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nrt= (4.61+0.07)ap' (5)

nn/nH, =0.8283&0.0090. (4)

Taking the value nH, = (5.564+0.028)av' for the experi-
mental wavelength of X=5870 A, the value of the
dynamic polarizability of the ground state of atomic
hydrogen is found to be,

Kingston" are accomplished by expanding the index
of refraction (or polarizability) in inverse powers of the
wavelength in such a way that the sums over inter-
mediate states are eliminated. The value and error
assignment quoted above was obtained by a direct,
but laborious, evaluation of the second-order perturba-
tion theory from the well known expression for the
polarizability of an atom in the eth quantum state,

with the error assignment on a purely statistical basis.
This result is in good agreement with the theoretical

value

f'(rt', st) e'/rrt
n'(~) =2 (7)

nH = (4.66&0.01)ass (6)

as calculated using time-dependentperturbation theory"
and evaluated for the experimental wavelength.
Podolsky's calculation' and that of Dalgarno and

which includes a sum over a complete set of states and
an integration over the continuum states. Here, co is the
applied angular frequency (2src/1), co„,„ the Bohr
frequencies, and f(st', st) the oscillator strengths.
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A procedure for treating correlations in atomic structure is introduced and applied to the calculation of
excitation energies, oscillator strengths, and photoionization cross sections. The method is the extension of
the Hartree-I'ock theory known as the random-phase approximation, which has already been applied to a
number of other many-body problems. In this application to atomic physics results are given for the follow-
ing atoms in column II of the periodic table: beryllium, magnesium, calcium, and strontium. These atoms
all have 'S ground states, and only excitations to 'P states are considered. The general conclusion of the
study is that the values of the oscillator strengths and photoionization cross sections are changed signi6-
cantly by the correlations, while the changes in the values of the excitation energies are quite small. Where-
ever comparison with experiment is possible, the inclusion of these correlations improves the agreement be-
tween theory and experiment. Their effects are, however, not as marked as in highly degenerate infinite sys-
tems or in nuclei.

I. INTRODUCTION

A MAJOR problem in theoretical atomic physics, as
in other many-particle problems, is the role of

correlations, particularly for observables other than the
total energy. The only correlations included in the usual
first approximation, the Hartree-Pock approximation,
are those arising from the Pauli exclusion principle. The
value of the total energy of an atom obtained in this way
is, of course, quite accurate, being good to within one
percent in most cases. The errors in other quantities
can, however, be very much greater.

In the past, two main approaches have been followed
in improving this situation in atomic physics problems.
The variational approach, in which the electronic
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separations are introduced into the wave function,
has had good success for two-electron systems, but has
not yet proved practical for heavier atoms. The con-
figuration-interaction method, in which linear combina-
tions of Slater determinants are used, has been mainly
useful for light atoms. The results show that the wave
function improves very slowly as the number of
configurations is increased. Little work has been done
on the correlation problem for medium and heavy
atoms.

In recent years, however, there has been substantial
progress in treating correlations in infinite many-particle
systems. In addition to developments in perturbation
theory, two nonperturbative approaches have been
developed and proved useful in several diferent
contexts. These are the Bardeen, Cooper, and Schrieffer
theory of superconductivity, ' and the random-phase

~ J.Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108,
ii75 (1957).
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approximation used in the theory of the electron gas. '
Valatin and others have formulated these theories as
natural generalizations of the Hartree-Fock approxima-
t.ion. ' In this context it seems natural to apply these
new theories to systems with a finite number of degrees
of freedom. This has already been done extensively for
atomic nuclei. 4 ' The original successes of these tech-
niques for very large systems does not necessarily mean
that they are suitable for finite systems, or even that the
conditions for their applicability are the same. Instead,
it must be expected that their usefulness will depend on
the details of the unperturbed level spectrum and
interparticle interaction, and that a demonstration of
the smallness of other correlations must be made in
each case.

In the present work, the random-phase approximation
is applied to some problems in atomic structure.
Theoretical values of excitation energies, oscillator
strengths, and photoionization cross sections are given
for beryllium, magnesium, calcium, and strontium.
The correlations of the valence electrons cause signif-
icant shifts in the values of the oscillator strengths and
photoionization cross sections while the values of the
excitation energies are changed very little. This
indicates that the Hartree-Fock model may be satisfac-
tory for the calculation of energies and, at the same
time, be a poor model for the calculation of other
observables. The largest shift in the values of the
excitation energies was about 5%, and a shift of this
magnitude occurred only for the lowest excited level.
For the higher levels, the excitation energies were
changed a negligible amount by the correlations. In
contrast to this, the values of the resonance oscillator
strengths were changed by about 30%, and the values
of the oscillator strengths to higher levels were changed
by factors of 3 to 20 (one case only). The photoioniza-
tion cross section near threshold was also shifted a
large amount by the correlations. The values of the
uncorrelated and correlated cross sections typically
differ by a factor of about 5.

The detailed comparison of the numerical results
with experimental data is neither possible nor appro-
priate at this stage. It is not possible because many of
the oscillator strengths computed here have not been
measured, and very few have been measured more than
once, so there remains uncertainty in the correct
experimental values. The situation is the same for the
photoionization cross sections. The comparison with
experiment is not appropriate because of the nature of
the computations. It will become clear as the theory is

D. Pines, in Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic Press Inc. , New York, 1955), Vol. 1, p. 368.

3 J. Valatin, Phys. Rev. 122, 1012 (1961).
4 S. Takagi, Prog. Theoret. Phys. (Kyoto) 21, 174 (1959).' G. E. Brown, L. Castillejo, and J. A. Evans, Nucl. Phys. 22,

1 (1961).
6See also the review by B. R. Mottelson, Proceedings of the

International Conference on 1Vuclear Structure, Eingston (North-
Holland Publishing Company, Amsterdam, 1961),p. 525.

developed in the next section that the Hartree-Fock
orbitals would be the best choice for the basis set of
states. Because of the great numerical complexity of
generating such a basis set, the orbitals used for the
basis were generated in either a Hartree or Thomas-
Fermi central field. The main purpose of the present
calculations has, therefore, been to study the eBects of
the correlations included in the random-phase approxi-
mation, rather than to seek close. agreement with
experiment. On the other hand, the correlations
definitely are in the right direction for improving the
agreement between theory and experiment.

Another motivation for this analysis was the possible
existence of collective states in atoms similar to the
plasmons in the dense electron gas and the states in
nuclei responsible for the giant dipole resonance. The
present work attacks this question with the same kind
of formalism used to treat these other states, but
modified to take into account the basic properties of
atoms expressed in the independent-particle model wave
functions and residual coulomb interactions. For the
restricted class of atoms studied, there seems to be
little evidence of strong collective eftects, although this
statement depends somewhat on the particular interpre-
tation placed on the numerical results obtained here.
The possibility of such collective states was first studied
by Wheeler and Fireman with semiclassical and Thomas-
Fermi methods. ~ A similar study has recently been
reported by Brandt and I undqvist.

The theory has been formulated in L-S coupling
since this is most suitable for the atoms under considera-
tion. The formulation in terms of j-j coupling can, of
course, be made in a straightforward manner. Only
excited P states are considered, but continuum as well
as bound states are included. The structure of the theory
is such that this restriction leads to the inclusion of only
the dipole part of the electron-electron interaction.

Although when this work was performed, the experi-
mental situation was quite bad, it is showing signs of
improvement. A Russian group recently reported
accurate oscillator strengths for the resonance as well
as for a few other transitions. ' " Except for these
results, values for higher transitions are virtually
nonexistent. Furthermore, there is no theoretical work
on these oscillator strengths. Of the existing theoretical
work on resonance oscillator strengths, only Tre6tz's

7 J. A. Wheeler and E. L. E'"ireman, A.S.I. Publication No.
U-099, 1957 (unpublished).

W. Brandt and S. Lundqvist, Phys. Letters 4, 47 (1963).' Yu. I. Ostrovskii, N. P. Penkin, and L. N. Shabanova, Dokl.
Acad. Nauk SSSR 120, 66 (1958) tEnglish translation: Soviet
Phys. —Dokl. 3, 538 (1958)j.

