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Effect of Collisions on Electron Waves in a Plasma in a Magnetic Field
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This is a study of the eftects of electron-electron and electron-ion collisions on small oscillations in a fully
ionized plasma imbedded in a constant external magnetic field. The first three moments are taken of the
Boltzmann equation with the Bhatnagar-Gross-Krook collision terms. The low-temperature approximation
is employed to close the set of equations. The moment equations and Maxwell's equations are solved simul-
taneously to obtain the dispersion relation for small amplitude electron waves propagating at an arbitrary
angle to the external magnetic field. The dispersion relation, the collisional damping included, is studied in
various limiting cases. The most striking collisional effect is the reduction and smoothing out of the resonance
near the electron cyclotron frequency.

INTRODUCTION

S MALL amplitude waves in a collisionless, uniform
plasma imbedded in a constant magnetic field has

been the subject of a large number of papers in the last
decade. These contributions may be divided into two
groups: (a) those working directly with the Boltzmann
equation and (b) those working with a set of moment
equations. Prominent among the group (a) papers are
those of Gross, ' Gordeyev, ' Sitenko and Stepanov, ' and
Bernstein. 4 Reference is also made to the excellent book
by Stix.' The moment equation approach has recently
been reviewed by Bernstein and Trehan, ' and by
Denisse an, d Delcroix. ~

The effect of collisions on waves in a plasma has been
receiving relatively less attention. Most frequently, if
considered at all, a simple relaxation term is added to
the collisionless Boltzmann equation, and moments
taken thereof. Ideally, in a completely ionized gas, one
should work with the Fokker-Planck collision integrals.
Working directly with the Fokker-Planck equation,
however, seems impossibly dificult. Even a treatment
based directly on the Boltzmann equation with a
relaxation term is far from easy, as has been shown by
Lewis and Keller. ' An approach based on moments of
the Fokker-Planck equation, while less prohibitive, also
runs into difhculties, since even in the linear theory the
moments arising from the collision integrals differ from
the familiar density, velocity, and pressure moments
resulting from the other terms in the equation. The
problem therefore is one of ending a closed set of
moment equations.

The difficulties with the Fokker-Planck collision
integrals prompted Bhatnagar, Gross, and Krook' and
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Gross and Krook, " to suggest simpler collision terms,
which would however respect the conservation laws of
particles, momentum, and energy. Small amplitude
waves in plasmas without an external magnetic field
were considered by these authors. In arriving at their
results they make use of an "isothermal approximation"
neglecting temperature variations in the wave. Re-
cently, Liboff" considered waves in a plasma in a
magnetic field using moment equations with the Gross-
Krook collision terms. He made a systematic study of
the long-wavelength phenomena by expanding in powers
of the wave number. However, his dispersion relation
LEq. 3.99)"]neglects the effects of the thermal motion
of the particles.

Our starting point is quite similar to that of Liboff, "
but we shall be concerned with high frequencies rather
than long wavelengths. We work in what Bernstein
and Trehan' label the low-temperature approximation.
The eGect of the thermal motion of the electrons is
taken into account to the first order in the temperature
rather than to all orders as is done by Lewis and Keller. '
We will therefore never see exponentially small effects
like the Landau damping. On the other hand, our
collision terms are consistent with the appropriate
conservation laws whereas Lewis' and Keller's are not.
Since our main concern is the eAect of the collisional
damping rather than the Landau damping, the im-
portant thing is to make the collision terms as realistic
as possible. As discussed by Bhatnagar, Gross, and
Krook' "and by Liboff,"the results obtained with the
collision terms used here shouM very closely approxi-
mate the results one would get if one were able to use
the Fokker-Planck terms directly. For our purposes the
low-temperature approximation is perfectly adequate.
With the phase velocity assumed large compared to the
thermal velocity, we may close the set of equations by
neglecting the divergence of the heat Qow tensor. '
Furthermore, since we limit ourselves to high fre-

quencies, the ions are assumed to be infinitely massive.
The derivation of the dispersion relation for waves

