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varies between —m/2 and s/2. Taking these values as
limits of integration on p, we obtain for the scattering
probability into the zone d(LN, )

~(&8.)d(68.) =(~/2)e'Esd(a-8, )(a8,) o. -(D15)

This is the pure coulomb result.
The scattering probability in the magnetic case

tacitly assumed one particle/cm'-sec in the direction of

the magnetic field incident on the scatterer. The scatter-
ing probability in the coulomb case assumed one
particle/cm -sec in the direction of the velocity incident
on the scatterer. Since the assumption in the coulomb
description is the equivalent of E,"'/E'I' particles/cm'-
sec in the direction of the magnetic 6eld, the value for
this situation should be a factor of E,'~'/E'~' lower than
the magnetic value.
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It is shown that the first approximation to the spin-diffusion coeKcient D of a gas at low temperatures
involves a scattering cross section for distinguishable particles only, so that D is different from the self-
diGusion coeKcient D&. Quantum symmetry eGects show up in the second approximation to D but the cor-
rection to the first approximation is small. The theoretical values of D for gaseous hydrogen and gaseous
He' agree quite well with experimental results.

I. INTRODUCTION

ECENTLV, nuclear magnetic resonance experi-
ments have been used to measure the spin-

diffusion coeKcient D in gaseous hydrogen' ' between
20 and 55'K, and' in gaseous He' between 1.7 and
4.2'K. In these experiments, it is usually assumed that
D is identical with the self-diffusion coeKcient' Dp of
the gas and that the nuclear spin is merely a label which
allows the diffusion to be observed. However, it turns
out that the values ' of Dp given by the Chapman-
Knskog theory of transport processes are systematically
smaller than the experimental values of D, and that
they lie outside the limits of experimental error.

The object of this paper is to show that, in fact,
Dp is not the quantity measured in these experiments
and that an appropriate expression for D reproduces
the experimental results quite well. The distinction
between Dp and D arises only in those situations in
which it is necessary to treat the scattering of particles
quantum mechanically. For a two-component gas at

*This work was carried out while the author was a summer
visitor at Brookhaven National Laboratory, Upton, New York.
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where T is the temperature, k is Boltzmann's constant,
e the total number density, and nz the mass of the
particles (assumed to be the same for each component).
Quantum mechanical effects enter through Qts" "
which is a special case of

1/2

g (s, u —
i dve

—&'v"+'Q i"&(v)
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(2)

where y2 is the relative kinetic energy of the pair of
particles divided by kT, and

Qts( )= dx stnx(1-cos"x)nt, (y,x). (3)
kT p

nts(y, x) is proportional to the differential cross section
for scattering of a particle from component 1 by a
particle from component 2 at a relative kinetic energy
y2kT. x is the scattering angle.

The self-diffusion coeS.cient Dp is de6ned as the
limit of D12 when components 1 and 2 become identical,
and nts(y, z) is taken to be proportional to the properly
symmetrized differential cross section for the scattering
of identical particles. Thus, for example, in pure
orthohydrogen, the particles have nuclear spin I=1
and rotational angular momentum 7=1, and. Dp has

the temperatures under consideration, the coeScient
of diffusion of component 1 relative to component 2 is
given by4

3 kT
D12-

8~~n (1»



A662 V. J. EMERY

TABLE I. The spin diffusion coefBcient in gaseous He . state and so nonsymmetrized cross sections

T ('K.)

2
3
4

D „(10 6
g crn 1 sec I)

Theory Experiment

10
13
16

10
13.8
17

been obtained by using'

Q (1,1)—(5/9)Q (1,1)+ (4/9)Q (l, l)

where 0 (''~ and 0 "') come from scattering in even
and odd states, respectively. If this form of 0~2(' " is
substituted into Eq. (1), it fails to reproduce the
measured values of D in hydrogen. ' '

Hartland and Lipsicas' pointed out that it is possible
to 6t their experiments on hydrogen by calculating
cross sections as if particles with different values of ml
or m J were distinguishable so that

Q)2(' "=(1/9)Q, (")+(8/9)0„,('",

where 0„,(' "refers to distinguishable particle scattering
and is obtained from

4xk' 1
Q *"'( )= —2 (~+1) '( — ) (6)

tnkT y' &=O,I,2

where g~ are the phase shifts for scattering at relative
kinetic energy y'kT.

However, this expression is still not quite correct.
It is always possible to argue that the differential cross
sections may be calculated as if particles with different
values of mq or mJ were distinguishable. If then the
transport process treats all particles in the same way,
whatever their spin, the end result will be the same as
if the indistinguishable particle cross section was used.
Thus, for example, the viscosity and thermal conduc-
tivity coe%cients' involve Q(2) (y) and since (1—cos x)
is an even function of cosa, the interference terms
between odd and even angular momentum states which

are odd functions of cosx vanish on integration over x,
and the expressions corresponding to Eqs. (4) and (5)
give the same result.