"Yu. I. Ostrovskii and N. P. Penkin, Opt. i Spektroskopiya
10, 429 (1961) LEnglish translation: Opt. Spectry. (USSR) 10,
219 (1961)7.

"Yu. I. Ostrovskii and N. P. Penkin, Opt. i Spektroskopiya
11, 565 (1961) t English translation: Opt. Spectry. (USSR) 11,
307 (1961)j.

'~ N. P. Penkin and L. N. Shabanova, Opt. i Spektroskopiya 12,
3 (1962) t English translation: Opt. Spectry. (USSR) 12, 1 (1962)g.
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on magnesium" and calcium'4 includes correlation
effects. The status of theory and experiment on the
photoionization cross sections has recently been
reviewed by Ditchburn and Opik. "Taking into account
the recent measurement for strontium, " the cross
sections near threshold are now available for magne-
sium, calcium, and strontium. On the theoretical side,
a Hartree-Fock calculation was made by Bates and
Massey in 1941.'" Indeed, accurate results for the
Hartree model have not been generally available,
although a program for this purpose has been used for
many years at the Rand Corporation. "Cooper recently
published Hartree calculations for rare-gas atoms, and
similar results for column II atoms are presented in
this paper. "Both Cooper's calculations and the present
work are based on the Rand program.

The main theoretical structure for this paper is
presented in Sec. II. Here the fundamental equations
are derived, properties of the model discussed, and
expressions for the oscillator strengths and photo-
ionization cross sections presented. These general
formulas are reduced to a form suitable for numerical
computation in Sec. III, and some details of the
numerical analysis are given. The results for the five
atoms studied are then summarized in Sec. IV. Section
V contains some discussion of these results.

II. THEORY

A. General Discussion of the Random-Phase
Approximation

An important step in the theory of the electron gas
was Brueckner and Gell-Mann's perturbation calcula-
tion of the ground-state correlation energy. '0 To obtain
this result, which is exact in the limit of infinite density,
these authors summed the contributions from the
"ring" diagrams, each of which is infinite for Coulomb
interactions and plane-wave electron states. The
difhculties of this kind of perturbation calculation were

then circumvented with a canonical Hamiltonian
formulation due to Sawada and collaborators. ' It
has since been realized that these two methods have

practically the same physical basis as the classic
work of Bohm and Pines, ' I.andau's theory of the

Fermi liquid, " and the time-dependent Hartree-Fock
theory. 3 24

Sawada's theory has a number of attractive features.
First of all, the effect of dynamical correlations on the
properties of excited states can be calculated. Second,
the canonical formulation can be easily generalized to
other kinds of many-particle systems. Both of these
features were exploited in the theory of superconduc-
tivity, ""nuclear matter, ' and finite nuclei, ' ' and it
is these features which permit the extension to atomic
structure made in this paper.

The Hamiltonian for an TV electron atom contains
the Coulomb interaction between the charged particles
and various magnetic interactions. For light and
medium atoms, the gross term separations are deter-
mined by the coulomb interactions, and so the appro-
priate Hamiltonian is

An effective one-particle potential is introduced, whose
eigenfunctions are combined into products to form a
basis for the E particle system. The single-particle
orbitals satisfy the equation

The Hamiltonian is now written

&= 2 (T.+v.)+2 2 '.—Z v'
s=1

The last two terms are called the residual interaction,
and V, is usually chosen to minimize the eAect of these
terms.

Using the basis defined above, the second-quantized
form of Eq. (3) is

Ii=g c ,c;~c,+-', . Q. (iy. ~v~1k&c, tc, ~cgc)

"E.Tre8tz, Z. Astrophys. 28, 67 (1950)."E.Trefftz, Z. Astrophys. 29, 287 (1951)."R. W. Ditchburn and U. Opik, in Atomic and Moleculur Proc-
esses, edited by D. R. Bates (Academic Press Inc. , New York,
1962), Chap. 3."R.D. Hudson and P. A. Young, Bull. Am. Phys. Soc. 7, 433
(1962).

' D. R. Bates and H. S. W. Massey, Proc. Roy. Soc. (London)
A177, 329 (1941).

' R, L. Latter (private communication)."J.W. Cooper, Phys. Rev. 128, 681 (1962).
'0 M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364

(1957)."K.Sawada, Phys. Rev. 106, 372 (1957)."K. Sawada, K. A. Brueckner, N. Fukuda, and R. Brout,
Phys. Rev. 108, 507 (1957).

where the operators c;t and c; are Fermion creation and
annihilation operators. In the absence of the residual
interaction, the ground state would have the lowest X

23L. D. Landau, Zh. Eksperim. i Teor. Fiz. 30, 1058 (1956);
32, 59 (1957); and 35, 97 (1958) LEnglish translation: Soviet
Phys. —JETP 3, 920 (1957); 5, 101 (1957); and 8, 70 (1958)j.

'4 H. Ehrenreich and M. Cohen, Phys. Rev. 115, 786 (1959);
and J. Goldstone and K. Gottfried, Nuovo Cimento 13, 849 (1959)."P.W. Anderson, Phys. Rev. 112, 1900 (1958).' N. N. Bogoliubov, V. V. Tolmachev, and D. V. Shirokov, A
Rem Method in the Theory of Supercondlctie~ty (Consultants
Bureau, Inc. , New York, 1959).

"A. E. Glassgold, W. Heckrotte, and K. M. Watson, Ann.
Phys. (N. Y.) 6, 1 (1959).
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electron levels occupied. It is assumed here that this is
a nondegenerate state which permits the definition of
the "Fermi level" as the completely occupied subshell

of least binding energy. One-particle states with energies

higher than the "Fermi energy" are called "particle
states, "and are labeled with Latin letters. The particle
operators are given by

ait= c;~, ai= ci. (5a)

Those states with energies below the Fermi energy are
called "hole states" and are labeled with Greek letters.
The hole operators are given by

6a Ca b t=c. (5b)

E=P e;a;&a, Pp.b—.tb, (6b)

v, =-, p (&'jl. l.p)LC~(i.)ct(jp)+c(~)c(jp)]
i,j,a, p

+2(iP ~
v

~ nj ).,Ct (in)c (jP)), (6c)

V'= Ui+ V2,

Vi=-', Q (ij I &I kl)a;ta;taiai,

(7a)

+-' Q &npliilVb)bs'b, 'b bp, (7b)
a, p, y, b

V~=-', P &ijlilkn). ,[ct(jn)a;tai+aata, c(jn)]
i,j,k,a

+-', Q &nP[r)pi&..[c(in)b, tbp+bptb, ct(in)], (7c)
a, p, y, i

W=P y;,a,ta,—Q y pb, ~bp

a, p

+2 v'pL«(ip)+C(ip)] (7d).
i, p

The following notation has been introduced in the above
equations. The operators Ct(ur) and C(in) create and
destroy a particle hole pair. They are given by

Ct(in) =a;tb t, C(in) —=b a;.
The subscript as after the states in a matrix element
indicates the direct minus exchange term, e.g.,

&ij)i [ki).,=—&ij(r jkl) —(ij(v(lk).

Finally, the symbol p;j is defined by

v's=Z-&inI~I jn)-—&il Vl j) (10)

Note that the y;; would vanish if V were the Hartree-
Fock potential.

The Hamiltonian is now written in terms of these
particle and hole operators

&=E.+It+ Vs+ V'+lV. (6a)

The term E, contains no operators and thus contributes
a constant to the eigenvalues of B. However, our
concern here is only with excitation energies, and
therefore E, can be neglected. The other terms in H are

In the treatment of the electron gas in the random-

phase approximation, only E the "kinetic energy, "and

Vs, the particle-hole interaction, in Eq. (6a) are
retained, and the Hamiltonian consisting of these two
terms is diagonalized with the aid of some further
approximations. Actually, the exchange matrix element

appearing in the third term of VB is not included, as it
does not contribute to the correlation energy of the
high-density electron gas.

