches F+ from smaller values both the
coherence and the amplitude of this term increase.

XIV. SPECTRAL DISTRIBUTION OF THE
OSCILLATOR ENERGY

We have computed the energy content function of the
oscillators w(t= t') for the steady state before. In order
to emphasize that this quantity depends, among other
quantities, on the eigenfrequencies of the oscillators, we
designate it now by w(~p). A particular oscillator does
not, however, execute a purely harmonic motion at its
eigenfrequency coo. This is due to the coupling of the
oscillator to the two external systems. The energy of an
oscillator can be analyzed into harmonic components of
frequency co. This analysis is expressed by the spectral
distribution function w(co). In the function w(~) the Mp

is a parameter. w(cop) then refers to the total energy of
each oscillator as it varies from one oscillator to the
next and w(co) describes the amplitudes of the various
frequency components co of one particular oscillator
with fixed coo.

The spectral distribution of the energy of the indi-
vidual oscillators in the steady state can be found by
Fourier transforming the corresponding autocorrelation
functions. We wrote down this function for t'&t. It is
symmetrical, because, in fact, it only depends on

~
t t'

~

. —
Thus the spectral distribution is given by

w (&o) =2 d (t' t) cosru (t' —t—)w (t' —t) . (14.1)

Substituting here Eq. (13.1) for w(t' —t) we obtain

1 t'+rp+r ' 1 (ar„)'—r ' 1

16Qp+r, (Q—~)p+(r+Wr„)p 5 ~r„r+Wr„(ar„)p r+

-(Q,—Q)(Q —a&)+(r Wr„+r/2)(r Wr„)
X ar, (r+Tr„)+a~

(Q,—Q) + (r,~r„+r/2)'

(Q —Q)(Q —co)+(r wr„—I'/2)(I' wr„) 2cg

(Q,—Q)'+ (r+Wr„—r/2)' (Q,—co)'+ (I'/2)'

[(Q,—Q)P+ (r+~r„)P—(r/2)P]r/2+r (Q,—Q) (Q,—~)

ar„[(Qg—Q)'+ (r~~r„+ r/2)'j[(Q~ —Q)'+ (r~wr„—r/2)'$

(~r )P—r ' [(Q,—Q)P+r+P+ (~r„—r/2)P)r/2+ (r+2r„)(Q,—Q)(Q,—~)
(14.2)

(ar„)' [(Q,—Q)'+(r+wr„+r/2)')[(Q, —Q)'+(r+ar„—r/2)'j
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The interpretation of this expression parallels that of
the autocorrelation function. The 6rst term in the large
parenthesis belongs to the coherent and incoherent in-
duced emissions. The second one describes the spon-
taneous emission. We note that the spectrum of the
induced emissions is centered around the eigenfre-
quency of the coupled system 0 while that of the
spontaneous emission is centered around the atomic
frequency 0&.

Investigating the coherent induced emission term it is
found that as F„—+ F+ from the smaller side, by de-
creasing the difference j~0—~&~, not only the energy of
the oscillator increases with (I'+—I'„) ' but also its
spectral width becomes smaller Lsee Eq. (12.1)j. This
means that an oscillator which is in closer resonance
with the atoms is not only more highly energized but is
also more monochromatic. This is exactly what makes
laser action possible. In fact in the limit F„=F+ we
extract

r —r„
lim =~6(Q—or) (14.3)'+-" (n —~)'-+ (I+—1„)2

from the first term, which means perfect monochro-
maticity. We mentioned before that in this limit the
establishment of the steady state would require in6nite
length of time.

On the basis of the spectral distribution of a resonant
oscillator we may say that it takes part in steady-state
laser action if its spectrum is much narrower than it
would be in spontaneous emission. Since the coherent
part of the oscillation carries most of the energy, it
essentially determines the line shape. Thus a condition
for the participation of an oscillator in steady-state laser
action may be formulated as

2(r„—r„)«r; r,&1„. (14.4)

This oscillator then has a much narrower line shape in
the steady-state laser operation than in the spontaneous
emission. If the above inequality is written for F„just
slightly smaller than F+ it is equivalent to

2/71' —(p/2)'j'~2&&LI'2+/1'j'~2 (14.5)

for the case of coo= ~~. We call this the spectral condition
for steady-state laser action. This is essentially the same
as the energy content condition where the energization
of the oscillators with different eigenfrequencies is con-
sidered. In solid-state lasers 7«I' so that

2L»—( /2)9"« I' (14.6)

and, apart of a factor of 2, this is the same condition as
the one in (12.14).

