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Frequency Shifts in Spin-Exchange Optical Pumping Experimentsn
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A theory is derived to predict the density matrices describing two atoms after a spin-exchange collision
from the density matrices before the collision and the scattering amplitude for binary collisions. This theory
is then applied to a system of quasifree electrons interacting with optically pumped rubidium atoms. For
calculating the change in the electron density matrix, the Rb" and Rb" are replaced by a fictitious rubidium
isotope with no nuclear spin. Expressions are derived for the change in the light transmission when a radio-
frequency field is present at the electron frequency. In addition to the linewidth for the electron signal, the
spin-exchange theory predicts a frequency shift the magnitude of which depends upon the two-body scatter-
ing amplitude, the rubidium polarization and the rubidium density. Experiments performed to test various
aspects of the theory are then reported. The measurements were made on a system of quasifree electrons
interacting with rubidium atoms. Measurements of the electron linewidth as a function of temperature
indicated that spin-exchange collisions dominated the electron relaxation. The predicted frequency shift
was measured by observing the electron resonance frequency first with left circularly polarized light and
then with right circularly polarized light. For electrons colliding with rubidium atoms the shift is negative
when the rubidium polarization is positive and the ratio of the shift to the linewidth is Boo/Av= —0.025
~0.005. From the measured values of the shift and the linewidth, a value is derived for the electron-
rubidium spin-Qip cross section. In one Appendix the replacement of the Rb and Rb' by the fictitious
rubidium isotope with no nuclear spin is justified. In a second Appendix the calculations for the simple
electron-rubidium system are generalized and applied to more complicated systems. Results are reported for
the change in the density matrix of hydrogen atoms when they collide with polarized electrons, the change
in the density matrix of Rb 7 atoms when they collide with polarized electrons, and the change in the density
matrix of hydrogen atoms when they collide with hydrogen atoms.

INTRODUCTION

~ NE of the newer forms of high-precision. radio-
frequency spectroscopy is spin-exchange optical

pumping. In this type of experiment an alkali-metal
vapor such as rubidium is polarized by the absorption
of circularly polarized optical resonance radiation and
the polarization is monitored by observing the trans-
mission of optical resonance radiation through the Qask
containing the alkali metal. Another species of atom
such as hydrogen is polarized by spin-exchange collisions
with the oriented rubidium. If a radio-frequency field
is adjusted so as to depolarize the hydrogen, the
rubidium will be depolarized through spin-exchange
collisions and the transmission of light by the absorption
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Bask will decrease. In this manner the radio-frequency
spectrum of hydrogen can be measured. This technique
can be refined so as to make possible very precise
measurements. The spin-exchange optical pumping
method has been used to measure the gyromagnetic
ratio of quasifree electrons, ' the hyperfine splittings of
hydrogen, deuterium, and tritium, " the hyperfine
splittings4 ' of the nitrogen isotopes, the hyperfine
splitting of phosphorus, ' and the gyromagnetic ratio

' H. G. Dehmelt, Phys. Rev. 109, 381 (1958).' L. W. Anderson, F. M. Pipkin, and J. C. Baird, Jr. , Phys, Rev.
120, 1279 (1960); 121, 1874 (1961);121, 1962 (1961).' F. M. Pipkin and R. H. Lambert, Phys, Rev. 127, 787 (1962).

I.. W. Anderson, F. M. Pipkin, and J. C. Baird, Jr., Phys. Rev.
116, 87 (1959).' W. W. Holloway, Jr., and E. Liischer, Nuovo Cimento 18, 1926
(1960).

6 W. W. Holloway, Jr., E. Luscher, and R. Novick, Phys. Rev.
126, 2109 (1962).' R. H. Lambert and F. M. Pipkin, Phys. Rev. 129, 1233 (1963).' R. H. Lambert and F. M. Pipkin, Phys. Rev. 128, 198 (1962);
129, 2836 (1963).
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of silver. ' Recently there was reported an analogous
experiment in which the hydrogen maser was used to
determine by a spin-exchange technique the hyperfine
splitting of atomic deuterium. '0 Spin exchange may
also be a useful technique for studying the radio-
frequency spectra of ions."