The electron cloud in an atom is physically quite
different from the infinite electron gas, however, and if
our calculation is to be meaningful, the approximations
made in finding the eigenvalues and eigenstates of the
Hamiltonian must be reasonable for the treatment of
atomic structure. In the next subsection the Hamil-
tonian is approximately diagonalized, and the approxi-
mations made along the way are evaluated in the
context of this application to atomic structure.

B. The Eigenvalue Equations

Atomic states in Russell-Saunders coupling are
designated by the total orbital and spin angular
momentum, their projections on an axis, and the energy.
In the following we treat only 'S ground states whose

energy is designated by Eo. The basic variable of the
theory is an operator which creates an excited state of
B when it acts on the ground state. It is designated by
At(LM, SMs,E). The eigenstates of II are designated
by

~ 0), ~
I-M,SMs,E), etc. The equation defining

At(LM, SMs,E) is

[H,A t (LM,SMs,E)]= (E Eo)A t (LM,S—Ms, E) (11)

When both sides of Eq. (11) act on ~0&, we see that
At(LM, SMs,E) has the desired property. Taking the
conjugate of Eq. (11) and again letting it act on ~0),
we see that

A (LM,SMs, E)10&=0 (12)

because Eo is the lowest eigenvalue of B. This result
will be useful in the derivation of the eigenvalue
equations.

It will prove convenient to introduce operators which
create and destroy pairs of definite orbital and spin
angular momentum. These operators are given by

Ct(LM, SMs, (m))
=s"' P (—1)".+~-(l.—ta.l,m, ) LM)

tSn, ,Pa

&& (s ps,p,
~
SMs)ct (in), (13—)

C (LM,SMs, (in) )
'-~2 g (—1)=- -(i.—~.i,~,~LM)

~a pitaka

&& (s —p s,p;~SMs)C(in).

The quantities E, m, s, p are the orbital and
spin quantum numbers describing the single-particle
states. The phase of the vector coupling coeScients
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is taken from Condon and Shortley. "The phase factor,
(—1)~" arises because a particle and a hole are
being coupled together, not two particles. The notation
{in) indicates that the qu'antity does not depend on the
individual orbital and spin projection quantum num-
bers. Finally, e' ~' is inserted to make the entire coeS-
cient real.

For reasons which will become apparent shortly, the
eigenvalue equations are derived by considering the
relation

(LM,SMs,EI (E II)c—t(LM, SMs, (in})IO)=0, (14)

which becomes, after a little manipulation,

(15)

+h(I. M, S M—s, E,—(io))C(L—M, S—Ms, (in))]. (17)

The g's and h's are real amplitudes to be determined by the eigenvalue equations. This form of A (LM,SMs,E)
implies that the excited states are expressible mainly as linear combinations of single pair states, i.e., states with
one electron excited out of the ground-state configuration. The amplitudes designated by h(LM, SMs, (in)) arise
because the operator At(LM, SMs,E) acts on the true ground state in which various numbers of pairs may be
excited. By choosing this form of At(LM, SMs,E) we also see that

(0 I Ct(LM, SMs, (in)) I 0)= (0 I C(LM,SMs, (in)) I 0)=0,

(E Eo)(LM—,SMs, EI Ct(LM, SM s, (i&})I0) (LM,S—Ms EI [»ct(LM SM»{i'))]10)=0.
We further reduce Eq. (15) by using Eq. (12)

(E Ep)(0 I
[—A (LMSMs E),Ct(LM SMs, (in})]I 0) (0—

I [A (LMSMsE), [IIC&(LMSMs, (i'))]]I 0)=0 (16)

with a similar equation involving C(L M, S——Ms, {in)).Thus far, we have proceeded by formal, exact, manipula-
tions. We must now consider the approximations necessary to obtain solutions to Eq. (16).

The first approximation is to specify the form of At(LM, SMs,E) as'
At(LM, SMs,E) = P [g(LM,SMs,E,{in))ct(LM,SMs, (in))

(ial

since a matrix of transformation exists between the C
operators and the A operators. Further, this matrix is
nonsingular because the excited states are linearly
independent. Thus, it has an inverse and we can write

(Olct(LM, SMs, (io)) I0)

=(0 I 2 [d(L'M, s'Ms, E,(in) )At (L'M, s'Ms, E)
L',S',Z

+e(L'M, S'Ms, E,{in})A(I,'M, s'Ms, E)]l 0) =0.

If At(LM, SMs, E) contained a term which accounted
for two pair excitations, i.e., a term of the form

C&(LM,SMs, (in'))ct(L'M', S'Ms )(j P))

by the same argument as above, we would find

(0I Ct(LMSM, (ia))ct(L'M', S'M ', (jP)) I0)=0,
(0IC(LM,SM„{~))C(L'M',S'Ms', {jP)) lo)=0. (19)

We are completely neglecting the two pair excitations,
but we still assume that Eqs. (19) hold.

It should be noted that cases exist for which Eq. (17)
is not a suitable approximation. For example, calcium
and strontium have low-lying levels which are best
described as having both valence electrons excited.
Such levels are not accounted for by our choice of the

~8K. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, New York, j.957).

go=1, (20b)

Thus, we will ignore any quantity that contains
products of the $.'s, but retain those quantities that
contain erst powers of the $,. For example, (Ol a;ta;IO)
is neglected since it is a sum of terms bilinear in the $,.
Indeed, the ground-state expectation value of any
operator which has a destruction operator to the right

form of At(LM, SMs, E) and their existence has an
adverse eGect on the numerical results for these two
atoms as will be seen in Sec. IV.

Since the form of At(LM, SMs,E) has been pre-
scribed, the commutators in Kq. (16) can be evaluated.
All operators in Kq. (16) are products of Fermion
creation and annihilation operators so it is straight-
forward to evaluate their commutators. For example,

[c( ) c(i&)]=[c'(i ) c'(ip)]=o,
[C(io),ct(jP)]=8@8s Spa;ta, bgbstb—. —

The next approximation is now made. It consists of
assuming that the ground-state configuration is a good
approximation to the true ground state. To put it more
precisely, consider an expansion of the true ground state

I0)=~.l~.)+Z.~.l~.), (2o )

where ICO) is the ground-state configuration and the
IC,) are any excited con6gurations. The assumption
made here is that
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The question of the validity of the assumptions
contained in Eq. (20b) for atomic structure cannot be
answered with any certainty. Of course it depends
strongly on the basis states, and the Hartree-Fock basis
would be expected to be most satisfactory. Quantitative
work pertinent to this question was done on helium by
Green and coworkers who expanded a Hylleras varia-
tional wave function into a series of Hartree configura-
tions." The results for that atom showed that the
largest $, was 0.03. This then serves as an indication
that the assumption may be valid for atomic structure
calculations.

With the help of the Fermion commutation rules and
the two basic approximations described above, we can
now write Eq. (16) as a linear equation for the g's and
h s. The entire derivation is tedious, but two examples

Thus,

(0I [A (LM,SMs,E),Ct(LM, SMs&{in})]I 0)
=g(LM, SMs,E,{in}). (21)

For the second example, consider one term in V~

v, '=-,'Z &ijl~l p)c(~)c(jp).
i,a,j,P

We now take cognizance of the fact that all the states
studied here are singlet states; thus we write

(l —m l;m;/LM)
C'(LM, { })= Z — b.; C'('), (22)

v2tea

lpga
and a creation operator to the left, regardless of what is will be given to illustrate the method. First, consider a
in between, can be neglected according to the above very simple case,
assumption, 1.e.

q (0 I
[A (LM,SMs,E),Ct(LM, SMs, {in})]I 0)

=g (LM,SMs,E,{in})+terms

whi~h contain (Ola'ta~'IO) or (Olb "bpIO).

i.e., the spin designation is dropped from C (LM,SMs, {in}).It is understood that these states are eigenstates of
total spin with eigenvalue zero.