' E. P. Gross and M. Krook, Phys. Rev. 102, 593 (1956)."R.L. Liboff, Phys. Fluids 5, 963 (1962).
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propagating at an arbitrary angle to the magnetic field, Here o is constant, e and V are given by Eqs. (2) and
collisional effects included, is then straightforward. (3), while T is defined Lsee Eq. (4)] by

MOMENT EQUATIONS 3SKT=TlP. (10)

The electron distribution function f(r, v, t) in a With the ions infinitely massive and at rest the Gross-

completely ionized gas is assumed to satisfy the K.rook expression for the electron-ion collision term

equation becomes

Bf c v ) gfh gfh (Bfh s' ts
+v—p'f —E—+—xB

I V.f= I + I (1) I I

= ——f
Bt orat c s Bt /„Bt ),; Bt/et &et- 27rKT'

where (bf/Bt) and (Bf/tit)„represent the change in f
due to electron-electron and electron-ion collisions,
respectively. We dehne the electron density n, the drift
velocity V, the pressure tensor P, and the heat Aux

tensor Q in the usual way

Xexp (—mv'/2KT') . (11)

The ion density e; is here assumed constant, as is 0„..
The requirement that electron-ion collisions conserve
energy determines T' to be

I=fd'vf,
NV= fdovvf,

P=m J'd'v(v V) (v -V)f, —
Q=m J'd'o(v V)(v —V)(v —V)f—

T'= T+m V'/3K. (12)

(3) With the expressions (9) and (11) the integrals in
Eqs. (7) and (8) become trivial. The results —in the
linear approximation —are given in Eqs. (21) and (22).

(3)
DISPERSION RELATION

Multiplying Eq. (1) by unity, mv and m(v —V) (v—V),
respectively, and integrating over velocity space, we
arrive at the following moment equations:

(Bn/Bt)+P' (ooV) =0,
8V

m~ +V ~V I+@ P
Bt

(13)B=Bo+Bi,

E=O+Eg,

ot =eo+ooi,

V=0+ Vg,

P=PGI+Pi,

Q=O+Qi,

(14)

(15)
(Bf1

+se(E+—xO =m g'ss~ —(,
c EStf;,

(7)

(16)
aP—+V (Q+VP)+P VV+(P VV)' (17)

(18)

We wish to study small perturbations about a stable
equilibrium corresponding to a Maxwellian electron
distribution at a temperature To. With a subscript zero

(6) denoting the equilibrium quantities and the subscript
one denoting the perturbations, we write

+—(P xB—BxP)=m d (vo—oV)(v —V) S;=So. (19)
mc In Eq. (17) I denotes the unit tensor, and by Eq. (10)

—
Bfh, Bfh,

— it is clear that po ——eoKTo. We substitute the above
X —

I + —
I

. (8) expressions in Eqs. (6)—(8), and since the perturbations
bt) „bt).; are assumed small, we drop terms of second or higher

~ ~

(2o)

BPg
+V Q.+p. (&V V +VV.+(VV )')

orders in the perturbed quantities. The results are.
Here we have taken note of the fact that the collisions
conserve particles and that electron-electron collisions (Bn &/Bt)+cog. V i 0, ——
do not alter the electron drift velocity. The superscript
T in Eq. (8) denotes the transposed tensor. BVg Vg

Pollowiag Gross aott Krooh, " we approximate the ' +V' '+ ' '+ "O')
electron-electron collision term by:

X expI —m(v —V)'/2KT] . (9)

e
+—(P, x Bo—Bo x P,)= (p„+p„)

mc
X[—P,+-', I TrPi]. (22)
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Here v =23O/Ir„and v„=23O/Ir„are the effective
electron-electron and electron-ion collision frequencies.
We will look for plane-wave solutions to Eqs. (20)—(22)
and shall therefore assume that all the perturbed
quantities vary as exp[i(k r—pit)]:

equal to —eoeV~, we arrive at

cpk x (k x E)+pp2E = ipp42r23peV,

which can be solved for E

($1,E1,231,V1,P1,Q1,) = (8,E,23, V,P,Q)