The condition expressed by Eq. (14.4) or (14.5) could
have been derived already in the previous section.
There it would have been required that the coherence of
the oscillator in steady-state laser action should be
much greater than in spontaneous emission. The two
formulations are equivalent because the spectral distri-

w ((o)
(n —~)2+ (I,—r„)2 r,—I'„

(14 7)

is an adequate representation of this dependence. As a
function of + this is a Lorentzian. For constant co there
are essentially two ranges of this function. If ~Q —

&v~»I'+—I'„ then it varies like 1/(I'+ —I'„). In this range
then the energy in a frequency component varies from
oscillator to oscillator proportionally to the variation of
the total energy. If

~

0—
&o

~

&&I'+—I'„ then the energy in
a frequency component varies like 1/(I'+ —I'„)'. This is
an extremely narrowly peaked function. It shows that
the energy output of the laser at a particular frequency
originates almost exclusively from oscillators which to-
gether with the atoms produce a combined system fre-
quency 0 very close to co. At coo', as determined from
Eq. (12.7), the function 1/(I'+ —I'„)' has already fallen
to 8 of its maximum value. The energy content function
at the same place has reached only ~ its maximum value.

13 W. Heitler, The Qmaetmm Theory of Rafgiatiom (Oxford Uni-
versity Press, Oxford, 1954), 3rd ed.

bution is the Fourier transform of the autocorrelation
function.

The width of the incoherent induced emission can
take on the maximum value (I'+y) when I'+ =I'„.Thus
the coherent induced emission has the narrowest spectral
distribution and the incoherent one may be wider than
the spontaneous emission which has the width F. This
result is reminiscent to what one obtains in the Heitler
damping theory. " External radiation with a narrow
linewidth may stimulate resonant emission with a
similarly narrow peak. This peak is superimposed on a
background which is broader than that of the spontane-
ous emission because of the increase of the total transi-
tion probability.

The parallelism is imperfect because the Heitler
damping theory refers to the natural linewidth which
never appears in our calculation. Thus it happens only
if the (I'~—I'„) term is coherent enough that the
(I'++I'„) term becomes more incoherent than the
spontaneous one.

The present spectral distribution can be compared
with that of Wagner and Birnbaum. ' The result of these
authors cannot be interpreted as a superposition of
coherent and incoherent induced emissions and of
spontaneous emission because it contains only one term.
They separate the atomic dipole. moment into the sum
of spontaneous and an induced moment, an assumption
we do not have to make. Their cavity oscillators are
driven by the spontaneous dipoles alone. In reality they
are also driven by the loss mechanism.

It is interesting to analyze the spectral distribution
function from a different point of view. One may ask
about the variation of intensity of a particular fixed
spectral component from oscillator to oscillator. Only
those oscillators are considered for which F„ is almost
equal to F+. Then
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XV. MATHEMATICAL GENERALIZATIONS

A number of assumptions have been made which are
fundamental to the mathematical approach of this
paper. They are the following: (1) The currents are
weak enough so that it is sufFicient to go only to second
order in the coupling constant. (2) The current correla-
tions are practically unaffected by the coupling of the
atoms to the oscillators. (3) The oscillators are inde-

pendent of each other.
For the discussion of the buildup assumption (2) had

to be slightly relaxed; namely, the atomic populations
had to be allowed to be slow functions of time.

If the different oscillators are not independent of each
other, crosscorrelations between different modes arise.
This leads to crosscoherence between the modes. This
possibility fits into the mathematical scheme of the
paper but makes the calculations more difFicult. The
equations of motion of the modes do not separate but
have to be solved simultaneously.

If the current correlations are signi6cantly affected by
the coupling of the atoms to the modes, which is the
case in gas lasers, equations of motion for the atomic
current have to be derived. The Lagrangian of Eq. (4.3)
has to be completed by the addition of terms represent-
ing the atoms as dynamical systems.