By straightforward evaluation

«I LA(LM E) LVs', C'(LM, {kv})]]1o)

(l, m, l,m, —
I
LM)

=-,'p (iql~lnp) p (—1)- b„,„,(OI[A(LME), C(in)(b„b„b„a,ta; b—„b,tbp)—
i,a,j,p tR7 ~~ v2

+(8;b„b,.a ta, —b,b,tb )C—(jP)]I0)

(l~—m~l~mi,
I
LM) (l„—m„l„m„l L—M)

=-: Z (Vl I-»Z(-1)- '
h(L ME {iiv})(—1) v

i,a,j,p tÃy, py v2 tttr ifjir v2

X&v.v. ( &ni&va&vj&yp &ki&7a&nj&vp+&iibav&jn&yp+4j&yp&mi&ay) q (23)

where we have used the ground-state approximation and Eq. (19).To simplify the above, a multipole expansion
of the Coulomb matrix element is made, and Eq. (23) reduces to

(Ol [A ( ML, )E,[V Cs(LtM, {ky})]]I 0)

Jg, ({ey},{kv})(—1)~'= —2 Q Jl({ky},{ev})(—1)~h(L—M, E, {ev})+
f nv} ttsp, mr, t nv},L', M'

X (l~ m~4mi,
I
LM)—(l m l„m„IL'M—') (i„m„lvmi,

I

L' M—') (l„m„l m
I
LM) h(L——M, E, {Nv}), —(24)

where

Jl ({ky},{trav})= (Xr({ky},{ev})[(2lq+1)(2l~+1) (2l„+1)(2l„+1)]'i2(l~OlqOI JO) (l Ol„OI LO))/(2L+1)2. (25)

~L. C. Green, M. M. Mulder, C. W. UGord, E. Slaymaker, E. Krawitz, and R. T. Mertz, Phys. Rev. 85, 65 (1952).

The symbol Xr, ({kp},{lr})designates the radial integral in the Lth term of the expansion of the interaction.
Each term in the Hamiltonian is analyzed like Vs and the following results are found. Referring to Eqs. (6)

and (7), the terms E, Vs, and part of W contribute to the eigenvalue equation. The term V~ describes particle-
particle and hole-hole interactions. Since we are working with a model that uses states with only one pair excited,
we do not expect this term to contribute; a direct calculation, using the ground-state approximation, shows that
it does not. The term V2 couples one and two pair states. This term does not contribute because of our neglect of
the two pair excitations, i.e., using Eq. (19).The contribution from W depends on the central field chosen for the
calculation. This will be more fully discussed in Sec. III.
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Having indicated the method of derivation, we now write down the eigenvalue equations, both for Ct(I M, fin))
and for C(L M—, fin}).

(rug —(o; )g(LM,E,(in})—2 Q Jr, ((in},( jP})[g(LM, E,(jP})—( 1)—~h(L M—, E, (jP}))
«iPj

Jr, ({jn},(iP})(—1)~'(l —m lm, lLM)(l —m l, m; jL'M')(lp —mplm;lL' —M')
mar, tnp, «jPj,I ',M'

X(lp —mal, m;jL —M)h(L —M, E, {jP})+ g (Pij~jnj&( —1)""+ P(4—m. l,m;jLM)(lp —mpim;ILM)
ma, mp, «jPj

)&g(LM E,(jP}) Q—yg(l, m 1 m—;jIM)(i m l,m—; lLM)g(LM, E,(jn})
m , « jj

+ 2 v.,( 1)=+—-~(i. m. l,m—, jLM)(ls m, im—, jLM)g(LM, E,(iP})=0, (26a)
terr, ntp, «P j

(-1)™(+ '-)h(L —M, E, f })-2r. I (( }(jP})[g(LME,(jP})-(—1) h(L-M, E, f jP})1
«iPj

I,.({qn},(iP})( 1)~'(—l. m.l m—, l
I.'M') (l, m, l m—, l

L' M') (l—. m. l m—, l
I. M)—

m, m&, «jPj, L'M'

& (4 mt'; j
—LM) g(LM, E,(jP}) Z—(Pil ~l nj &( 1)"'—"'(4 mJ.m—'I L M)(it —m~1 m—

I
L—M)

mrs, mp, «jpj

)&h(L—M E {jp})+p y "(l —m l m lL—M)(l —m lm lL M)h(L —ME f j—n})
terx, «jj

y ~(—1) + ~(l —m l,m, lL M)(lp m~l, m—;—jL M)h(L —M, E, (i—P})=0. (26b)
Inrun, m p, «P j

In the above, the sum over one projection quantum
number in a vector coupling coefIicient implies a sum
over the other. We have introduced

cations Eqs. (26) reduce to

(~~—~*.+v-)g(10,E,fin}—2 I~((jn},fin})

Ms~= &s 6a ~

gn Eqs. (26) the first three terms constitute the
usual random-phase approximation. The next term is
the exchange term which does not contribute to the
correlation energy of the high-density electron gas, but
there is no reason to neglect it here. The last two terms
are self-energy terms, and their contribution depends on
the basis set used.

In their present form, the eigenvalue equations are
quite general; the principal restriction being the
requirement that the ground state of the atom be a
closed shell configuration. These equations can be
simplified considerably, however, when they are used
foI' the partlculaI' atoIQs studied ln this papeI'. We
examine here only correlations among the valence
electrons. Thus, the sums over hole states in Eqs. (26)
are taken only over the valence shell. Further, this shell

contains only s electrons, so there is no sum over the
orbital projection quantum number. Since the only
excited states considered are 'P states, all the particle
states are p states. The excitation energy is the same
for all allowed values of 3f, so M is chosen equal to
zero making all the particle orbital projection quantum
numbers also equal to zero. Kith all the above simpli6-

X [2g(10E,(jn})-h(10,E,fjn})j
+Z((nil ~ In j&

—v')g(10, E (jn})=0

(co +E(u; y)h(10—E,fin}) PJg({j—n},fin})

&&[ (g1 ,D,E(jn})—2h(10,E,(jn})j
—g((nil. lnj& —~;,)h(10,E,(jn})=0. (27b)

The restriction to the valence electrons assumes that
the correlation structure for the lower shells is about
the same in the ground and singly excited states. It is
this assumption which allows the treatment of heavy
atoms with the same size matrix as used for light atoms.
If, however, the total correlation energy were to be
computed instead of the excitation energies, the
interactions among all the electrons would have to be
treated.

We conclude this subsection by ending the normaliza-
tion condition on the eigenvectors. %'e desire

(LM, El LM, E')= 8@@i

for discrete states. This leads to

(0 l [3(LM,E),A t(LM, E')]
l 0)= 8~s
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or

For continuum states, the Kronecker delta is replaced
by a Dirac delta function.

C. Oscillator Strength and Photoionization
Cross Section

The expressions for the oscillator strength and the
photoionization cross sections of the transitions con-
sidered here both involve the dipole element

I N
D= g [(1M,Ei g r. tO&)'. (30)

This quantity has spherical symmetry, therefore

D=3l&10,EI P « lo&l'
s=l

(31)

To evaluate Eq. (31) the operator « is expanded in
terms of the particle and hole operators

«"=2&iI«In&t C'(in)+C(~)j+Z&iI«I j&n"n

—Z&nI«IJ5&h«'b' (32)

Thus

a=3
l &0 I LA (10,E),«„])0) [

=2I Z p{in)Cg(10,E,{in))—h(10, E(i n))g/ 2, (33)
{ia}

where p(in) is the radial integral of r. To arrive at Eq.
(33), the same approximations were used as in the
derivation of the eigenvalue equations.