Xexp[i(k r—(A)]. (23)

In Eqs. (20)—(22) we can then replace 8/Bt by ipi-
and P' byik. When the phase velocity of the wave p&/k

is large compared to the electron thermal velocity
(ICTp/m) i2, it is legitimate' to ignore '7 Ql in Eq (22.),
thereby achieving a closed set of equations. From here
on we shall work within this so-called low-temperature
approximation. '

The following factors, all of which reduce to unity in
the collisionless approximation, will occur repeatedly
in the equations which follow:

E= j4%23pe(pp I—Pkk) ' V/pp(M p k ) .

This equation enables us to eliminate E from Eq. (27)

pi 2(pi2I —cpkk) V
k P= 233233 yp&V — ia——x V . (30)

p& (p&2—Cpkp)

Here ppv= (42r23pe'/213)'i2 is the plasma frequency and 0
the vector in the Bp direction with a magnitude equal
to the electron cyclotron frequency.

Turning next to Eq. (22), we observe that if we take
its trace the result is

y = 1+iv.;/pi,

8=1+i(v,~+v )/pp,

3=1+Si(v„+v )/3pi.

(24) ~ TrP=5ppk V. (31)

(25)
With this expression for TrP and again making use of

(26) Eq. (23), Eq. (22) may be written:

Our dispersion relation is now obtained by solving
simultaneously Eqs. (21) and (22) along with Maxwell's

equations. Equation (20) merely serves to express 231

in terms of Vl. Since 231 occurs nowhere else we shall

have no further use of it.
Substituting from Eq. (23) in (21) we obtain

OOPS+i(P xQ—0 x P) =pp(k V+Vk+ plk V) . (32)

At this point it is convenient to introduce a definite
right-handed rectangular coordinate system with unit
vectors el, e2, and e3. We choose ep ——Sp/Bp and define

ej by

k= klel+kpe3. (33)
—iy mn, V+ik 2+em(3+ —Vxp)=0. (27)

Since P is a symmetric tensor, Eq. (32) constitutes a
set of six independent equations for the elements of P.

From Maxwell's equations, with the current density The solutions are

I' 8/po= k. V+2k V +2Qk (2QV 3pi8V )/( '8' 4—Q'), —

&»~~/pp= p V—2Qkl(2QV1 —ue8U2)/(CtPIP 4Q ) I

P33OA/pp= pk V+2kpV3,

2 12 2 21 ppkl(pI~V2+23QV1)/(pI ~ 4Q ) I

2 13=2 31—pp[pi8(klV3+k3V1) —ZQk3V2]/(&d 5 —Q ) I

F23——P32= pp[(Ak 3 V2+3Q (kl V3+k 3Vl) ]/(pp'b' —Q') .

(34)

With these expressions for the elements of P substituted in Eq. (30), we see that the resulting vector equation takes
the form

R V=o, (35)
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where the components of the tensor R may be written:

E]]=QPQ—
~ 2(~2 c2k 2) p

— 4Q2k12 1dVk22=- (~+2)ki'+ +—C'P ~2)2 4Q2 ~2)2 Q2

R12=R21=i'd@ 1+P +
~2)2 4Q2 ~2)2 Q2

JR13 R3] k jk3

2C2 Q) 8
p——-+

~2—C2k2 5 '2 —Q'
(36)

(d CO k3'
%2= —102'+ +P~2& +

~2 ~2/2 ~2)2 4Q2 ~2)2 Q2

R22 ——822 ——2Pk1k 2m&Q/(52(O2 —f12),

&u„2(u)2 —c'k22) P 035k]
R 2 ——S&2y — —— (e+2)k22+

2—C2iP (uV —Q'

Here P=P2/222222 ——ET2/212 is the square of the thermal write down one solution to Eq. (37)
velocity. The requirement that the determinant of R
vanish constitutes our dispersion relation 33 (38)

Det. R=O.