In a diffusion process, this statement is no longer
true since (1—cosx) is neither an odd function nor an
even function of cosx, and it is necessary to go back
to a much earlier stage in the calculation. Now, colli-

sions between particles of the same component do not
inhibit diffusion directly since as a result of momentum
conservation they do not change the Aux of one compo-
nent relative to the other. They may modify diffusion
indirectly (see Sec. II) but usually this effect is small

and it has been neglected in the derivation of Eq. (1).
In the same approximation, spin-diffusion is not
affected by collision between particles in the same spin

(1,O —g (I,l) (7)

may be used to calculate D from Eq. (1).
Physically there must be something (in this case the

spin wave functions) to distinguish a set of particles
from the (otherwise) identical particles through which
they are diffusing. If not, the diffusion could not be
observed. Thus, Do as given by Eqs. (1) and (4) can
never be measured, and quantum symmetry effects
would show up in a diffusion process only if corrections
to Eq. (1) were important.

Equations (1), (7), (2), and (6) also give the spin-
diffusion coeKcient in a Inixture of orthohydrogen and
parahydrogen, provided e is the potu/ number density.
Thus, D is independent of the relative ortho-para
concentrations. This result is consistent with the
measurements of Hartland and Lipsicas, ' ' and so also
are the calculated absolute values of D. [There is
little numerical difference between the results given
by Eqs. (5) and (7).]

DeBoer et al. ' did not calculate 0„,("& for gaseous
He', but it may be determined from the tabulated
scattering phase shifts. ' The results are shown in
Table I. It can be seen that they agree with the experi-
mental values within the maximum experimental error
of 6%%uo.

In the next section, these remarks will be amplified
into a detailed derivation of Eqs. (1), (2), (6), and (7)
for gaseous He', and the way in which the calculation
may be carried out for hydrogen will be indicated. The
Bloch-Torrey equation' for the decay of magnetization
by spin diffusion will be derived from a Boltzmann
equation. The discussion avoids several of the assump-
tions made by Hone' in his calculation of the spin-
diffusion coefficient in a Fermi liquid.

II. CALCULATION OF THE SPIN-DIFFUSION

l. Gaseous He'

In a spin-echo experiment, the system is given an
initial magnetization Mo by means of a magnetic 6eldI and then a pulsed rf Geld is used to turn Mo so that
it makes an angle o. with H. For times which are short
compared to the spin relaxation time, the subsequent
motion of the magnetization M is given by the Bloch-
Torrey equation'

aM/at= (p/As)(MyH)+v Dv(M —M,), (g)

where p and I are, respectively, the magnetic moment
and spin of the nucleus. Experimentally, ' ' the deca&
of M' according to Eq. (8) is observed by applying
further rf pulses to produce echoes, but the problem

7 J. deBoer, J. Van Kranendonk, and D. Compaan, Physica
16, 545 (1950).

H. C. Torrey, Phys. Rev. 104, 563 (1956).
9 D. Hone, Phys. Rev. 121, 669 (1961).
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here is to derive the equation together with an expres-
sion for D.

t' fields the particlesIn the presen ce of the magnetic e
p', f He' whose nuclearnstates of spin, an or e, ware not in eigensta

a Boltzmann equationit is necessary to use a o zman
r t) which represents the distri-

h 1 it d o it'oh bd'df thr at time t. This qe uation may e eriv'.l Green func-otion for the one-partic e requations of motion
-wavelength limit and

' n" of the system in the long-wave eng
lt ls a p alausible generalization

p= po+pi. (14)

Then to first order in pi, Eq. 9 becomes

8po Bpo
V' +-[o,pp5-=Ii( ) (13)

2m BrBv +

from this initial distributionThe system will relax rom is
function.

d4 of solving the Boltzmann equation
d h ll' '

is to construct a solution to first or er in
rate.

Suppose

+—[o,p5-=I(p)—+v ———
Bt ()Pr 2s Br Bv + from E . 11) to first order in pi.Ii(p) is calculated o q.

lowest order in H. enen lfe uation. Here, [u,b5+ ando ef the usual Boltzmann equa ion.
the anticommutator an e[,b5 are, respectively,

commutator of (2&&2) matrices a and b, an o is
single-particle energy

pi= foV)~

Ii(p(1)) is given by
(10)

&&(n (x,v)Lp (3)—p (1)+p (4)—p (2)

+n-(x,v)[tp(3)- v(1)+p (2)—v (4)

+»(v (4)—p (2))I 3 (1&)