The expression for the absorption oscillator strength,
averaged over polarizations, is

f«=', ~z~ Q p(in)[g(10, E,(in)) —h(10,E,(in))]~', (34)
{in)

where co+ is given in atomic units. Similarly, the photo-
ionization cross section is, also in atomic units,

4'' CO&A

I 2 p(~)Lg(10,E,{in))
3+ {iver}

—
h( 10 E(i n))]~'. (35)

In Eq. (35) n is the fine structure constant, and K'/2
is the kinetic energy of the ejected electron at infinity.
The continuum eigenstates are normalized to a delta
function in E', i.e.,

&LM,E ~ LM,E')= 8 (K' K), (36)—

g Pg(LM, E,{in))g(LM,E', (in))
{ia}

h(—L M—,E,(in) )h (L M—,E',{in))]=5«z' (2~)

where E is the energy corresponding to the atomic state
with one free electron having a kinetic energy of K'/2.
Of course, the summations in Eqs. (34) and Eq. (35)
also involve integrations over the continuum.

III. NUMERICAL METHODS

+&jnl &lni&+&jl 1'li& (37)

The prime on the sum indicates that the valence shell is
excluded, and the direct and exchange interaction with
the valence shell is written out explicitly. The exchange
interaction with the valence shell is exactly the same
matrix element that appears as the coeKcient of
g(10,E,(jn)) in the second term of Eq. (27a). Thus,
those two terms can be combined, leaving from the
expression (37)

&jl 1'li& —2 &j~l~li».--&jnl~li & (38)

Because of the definition of t/, the above quantity
should be small. The deviations of the quantity (38)
from zero arise from two causes. First, the potential
does not include exchange effects so all the exchange
integrals are not accounted for. These exchange integrals
involve only shells below the valence shell, however;
exchange interactions with the valence shell have been
treated exactly. Second, the orbitals p are not found
self-consistently, so the cancellation of their matrix
elements with the Hartree potential will not be perfect.
Nevertheless, these deviations are assumed small, and
only the diagonal terms (i= j) of this quantity are
retained. The same treatment holds, of course, for
Eq. (27b) and the equations to be numerically solved

The first step in the numerical evaluation of Eqs.
(27) is the selection of a single-particle potential. The
Hartree-Fock potential is probably the best choice, but
the formidable numerical difhculties associated with
generating a complete set of Hartree-Fock orbitals led
us to a simpler choice for this first calculation. The
potential chosen was the Hartree potential due to E—1
electrons for an E electron atom. The charge density
of one of the valence electrons was excluded from the
potential. This is a physically reasonable potential for
the valence orbital as well as all excited orbitals. All
the basis states were computed in this potential,
however; thus the orbitals belonging to inner shells were
computed with too much screening, but these orbitals
do not play an essential role in the theory. When
Hartree orbitals were not available from the literature,
the Thomas-Fermi potential for a positive ion was used.

The effect of this choice of the central potential on
the Eqs. (27) will now be accounted for. Consider the
last term on the left-hand side of Eq. (27a), &ni~«~n j&—y;;. When y;, is written out, this becomes

&«I ~lnj& —2'&jr I ~lie&:.—2&jnl colin&
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become

(«k —«'-')g(10 E (~))—r. ~i({~),(ju))

Xt g(10,E,(j ))—h(10,E,{j)))=0, (39a,)

(«E+«, ')h(10,E,(i })—P J&((zu), (jn})

XLg(10,E,(ju)) —h(10,E,{jn))]=0, (39b)
where

«'-'=«'- —v- —
&zi l'I

z)+2'&zeal

~lz»-+&z I ~l~). (4o)

Hartree orbitals from which the potential could be
formed were available for beryllium" and calcium, "
while the Thomas-Fermi field was used for magnesium,
also calcium, and strontium. The Thomas-Fermi field
and the alteration of that Geld to that of a positive ion
was then taken from Gombas. " The Schrodinger
equation with the above central fields was numerically
integrated using a program obtained from J.Babcock of
the Rand Corporation. It is a modernization of the
program used by Latter" in his extensive computations
based on the Thomas-Fermi and Thomas-Fermi-Dirac
models. The program is described in that paper and
will not be further discussed here except to note that it
reproduced hydrogen eigenvalues to six significant
figures and wave functions to &1 in the Gfth Ggure over
the entire range of integration. This program produced
both the bound and continuum solutions. The asymp-
totic amplitude of the continuum solutions for delta
function normalization is (2/zr)'i' and the numerical
functions were adjusted to this amplitude employing a
method described by Bates and Seaton. '4

For each atom the following orbitals were computed:
(1) all the ground-state orbitals, (2) the first five
excited, bound, p orbitals (six for beryllium), (3)
continuum p orbitals at k intervals of 0.1 from k= 0.1 to
1.0 for beryllium, k=0.1 to 1.2 for magnesium, and
&=0.1 to 1.6 for the other cases. These k values are
in atomic units. The consideration of only these states
implies cutoffs in the sums appearing in Eqs. (39).
These cutoGs were chosen so they will not affect the
data for the first three or four excited states of the atom
and the continuum near threshold.

The next step toward the solution of Eqs. (39) is the
evaluation of the Coulomb matrix elements using the
basis orbitals. We must evaluate Slater F and G integrals
to find the y 's, and also the &1.((in)), (jn)) must be

found which are given by

X~((~),(jn))
00 Lr(

dr i dr2P (rl)P'j (f2) Pa(—ri)P (r2)
0 r)1+1

where P; (r) is the individual orbital for the ith state and

r&= r~ for r~&r2,

r)=r], r&= r2 for ry) f2.

These integrals were all found by numerical integration
using Simpson's Rule. An indication of the accuracy
achieved was obtained by comparing the results from
two independent programs. These results were con-
sistent to five figures.

Due to the similarity in form between Eq. (39a) and
Eq. (39b) they can be combined by introducing

f(10,E,{zu))=g(10,E,{zn))—h(10,E,(in)). (41)

%e Gnd

(«E' —«;.")f(10,E,(in)) —2«, ' Q Jr, ({in),(jn))

Xf(10,E,(jn)) =0. (42)

The sum over states in Eq. (42) includes an integral
over the continuum. To solve Eq. (42) for the discrete
eigenvalues this integral is replaced by its approximate
value using the trapezoidal rule. This reduces the
equations to an ordinary linear set which is then
solved on the computer.

The above procedure breaks down, however, when
solutions corresponding to eigenvalues in the continuum
are sought. To see why, we write

f(10,E,{in))
2«'-'Z~ ~ ~~({z ),(jn})f(10,E,(jn})

(«s «ia )

Since co;
' and co~ now have continuous ranges of values,

the denominator in Eq. (43) can be zero, and thus

f(10,E,(zu)) has a singularity. From Eqs. (39), how-

ever, we see that

g(10,E,(in)) «z+«, '

(44)
h(10,E,(zn) ) «s —«,.'

and thus the singularity in the eigenvector can be avoided
by writing the equations in terms of h(10,E,(iu}). The
Eqs. (39) become

h(10,K,{ku))=S((IC),{k))/(«lr+«p '), (45)
~D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)

A149, 210 (1935).
3' W. Hartree, D. R. Hartree, and M. F. Manning, Phys. Rev.

59, 299 (1941).
"P. Gombas, in Hundbuch der Physik, edited by S. Fliigge

(Springer-Verlag, Berlin, 1956), Vol. XXXVI, p. 109.
"R.Latter, Phys. Rev. 99, 510 (1955).
3 D. R. Bates and M. J. Seaton, Monthly Notices Roy. Astron.