So far there have been no extensive investigations
of the magnitudes of spin-exchange cross sections nor
of the possible frequency shifts due to spin-exchange
collisions. '2 In the general theory of collision broadening
it is shown that a scattering process which gives a
linewidth will also in general give a frequency shift. "
The linewidth and the frequency shift are related to
the scattering amplitude for two-body collisions. On
this basis one would expect frequency shifts from
spin-exchange collisions. '4

Spin-exchange collisions give one of the few electron-
nuclear relaxation mechanisms where the complete
interaction Hamiltonian is known and where the
problem is simple enough that an exact solution for the
rate of change of the density matrix describing the two
colliding species should be possible. Previous to the
work reported in this paper most of the calculations in
the literature attempted to deal only with the diagonal
elements of the density matrix. ' ' Wittke and Dicke""
took a simple model for hydrogen-hydrogen spin-
exchange collisions and calculated part of the nuclear

' G. S. Hayne and H. G. Robinson, Bull. Am. Phys. Soc. 5, 411
(1960)."S. B.Crampton, D. Kleppner, and H. C. Robinson, Bull. Am.
Phys. Soc. 8, 351 (1963)."H. G. Dehmelt, Bull. Am. Phys. Soc. S, 23 (1963).

"Some references in which spin-exchange cross sections have
been measured or estimated are the following:

H—H E. M. Purcell and G. B. Field, Astrophys. J. 124, 542
(1956).

H—H A. Dalgarno, Proc. Roy. Soc. (London) A262, 132
(1961).

H—H J. P. Wittke and R. H. Dicke, Phys. Rev. 103, 620
(1956).

H—H A. F. Hildebrandt, F. B. Booth, and C. A. Barth, J.
Chem. Phys. 31, 273 (1959).

H—H R. M. Mazo, J. Chem. Phys. 34, 169 (1961).
e—H P. Burke and H. M. Schey, Phys. Rev. 126, 163 (1962).
e—Na H. G. Dehmelt, Phys. Rev. 109, 381 (1958).
K—Na P. Franken, R. Sands, and J. Hobart, Phys. Rev.

Letters 1, 54 (1958).
e—K P. Franken, R. Sands, and J. Hobart, Phys. Rev.

Letters 1, 54 (1958).
Na-Rb R. Novick and H. E. Peters, Phys. Rev. Letters 1, 54

(1958).
Rb—N L. W. Anderson, F. M. Pipkin, and J. C. Baird, Jr.,

Phys. Rev. 116, 87 (1959).
'3 See, for example, M. Baranger, in Akomic and 3Iolecular

Processes, edited by D. R. Bates (Academic Press Inc., New York,
1962), pp. 493-546.

'4 During the course of this work we learned that a frequency
shift similar to that reported in this paper was observed by P.
Franken, and J. Hobart PJ. Hobart, thesis, University of Michi-
gan, 1962 (unpublished) j. Also a paper was published LR. R.
Lewis, Phys. Rev. 130, 666 (1963)j in which an explanation was
proposed for the shift observed by Hobart. Our formulas for the
linewidth and line shift do not agree with those given by Lewis.

'~ J. P. Wittke and R. H. Dicke, Phys. Rev. 103, 620 (1956)."J.P. Wittke, thesis, Princeton University, 1955 (unpub-
lished).

THEORY

A. The Effect of Spin-Exchange Collisions

Figure I shows a schematic representation of the
absorption bulb containing the free electrons and the
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Fn. 1. Schematic representation of an idealized optical
pumping system.

relaxation. They used a form of exchange operator to
calculate the change in the density matrix rather than
the exact scattering matrix which describes hydrogen-
hydrogen collisions.