The collisional effects in Eq. (37) are contained in the
factors y, 5 and 2 )see Eqs. (24)—(26)]. If these factors
are set equal to unity we recover the dispersion relation
for the collisionless plasma. With P set equal to zero R
simplifies greatly and Eq. (37) reduces to the dispersion
relation for the cold plasma. To display explicitly the
dependence on the angle 0 between the magnetic field
82 and the direction of propagation k/k, we simply
substitute k sin8 for ki and k cos9 for k2 in Eq. (36).
Our treatmc, st can be extended to include the ion
motion without undue diKculty. Solving Eq. (37) for 10

when k is real, we obtain the frequency and rate of
damping as functions of k, while solving for k when a&

is real, we obtain the wavelength and spatial attenuation
rate as functions of the frequency. A detailed study
shows that the collisions modify the dispersion relation
significantly in the neighborhood of the resonances at
oP=Q2 and oP=4Q2

SPECIAL CASES

The general dispersion relation Eq. (37) is rather
complicated. While it is generally correct to say that
the main effect of the collisions is to dampen the waves
and to smooth out the resonances, it may perhaps be
worthwhile to study the dispersion relation in detail for
some of the simple cases where the collisional effects
become apparent. The dispersion relation simplifies
considerably for waves propagating either perpendicular
to or parallel to the magnetic field. In either case we
find E1g= R31=R23= R~2=0. We can then immediately

The other solutions must satisfy

~11~22 ~12 ~ (39)

A. Propagation Parallel to the Magnetic Field

With k1=0 and k2 ——k, Eq. (38) becomes

~2—~ 2~—1+Pk2~—lg—1(6+2)

In the absence of collisions this reduces to the familiar
dispersion relation for longitudinal plasma oscillations
1d2=~„2+3pk2. Allowing for a misprint we recover the
result in Eq. (67) of the paper by Bhatnagar, Gross,
and Krook, 2 by setting v„=0 (and hence y=1), and by
replacing e by 8, which corresponds to their "isothermal
approximation. "

When Pk2/&a„2, y —1, 1'1 1and 2——1 are all small
compared to unity, it is clear that co in p, 8, and e may
be approximated by &v~, in which case Eq. (40) as
writ'ten gives an explicit expression for co.

The transverse modes are obtained from Eq. (39)

(a2 —c'k' —(u(o 2'(u+Q —pk2(R)&0) '] '=0. (41)

Here the plus and minus signs refer to the left and right
circularly polarized waves, respectively, also called the
ordinary and extraordinary waves. It is clear from
Eq. (41) that the thermal motion (through P) and the
effect of the collisions become very important for
cv=~Q, leading to a considerable modification of the
resonance. Since the equation is second order in k2, we
can solve explicitly for either k or the phase velocity in
terms of co, but the resulting expressions will not be
displayed here.
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B.Propagation Peryendicular to the Magnetic Field

With ko ——0 and kl= k, Eq. (38) becomes

~2—cokR—~ 2[~—Pkob(~282 —Q')-'j-'=0 (42)

This is the dispersion relation for the well-known mode
with El along Bo. The large effects due to the thermal
motion and the collisions for oP=Q' are quite apparent.
Again we observe that since th.e equation is of second
order in k', we can solve explicitly for k or the phase
velocity as functions of co. We note that as 0~0,
Eqs. {41)and (42) become identical.