Soc. 109, 698 (1949).

where
—

~io~ J'i({jn), (ku})«; 'h(10,E', (jn})
s({&)(k})=2

CO~ GOg~

'& dk'«I, . 'Ji({kn},(k'u})h(10,E,{k'n})

GO~ —0))el~

(46)



CORRELATION EFF E CTS I N ATOM I C STRUCTURE A641

and ~~ I——+E'/2, where I is the ionization potential.
The continuum eigenstate is now designated by E, and
the single-particle continuum states are designated by
k and k'. The sum over states is explicitly separated into
a discrete sum plus an integral, and the cutouts {jo}and

{ko} are introduced. The problem is now reduced to
representing the integral in Eq. (46) by a sum of
discrete terms. In the region of integration that is not
close to the point or~= co~ ', the integral is replaced by
its approximate value using Simpson's rule. Let us
denote the remaining range of k' by 2A and write

~+~ dk'a&a', 'Jg({kn},{k'n})h(10,E,{k'n})
Ip 2 (4&)

(E'—k")

This integral is, as yet, not defined as the integrand is
singular. Following Rice" and Fano" we can write

~+~ dk'(ug 'J, ({kn},{k'n})h(10,E,{k'n})
Ip= 2I

(E'—k")

FIG. 1. Beryllium
bound-bound matrix
elements.
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0.18—

0.04—
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2p 3p 4p 5p 6p 7p
Bound states

Pa) ~ Jg({En},{kn})h(10,E,{En})
+ (48)

where P indicates the principal part and P must be
determined as an eigenvalue in the solution of the
equations. The treatment of the principal part integral
is given in the Appendix, and the final result is that
Eqs. (4S) are reduced to a discrete linear set.

For the discrete eigenvalues, a matrix diagonaliza-
tion program written by W. P. Frank of Space Tech-
nology Laboratory was used. "This program was gener-
ally satisfactory; however, if the eigenvalues were
closely spaced, occasionally the program would produce
incorrect results. This was controlled by scaling, and
the incorrect eigenvalues were identi6ed by computing
the orthogonality of the resulting eigenvectors.

A matrix inversion program written by B.S. Garbow
of Argonne National Laboratory was used for the con-
tinuum solutions. '8 The largest matrix studied was
40&(40, and the equations were solved to &2 in the
seventh figure in this case. Mesh sizes from 2 k=0.1 to
Ak= 0.025 were used. The numerical results for these
di&erent meshes varied about 1%, so the results
presented are with a mesh of 6k= 0.1.

The evaluation of the dipole moment in Eq. (33)
presents problems similar to those encountered in
reducing the eigenvalue equations to a discrete set.
These problems were handled in just the same manner
as were the eigenvalue equations.

IV. NUMERICAL RESULTS

In this section the results of the random-phase
approximation applied to beryllium, magnesium, cal-

"O. K. Rice, J. Chem. Phys. 1, 375 (1933).' U. Fano, Phys. Rev. 124, 1866 (1961).
~ sHARE designation P2 Rw EIGN and P2 Rw vcTR.' sHARE designation Fi AN F402.

cium, and strontium are given. The results are given for
each atom separately and compared with previous
theoretical and experimental work. Some coulomb
matrix elements computed for beryllium are displayed
in Figs. 1, 2, and 3 to show their general behavior.
This behavior was followed by all of the atoms. Also
some typical eigenvectors for beryllium are shown in
Table I. In what follows, all energies are in atomic
units (1 a.u. =27.21 eV), and the photoionization cross
sections are listed in megabarns (1 Mb= 10 ' cm').

0o07 g l g ~ ~
~

~

0.06-

0.05

0.04CL

P4
0.03

C

0.02
X

0.01

-0.01
0

,L

0.2 0.4 0.6 0.8 1.0

FIG. 2. Beryllium bound-free matrix elements.

A. Beryllium

We begin with a brief discussion of the coulomb ma-
trix elements. The quantity displayed is the normalized
integral with no angular factors, i.e., the X'({in},{jn}).
In Fig. 1, some bound-bound elements are shown. Note
that these elements are largest for the low-lying states
and decrease rapidly in the higher states. There are
two points to be noted in Fig. 2. First, the continuum
states are coupled much more strongly to the lowest
bound state than to the higher ones in the important
energy range. Second, the bound-free coupling reaches a
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TABLE I. Beryllium eigenvectors.

Config.

2s —2p
2$—3p
2s —4p
2$—5p
2s —6p
2s —7p
2s —0.1p
2s —0.2p
2s —0.3p
2s —0.4p
2s —0.5p
2s —0.6p
2s —0.7p
2s —0.8p
2s —0.9p
2s —1.0p

'P (2$—2p)
g(20,E,{in})h(10,E,{in})

0.9963—0.1520—0.0560
—0.0303—0.0205—0.0152
—0.0683
—0.0806
—0.0741—0.0587—0.0412—0.0256—0.0132—0.0042

0.0019
0.0057

0.1470
0.0246
0.0219
0.0074
0.0052
0.0040
0.0194
0.0245
0.0248
0.0219
0.0172
0.0118
0.0067
0.0023—0.0011—0.0036

'P(2$ —5p)
g(10,E,{i }) h(10,E,{i })

—0.0376 —0.0142—0.0415 —0.0036—0.0566 —0.0019—0.9914 —0.0013
0.0866 —0.0009
0.0406 —0,0007
0.0856 —0,0036
0.0743 —0,0047
0.0527 —0,0051
0.0357 —0.0050
0.0238 —0.0046
0.0157 —0.0038
0.0100 —0.0030
0.0062 —0.0022
0.0035 —0.0014
0.0017 —0.0008

2$—2P
2$—3p
2$—4p
2s —5p
2s—6p
2$—7p
2s —0,1p
2s —0.2p
2s —0.3p
2s —0.4p
2s —0.5p
2s—0.6p
2s—0.7p
2s—0.8p
2s—0.9p
2s —1.0p

IP(2$
g(1O,E,{in})

0.0809
0.0715
0.0658
0.0757
0.0757
0.0744

~ ~ ~

—0.5742—0.2458—0.1369—0.0836
—0.0529
—0.0336—0.0208—0.0122
—0.0064

—0.1p)
h (10,E,{in))

0.0335
0.0092
0.0050
0.0033
0.0024
0.0018
0.0094
0.0125
0.0137
0.0137
0.0126
0.0109
0.0088
0.0066
0.0046
0.0027

IP (2$—
g(2O, E,{in})h

0.0247
0.0216
0.0151
0.0114
0.0088
0.0070
0.0413
0.0624
0.0855
0.1179
0.1758
0.3381

~ ~ ~

—0.2825
—0.1222—0.0677

0.7p)
(10 E {in})

0.0151
0.0081
0.0050
0.0034
0.0026
0.0020
0.0108
0.0152
0.0179
0.0196
0.0204
0.0201
0.0190
0.0172
0.0149
0.0122

TABLE II. Excitation energies of beryllium above the ground state.

Level

'P(2s —2p)
'P (2s—3p)
IP (2s—4p)
u (2s—Sp)
Ionization

limit

Eg
a.u.

0.107
0.219
0.251
0.265

a.u.

0.202
0.266
0.292
0.311

0.333

Erpa
a.u.

0.188
0,266
0.292
0.311

a.u.

0.149

Eobs
a.u.

0.194
0.274
0.306

0.343

& Reference 39.

maximum a little above the threshold energy. The
first point has a significant effect on the photoionization
cross section near threshold, as will be explained later.
In Fig. 3 some free-free integrals are shown. These
integrals vary smoothly and generally have maximums
near their diagonal values. The maximum values
themselves climb to a maximum (in Fig. 3, this occurs
near 4= 0.8) and then decrease slowly.

Typical beryllium eigenvectors are shown in Table I,
The amount of mixing of the configurations is quite
small. However, the ground-state correlations, i.e.,
the h amplitudes play an important role in the numerical
results. These correlations are much stronger in the
(2s—2p) configuration than in the higher ones.

0.08—

~ 0.06

CL

~ 0.04

k = 0.8

0.4

0.02

0
0 0.2 0.4 0.6 0.8

k

1,0 1.2

FIG. 3. Beryllium free-free matrix elements.

Excitation energies are listed in Table II. The nota-
tion is as follows: E~—the difference between the
particle energy and the hole energy, i.e., e,—~ . This is
the excitation energy in the central 6eld with no
corrections. A~the excitation energy computed in
first-order perturbation theory. E,~. the excitation
energy computed in the random-phase approximation.
Ez,—excitation energies found by previous theoretical
calculations, and E,b,—the experimental energies.