Now, using Eq. (13), Eq. (15) becomes

I(p(1))=2ir dvp dx sinx(n, (x,y)[p(3)p(4

o=-,'mv' —p, (e H),

=2e dvp siiixdxfp(1) fp(2)is the s in vector. I(p) is the collision term. I,( (1))—2e

are the usual streami gin terms in w ic ma r'

ietrized. The remaining ermhave been symme rize .
left-hand side represents the couple w ic
the spins.

neglect the final-state statistical factors in e co
' '

term and

—p(1)p(2) 5+n-(x, V)Lp(3)(»p(4) —p(4))

—p(1)(T p(2) —p(2))5&, (11)

ps Bt pjr

=I (p) (18)

d are initial velocities,
' '

s v and v4 must satisfy momen-
is p(v;, r,t; v, an vp a

and the final velocities vo an

angle x. The quantities n, (x,yq an n, x,p
tial cross sections w ic ea

) ('') defined in Sec. I. It is easy o
en

' ' '
I(p(1)) reduces to

H' ' hd bdistribution function. When H is swi c e

M/ Bt h to be found from the qhe e uation of change
E . 9 bype, ta ingwhich is obtained by multiplying q. ( ) y

oth sides, and integrating over v. et e trace of bot s es,
collision ermt ives no contribution an e

p)M

+p Tre div vpdv ——(M&(H) =

18) BM/Bt has to be evaluated in the
lowest approximation p= po, an en
(p/AI) (M&&H). Thus Eq. (18) becomes

(12)pe= fo[Io+(e Mo)/m~5

in H since the susceptibility follows
th 6 t f le MisC

' ' law. Immediately after t e rs r~uric s aw.
is thenno longer parallel to H and p is en

(13)po=fo[Ip+ (e M)/p~5

m uantum Statistical Mechanics"L.P. KadanoG and G. Baym, Quan um
(W. A. Benjamin, Inc. , New YYork 1962).

(
—

)v—~ (M —M,)=I,(p) .
t9

ps Bf

The solution of this equation has the form

8
q g(p) v e=(M —M.—p),

Br

(20)

(21)
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— 3 [~~2@ ??,?)j—? (23)

(?r M) 3 1 8
v —o (M —M,) .(24)

pg 8 pe'0„,&"& 8r

If this expression is substituted into the equation of
change [Eq. (19)j then the Bloch-Torrey equation

[Eq. (8)j is obtained with D given by

D= '(k2'/~m o»-] (25)

In the higher approximations to g(??), a, will appear
and, in principle, it could produce a non-negligible CGect

(a similar elfect is essential for superconductivity in

where, from Eqs. (17) and (20)

(
f0

v= 2x Zp2 ?fx s??lifo(1)fo(2)
p'8 0

X(~.(~,V)ivaa(») —»g(~ )+v.g(~4) —vs�(»)3

+ -(*,v)[»g(») —»g(») —v.g(~ )+v2g(») j) (22)

This equation is independent of the direction of M
although, in general, this vvould not be so. The diffusion
is limited by scattering of particles from neighboring
regions of space in which the spins, on average, point
in diferent directions. The forces are spin-independent
but the scattering is not, since the relative wave
functions must be antisylnlnctrized. In deriving Eq.
(22) only the lowest order in M has been retained.
In this approximation, particles from a region in space
in which the spins are, on average, parallel to M, scatter
from particles in a region of space in which the average
spin in zero, so that the result is independent of the
direction of M.

Equation (22) may be solved by expanding g(s) in a
series of Sonine polynomials. ' In practice' it is sufhcient

to use the first term of the series and to set g(??) equal

to a constant go. Then, by conservation of momentum,
the term involving x, vanishes, and

metals. ") In practice" the corrections are not large for
hydrogen or for gaseous He'. For liquid helium three in
the Fermi liquid region, they have not been estimated.

3 1
D= ——

g~(mo+I„) n .""
in agreement with Eqs. (1) and (7).

(26)
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2. Spin Diffusion in Hydrogen Gas

Orthohydrogen molecules have nuclear spin I= 1,
and rotational angular momentum J= I.The discussion
of He' showed that the spin diffusion is isotropic so
that D may be calculated by considering only the
diagonal elements of Eq. (9) or, more simply, by
discussing the irutial diffusion of M when H is switched
off suddenly and no pulsed rf fields are applied.

Since the magnetic effects and the two-particle forces
arc taken to bc lndepcndcnt of J~ lt ls necessary to
consider four simultaneous scalar Boltzmann equations,
one for each value of my and one for the parahydrogen.
Once again, in the first approximation, collisions between
particles with the same values of both I and J do not
contribute. All other collisions involve nonsymmetrized
cross sections and since the ortho-ortho and ortho-para
potentials are assumed to be indentical, only one cross
section Q„,o ') enters.

If no and n„are, respectively, the number densities
of the ortho and para forms of hydrogen the result is