If the currents are very strong, higher order terms in
the coupling constant become important. This leads to
the consideration of higher order correlations in the
system. If the current correlations are unaffected by the
coupling to the oscillators one may still derive an
effective action operator, but this will be higher order
than quadratic in the oscillator coordinates. The equa-
tions of motion will then be at least quadratic in the
oscillator coordinates. The higher order correlations of
the oscillator coordinates require a generalization of the
concept of coherence, as discussed by Glauber. "

These generalizations all lead to considerable difIi-

culties in carrying out actual calculations.
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APPENDIX

1. The Evaluation of the Atomic Current
Autocorrelation

The atomic current autocorrelation in Eq. (7.2) is
written in the Heisenberg picture. The current operators
depend on time and the suppressed state vectors are
constant. The evaluation of the expectation value is
easier in the Dirac picture. In order to transform Eq.
(7.2) into the Dirac picture the atomic Hamiltonian is
split into two parts. One part denoted by V, describes
the interaction between the atoms and the phonons.
The other part contains the rest of the atomic Hamil-

tonian and includes the interaction with the cavity
oscillators. If the two picture vectors coincide at the
time t', then the relationship of the vectors and the
operators in the two pictures are

I WD (&)&=exp ——
t'

v (,)d, ly), (A1)

Fo(t) = exp
tI

VD(7)dr F~(z)

pz
Xexp~ — Ve( )3 ) . (A2)

t'

With this choice of the transformation lgr)(t)& contains
the time dependence due to the interaction between the
atom and the phonons and FD (t) contains that between
atom and cavity oscillators. The autocorrelation for an
atom, as it can be seen from Eq. (7.2), is

(~(&)~(&')&
=Qo (&) I ~n (&)

i
Xexp~ — Ved )Je(V)~Pe(t')). (A3)

With the introduction of the intermediate states m this
becomes

(~(&)~()"))=Q (4'n(&) l~r)()') Iyo-(&)&

&&@~-(&') I
~~(&')

I P~(&')& (A4)

The summation is extended over the upper and lower
electron states. As we have mentioned in Sec. VII, the
effect of the phonon collisions is a randomization of the
phases of the electronic state vectors. Taking t' as the
reference time the upper and lower state eigenvectors
can be exhibited in the form

„(t)&=Le
—lr) 3-'(

+(1 eAr)3 3xl))I—Ze zxjl PD (—gI)) (A5)
and

l&~t(i))=Le "' '~

+ (1—e &r(' '))~lze'()"]
l
l'ng(g')&. (A6)

4/F is the time constant of phase randomization. 6' and
8" are the randomized phases. The state vector of an
atom is IQD(&))=(zeal))t'Dl(~))+(zeel))vDee(&)&,

(A7)

where a~ and u„are constant complex amplitudes. The
substitution of Eqs. (A5)-(A7) into (A4) leads to

(J(i)~()",)&= I
«I'e ")' ')Q'31~(&)14 &9' l~(&') IA)
+1~-I'e "' '8-l~(&) 143&

x(yg I
J(z')

I p & (A8)

The eigenvectors are always taken at the reference time
and are therefore constants. In this formula the time
ordering is such that z) z' and thus A++(t t') is being—
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(&0 +~Pl a
I +
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calculated. If the energy difference between the upper weak coupling. Then
and lower levels is taken to be AQ& then, in view of Eqs.
(7.2) and (7.3), Eq. (7.7) is obtained. The opposite time
ordering leads to Eq. (7.6).

2. The Poles of the Fourier Transformed
Green's Function

The poles of the Fourier transformed Green's
function,

Qg'p'
G(&)= i 2—~vi+~0'+

QPy (r/2)2 —iri.—f.2

are the zeros of the bracketed expression. Exact and
convenient solutions can be obtained only in a few
special cases.

In general, the

(P+ipi a)o'—) (P+il'f —(o ')+Q,'p'=0

quartic equation has to be solved, where

(of=QP+ (r/2)'.

The solution can be attempted in the form

p= 2(~0+~x )+&,

By substitution into the quartic equation the

(a(1+i'/2Q)+ipQ+-', ((oP (o—p') g
La(1+ii'/2Q)+i&Q+ ~ (~0'—~&'))+Quip'= 0

quadratic equation is obtained with

Q2= („,2y„P)
One finds that

a= —~i(y+I')Q+iLQPp'+ (y—I')'/4Q'
(~ 2 ~ 2)2/4jl/2

and thus

In the neighborhood of the resonance a&q+a&0=2Q, so
that

z

&
=+Q—-{l (V+I')+L~'+ (V—I')'/4 —(~ —«)'1")

2

where u is much smaller than the erst term due to the determines the four poles with sufhcient accuracy.