From Table II, it is seen that the energies are
represented well by first-order perturbation theory, and,
other than a 5% shift in the lowest energy, the random-

phase approximation correlations have a negligible
effect. The value of EI, was computed by solving the
Hartree-Fock equations for the '5(2s —2s) ground
state and the 'P(2s —2p) excited state and subtracting
the energies. "

Beryllium oscillator strengths are listed in Table III.

TABLE III. Oscillator strengths of beryllium from the ground state.

Level

IP(2s —2p)
IP (2$—3p)
IP(2s —4P)
'P (2s —5p)

2.34
0.0280
0.0148
0.0079

frps

1.71
0.0030
0.0007
0.0012

fL

2.82a

aI.amdolt-Bovnstein Tables, edited by K. H. Hellwege (Springer-Verlag,
Berlin, 1950), Vol. 1, Part 1, p. 264.

The notation is the same as in Table II; fc is computed
with Eq and the bare dipole moment. '" In this atom as
well as the others that are studied, the lowest energy
transition, the "resonance" transition, has a dipole
moment much larger than the others. This means that,
due to the coupling, the dipole moments of the higher
transitions in the random-phase approximation are
affected strongly by the resonance transition. So
strongly in fact that very weak coupling with the

"D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A154, 588 (1936).

"'Pote added in proof. The phrase "bare dipole moment" used
in this section means the dipole moment computed in the central-
Qeld modejl,
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and 0„, and Oq approach each other. Even at high
energies, however, the ground-state correlations have
an eGect so the two values need not agree. There is no
experimental information, but 0-,~, and 0-t.- are plotted
along with a calculation by Bates" who uses a coulomb
wave function for the continuum states and an analytic
function, fitted to a Hartree function, for the bound
state. Figure 4 amply demonstrates that the cross
section is sensitive to the wave functions used.

B. Magnesium

No Hartree field was available for magnesium, so
the Thomas-Fermi positive ion field was used. The
excitation energies are listed in Table IV. The results

TABLE IV. Excitation energies of magnesium
above the ground state.

0
0

I I I

0.1 0.2 0.3
Energy above threshold in a.u.

0.4

FIG. 4, Photoionization cross section of beryllium.

Level

'P (3s—3p)
IP(3s—4p)
'P (3s—5p)
Ionization

Limit

Ep,
a.u.

0.109
0,179
0.203

a,u.

0.161
0.213
0.238

0.269

E,p,
a.u.

0.151
0.213
0.238

a.u.

0.166a

Eobs
a.u.

0.160
0.225
0.249

0.281

resonance transition produces a change in the dipole
moment of an order of magnitude or more. This
circumstance indicates that the oscillator strengths to
the higher levels are very dificult to calculate with any
hope of accuracy, and probably a model more refined
than the random-phase approximation is necessary.
Certainly, a central-Geld approximation is not adequate
for this purpose. Another difhculty in the present
calculation is that the eigenvalues of the higher levels
differ only in the 4th figure from the diagonal matrix
elements so that the corresponding eigenvectors will
not be accurate.

In Table III, it is seen that the f,r, 's for the higher
levels are much smaller than the fc's. This arises
because the dipole moment of the resonance level has
the opposite sign from the other dipole moments, so a
cancellation occurs. The resonance oscillator strength
is reduced principally because of the ground-state
correlations. The vector that is important in computing
dipole moments is f(10,E,{in)), as can be seen from
Eq. (33). When h(10,E,{in)) is sizable, i.e., when
ground-state correlations are important, f(10,E,{in))
is quite a bit smaller than g(10,E,{in)), and since the
dipole moment is squared, this size effect is doubled.
The value of fz was computed with the Hartree-Fock
wave functions of Ref. 39, and the experimental energy.
There is, at present, no experimental data available
for these oscillator strengths. Figure 4 shows the
photoionization cross sections for low energy. The
decrease of 0„,compared to O.q is due to cancellation
with the resonance dipole moment as explained above.
A,s higher energies are reached, this qA'ecg diminishes,

a Reference 13.

are very similar to the beryllium results. The value of Ez,
was calculated by Trefftz, who used a configuration in-
teraction method using Hartree-Fock basis functions. "

The oscillator strengths in Table V to the levels of
magnesium above the resonance level show the opposite
behavior to those of beryllium. They are enhanced rela-
tive to the fc's because, in this case, the resonance dipole
moment has the same sign as the others. The value of fz
was computed by Trefftz using the wave functions
mentioned above. "

The photoionization cross sections are plotted in
Fig. 5. The coupling to the resonance level is respons-
ible for the high value at threshold. The dipole moment
changes sign resulting in a minimum in the cross-section
curve. The experimental work by Ditchburn and Marr"
was not carried out far enough to observe this minimum,
but it probably exists because such a minimum is

TAaLE V. Oscillator strengths of magnesium from the ground state.

Level

1P(3s—3p)
'P (3s—4p)
'P (3s—5p)

fc
2.77
0.0524
0.0099

1.85
0.184
0.0466

fL

1.674'

fobs

1 2&0 3b

a Reference 13.
b Reference 9.

"D. R. Bates, Monthly Notices Roy. Astron. Soc. 106, 423
(1956).

4' R. W. Ditchburn and G. V. M'arr, Proc, Phys. Soc. (London)
A66, 655 (1953),
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TABLE VII. Oscillator strengths of calcium from the ground state.

Level f~T.F. f T.F. f~ f H

'P (4s—4p) 5.19 3.80 4.02 2.82

fL fobs

2.27a 1 49c
1.46b

'P (4s—5p)
u'(4s —6p)

0.062 0.221 0.048 0.168
0.010 0.052 0.008 0.043

0 0374c
0 0602c

E 3
V

I

b

nd Marr

zz~~~eeeraaee &g~~~QP++

0
0 0.1 0.2 0.3

Energy above threshold in a.u.

0.4

I'zG. 5. Photoionization cross section of magnesium.

observed for calcium, and its theoretical explanation is
the same as here.

C. CaIcium

TABLE VI. Excitation energies of calcium from the ground state.

Level
+gT.F. QgT. F. P T.F.

a.u. a.u. a.u.
jVgH
a.u.

ggH
a.u.

H

a,u.
PL

a.u.
Pobs
a,u.

jP (4s —4P) 0.054 0.127 0.121 0.071 0,129 0.122

~P(4s —5p)'P (4s —6P)
Ionization

limit

0,102
0.121

0.180 0.180
0.203 0.203

0.234

0.129
0.149

0.185
0.207

0,185
0.207

0.1045 0.108
0.1153b

0.190
0.200

0.225

a D. R. Hartree and W. Hartree, Proc. Roy. Soc, (London) A164,
167 (1938).

b Reference 14.

erst-order perturbation theory values are not as
accurate as in the previous two cases. The value of
E1.=0.1045 was obtained by a Hartree-Fock calcula-
tion; the value of E1.=0.1153was calculated by Tre6'tz

The Hartree and Thomas-Fermi basis were both
used for calcium in order that a comparison could be
made. The energy values are comparable in the two
cases, but differences in the oscillator strengths and
photo-ionization cross section occur. Calcium, unlike
beryllium and magnesium, has doubly excited con6gura-
tions (3d-ep) that are comparable in energy to. the
configurations studied here. As mentioned earlier,
these con6gurations are not included in the theory, and
this shortcoming is apparent in the numerical results.