The other modes are obtained from Eq. (39)

QR(oIR—ookR) (o1282—4Q'+2Pk')' ={{Ioo—cokR)

X[7(Io282—4Q') —bPkR] —oo„R (Io282—4Q') )
X{{co282—4Q') [oooo—oo

'—Pk28 I(2+2)$
—Pk24QRb ') . (43)

This equation is third order in k' and fourth order in oP.
Explicit solutions can be given in a number of limiting
cases however. Thus we note that if 0=0 the solutions
are consistent with Eq. (40) and the common Q=O
limit of Eqs. (41) and (42). If the thermal motion is
neglected, p=0, Eq. (43) yields

ooR —~ 2~-I+ 1 (ookR+Q27 —2)

~2[("kR—QR&-2)2+4,2QR&-oj»2,

@which reduces to the result of Gross' in the absence of
collisions.

We can also solve Kq. (43) in the limit ooR&(cokR,

obtaining the two modes

ooR oI 2~—1+QR~-2+Pko~ —18-1

)([2+2 (2p+b)2(ky2 82 ybRoI 2Q '2) 1j (45)

oo2=4QRb 2+Pkoy 'b '
&([1+(2y+8)2(4yR —82—ybooI„RQ ') If. (46)

The hybrid frequency given in Eq. (45) is consistent
with Bernstein's' Kq. (52) in the absence of collisions
and for QR&)oI~R. For Q=O Eq. {45) reduces to Eq. (40).

C. Proyagation in an Arbitrary Direction
in a Weak Magnetic Field

With the propagation vector k neither perpendicular
nor parallel to Bo, Eqs. (38) and (39) are no longer
satisled, and we must return to the complete dispersion
relation, Eq. (37). Under the simplifying assumption
of a weak magnetic Geld, n'&q~„', we and the following

solutions to the lowest order in the small quantities
Q/oo~, Pko/oI~R:

~2 oo 2~—1+Pk27—lb—I (2+2)
+QRy—' sin'8(1 —Io~o/ycokR), (47)

~2 ~RkR+~ 2~—1+pkR7—lb—l~ R(~~Rk2+Io 2)—1

woo„oy 'Q cos8(cokR+o)~Ry ') '". (4g)

In the absence of collisions Kq. (47) reduces to Kq. (76)
of Bernstein4 after changing the sign of his last term.
In the limit c —+ ~ and without collisions we recover
the result of Gordeyev. R Equation (48) reduces to
Bernstein's' Eq. (77) if we ignore collisions, set P=O
and restore the missing ~~ in his last term. We observe
that the results above are consistent with Eqs. (40) and

(41) for 8=0 and with Eqs. (42), (44), and (45) for
8=s/2, provided the appropriate limits are taken.

D. Propagation in an Arbitrary Direction
in a Strong Magnetic Field

Finally we shall treat the case: QR&)oI~R&)PkR, ck)&oI~.

To the lowest order in Io~o/QR and pkR/Io„R we find one
solution to be

ooo=oI~R cos28[y I+Pkooo -Ry Ib I(2+2)
—oI ' sin'8(Q 2+y Rc 'k ')j. (49)

In the absence of collisions and in the limit c—+ this
result agrees with Lewis' and Keller'SR Eq. (5.34). As

they correctly point out the factor sin'0 is missing in
BclllstclII s Eq. (58). Fol' 'tllc electromagnetic modes
we obtain the solutions:

oIR = cokR+oI,Ry
—I[yocokR ——,'Q' sin'8

('rocokR cos28+1QR sln48)I/2)('rRGRkR —QR) I (50)

and for the hybrid mode,

Io2 QRy 2+Io Ry 1 (~RoRk2 sjn28 2Q2) (~Rgok2 Q2) 1 (51)
where we have also ignored the small thermal correc-
tions. Again we 6nd that these results are consistent
with those obtained for 8=0 and 8=or/2.

While other interesting limits of the dispersion
relation, Eq. (37), exist, we shall not pursue these any
further here. In conclusion we would like to point out
that many of the collisionless limits of our results were
erst obtained through treatments based directly on the
Boltzmann equation. ' " In our opinion we have
demonstrated that these results are more easily arrived
at from the moment equations.