The excitation energies are listed in Table VI. The

' Table III, Ref. a.
b Reference 14.' Reference 10, 11.

who used five Hartree-Fock configurations plus a
polarization potential. "

The listing of the oscillator strengths in Table VII
shows a substantial difference between the Hartree and
the Thomas-Fermi models. The bare dipole matrix
element calculated with the Thomas-Fermi wave
functions is about 15% larger than the Hartree value.
The value of fr,= 2.27 was computed with Hartree-Pock
functions, while the other fz, value was obtained by
Tre6tz in the same calculations that gave the excitation
energy mentioned above. TreGtz took the geometric
mean of the dipole length element and the dipole
velocity element to arrive at the listed number. The
experimental fvalues were obtained by Russian workers
quite recently, and the accuracy is stated at a few
percent. The fact that the second level has a smaller f
than the third has also been observed by other workers.
This behavior is not present in fc or f,~, because it is
caused by mixing with the 'P(3d —4p) level.

The photoionization cross section close to threshold
has been measured by Ditchburn, 4' and he finds that the
(3d—ep) 'P and 'I' series limit lies above threshold,
so the autoionization lines from this series are very
strong. He attempts to subtract out these lines to 6nd
the absorption arising from the (4s—kp) continuum,
but it seems that a theoretical calculation of the cross
section must take the (3d—ep) series into account.
As was stated above, the random-phase approximation
does not account for this series, so we do not expect
satisfactory results for the cross section.

The photoionization cross sections for calcium are
plotted in Fig. 6 along with the experimental data.
The fact that O.q~ agrees with experiment at threshold is,
in our opinion, just a coincidence. The enhancement of
0.,~,~ is due to coupling with the resonance level, as in
magnesium. A previous theoretical calculation by Bates
and Massey, using Hartree-Fock wave functions, gives
a threshold value of 0.=23 Mb."

D. Strontium

The calculational results resemble those for calcium.
The problem of the doubly excited configurations is
present here as the 4d shell lies just above the Ss shell.
The Thomas-Fermi basis is used. The excitation ener-

gies are given in Table VIII.

42 R. W. Ditchburn, Proc. Roy. Soc. (London) A256, 53 (1960).



CORRELATION EFFECTS I N ATOM I C STRUCTURE A645

continuum near threshold, in contrast to calcium. "
Thus, the value of o„,may have more meaning in
this case, and indeed it is the right order of magnitude
at threshold as can be seen in Fig. 7.

v 3'

b

rn

0
0

~~~gg %%@%%a
JQL ~ ~&

0.1 0.2 0.3
Energy above threshold in a.u.

0.4

FzG. 6. Photoionization cross section of calcium.

TAaLE VIII. Excitation energies of strontium
above the ground state.

The oscillator strengths are given in Table Ix. The
experimental values are from the same group that
measured the calcium lines. Again the second level has a
smaller f than the third, and the explanation is the
same as for calcium. The value of f~ was calculated
from the Bates-Damgard tables which are based on the
Coulomb approximation.

V. DISCUSSION

As was stated earlier, the main purpose of this study
was to examine the qualitative effects of electron corre-
lations on the calculation of atomic properties, and not
to seek close agreement with experimental data at the
present time. We see from the results that the correla-
tions have a small e8ect on the excitation energies; the
largest shift is about 5% for the lowest energy, and
there is no appreciable shift in the higher energies.
The resonance oscillator strengths are lowered about
30% from their bare values, while the oscillator
strengths to higher levels and the photoionization
cross sections near threshold are changed by orders of
magnitude.

The question arises as to why the correlated values of
the resonance oscillator strengths are not closer to
observed values, and, in our opinion, the answer is in
the basis states used. If a Hartree-Fock basis had been
used, the criteria for the ground-state approximation in
Sec. II would have been more nearly met, and we could
expect more accurate results. For example, a shift in
the resonance oscillator strength of calcium of about
30% is needed to lower the f value from 2.27 (see Table
VIII) to about 1.60 (close to the observed value). Of

I

Hudson and Young

Level

IP (5s—5p)
'P (5s—6p)
IP (5s—7p)
Ionization

limit

0.054
0.103
0.121

0.112
0.154
0.174

0.202

&rpa
a.u.

0.106
0.154
0.174

0.099
0.155
0.177

0.209

C14

E 3—
V

b

Recent measurements of the photoionization cross
section by Hudson and Young indicate that the
(4d —mp) series does not strongly affect the (5s—ep)

TABLE IX.Oscillator strengths of strontium from the ground state.

Level

1P{Ss—sp)
V'(ss —6p)
'P (5s—7p)

fc
4.60
0.057
0.010

3.18
0.228
0.057

1.80.
fobs

1.54b
0.0052b
0.0110b

aC. W. Allen, Astrophysical Quantities (The Althone Press, London,
1955), Chap. 4, p. 77.

b Reference 12.
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Energy above threshold in a u

FIG. 7. Photoionization cross section of strontium. The asterisk
marks the recent experimental value of Hudson and Young
(Ref. 16).
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course, it may be that some other kinds of correlations
must also be included in any quantitative theory.

The situation is less clear for the higher oscillator
strengths and photoionization cross sections. Their
calculation seems to be very difficult because of the
large change in their value that weak coupling with the
resonance level gives. An additional difhculty arises
when there are doubly excited configurations of
comparable energy present (autoionization in the
continuum). In this case, the random-phase approxima-
tion is just not adequate. In general, a more refined
model than is used here will be necessary for accurate
calculation of these quantities.

In the application of the random-phase approxima-
tion to the infinite electron gas and to nuclei, collective
states are found, i.e., states that are superpositions of
many single-particle excitations with each excitation
having about equal weight. These states have energies
lying above the single-particle excitations and, in
nuclei, can have greatly increased dipole moments.

Little indication of such collective states was found
in the present calculation, and this can be understood by
comparing these other theories with the present atomic
calculation. In nuclei, for example, the unperturbed
spectrum treated consists of a group of single-particle
excitations, all of about the same energy and the same
symmetry. The interaction matrix element used is
typically 20 to 30% of the excitation energies. Since
these states are so closely spaced and the interaction is
so large, strong mixing can occur and collective states
arise. On the other hand, the excitation spectrum of an
atom is not bunched at certain energies, but is spread
over the entire energy range. Also the interaction matrix
elements approach 20 to 30% only in the lowest excited
states; in the higher states, they are much weaker.
Thus, the occurrence of a collective state in an atom is,
a priori, much less likely, and the detailed calculations
presented here bear this out. Of course the nuclear
structure calculations have never been carried out with
realistic wave functions but, instead, with oscillator
wave functions. The collective effects in nuclei are
also greatly enhanced by interference effects in the
dipole-matrix element of the kind found here for atoms.
It may well turn out that more realistic treatments of
the nuclear photoeGect will lead to a physical picture
closer to the one found here than to the degenerate
infinite Fermi gas. In any case, it does not seem appro-
priate to describe the correlated atomic states calculated

k (10,E,{k'n) )

(O' —E~) (O' —E2)k(10,E', {E3n})

(O' —E,) (O' —E3)O (10,E,{E2n) )

(O' —E2) (O' —E3)k(10,E,{Ega})
+ (A1)

2+2

with a similar expression for Jq({kn),{k'n)). When these
expressions are substituted back into the integral, the
result is

x+~ dk'(og ~'Ji({kn),{k'n))O(10,E,{k'n))

(E'—k")

=Gj (O,E,d )k(10,E,{Egu))+G2(O,E,A)

Xh(10,E,{E2n))+G3(O,E,A)O(10,E){E3n)), (A2)

where the 6's are rather complicated coeKcients
involving integrals of the form

~+~ dkk~

(E'—k')
(A3)

and values of J~({kn),{k'n)) at the mesh points. Since
these are known quantities, the 6 coeKcients can be
evaluated, and the representation in Kq. (A2) is now
suitable for numerical treatment.

here as collective in the simple classical meaning of the
word.

APPENDIX

The problem is to represent the principal part integral
in Eq. (48) as a sum of terms involving O(10,E,{k'n))
at the mesh points E A, E—, E+A. This is accomp-
lished by writing h(10,E,{k'n}) and J&({kn},{k'n)) in
the interval E 6 to —E+5 by'three point Lagrange
interpolation, i.e., let

Eg=E—6,
E2=E,
Eg= E+6,

then