This paper reports an investigation of the systematics
of spin-exchange collisions. In the erst part a simple
theory is developed to describe the signals in spin-
exchange optical pumping experiments. Calculations
are made for a system consisting of an optically pumped
atom with a '$~~2 electronic ground state and no nuclear
spin (called rubidium) interacting through spin-
exchange collisions with a second system with electronic
spin —,

' and no nuclear spin (called the electron). It is
assumed that the scattering amplitude (phase shifts)
for rubidium-electron collisions is known and the change
in the density matrix describing the two atoms due to
spin-exchange collisions is calculated. A calculation is
then made of the change in the amount of light trans-
mitted by the bulb when a radio-frequency field is

applied so as to disorient the electrons. These calcu-
lations show that the electron resonance line has a
Lorentzian shape the width of which depends upon the
number of spin-exchange collisions per second and the
center of which will in general be shifted by an amount
which depends upon the spin-exchange collision ampli-
tude, the rubidium polarization, and the number of
spin-exchange collisions per second. In an Appendix
the calculations are generalized so as to allow each of
the colliding species to have a nuclear spin. The
formalism is essentially the same as that employed for
the two spin —,

' systems. Results are reported for
rubidium and electrons, hydrogen and electrons, and
hydrogen and hydrogen. The last part of the paper
describes measurements made on a system of quasifree
electrons colliding with optically pumped rubidium
atoms. The form of the optical pumping signals is
shown to be well represented by the theory. In order
to determine the spin-exchange cross section, measure-
ments were made of the electron resonance linewidth
and the frequency shift as a function of rubidium
density. From the measured shift and linewidth, a
value is derived for the spin-exchange cross section.
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rubidium vapor. To describe the system we shall use a
Cartesian coordinate system the origin of which is at
the center of the front face and the 2' axis of which
coincides with the axis of the cylindrical absorption
Bask. The external magnetic field Ho and the light
beam are assumed to be parallel to the s axis. It will
be assumed that left circularly polarized (positive
helicity) rubidium resonance radiation from the
(5&~~p~ 5s~~p) transition is incident on the bulb and
that the rubidium and the electrons are immersed in a
buGer gas the density of which is such that there is com-
plete reorientation in the optically excited state of the
rubidium. '~ It will be assumed that there is no relaxation
of the orientation at the walls of the absorption bulb.
By the signals we shall mean the change in the amount
of light transmitted by the cell. In order to calculate
the signals, we must consider the behavior of the
electron and rubidium spin systems under the influence
of the pumping light and the radio-frequency field and
how the two systems are coupled through spin exchange.
A suitable way to characterize the electron-rubidium
spin system quantum mechanically is by electron and
rubidium spin-space density matrices. First, we mill
calculate the change in the two density matrices due
to spin-exchange collisions; second, we will calculate
the behavior of the electron density matrix under the
inhuence of the radio-frequency field; and finally, we
will calculate the change in the amount of light trans-
mitted by the absorption cell due to the presence of the
radio-frequency field.

For these calculations we will assume that the
rubidium atoms have no nuclear spin and work with a
fictitious 2&&2 density matrix for the rubidium rather
than the full density matrix which describes the two
isotopes. This simplifies the algebra and gives essentially
the same result as that obtained using the complete
density matrices. This approximation is justified in
Appendix A. The spin-space density matrix for the
electrons can be written in the form

/p»(e) p»(e)i
!p(e) =!

~p&&(e) p22(e)~

and that for the rubidium

Here 1 denotes the +xp state and 2, the —~~ state. It
has been assumed that the oG-diagonal elements of the
rubidium density matrix are zero. In general, the two
density matrices will be a function of the position in
the bulb. For our restricted assumption of no relaxation
at the walls of the cell they will be a function only of s.
This functional dependence arises from the change in
the spectral distribution and intensity of the incident

'7 W. Franzen and A. G. Emslie, Phys. Rev. 108, 1453 (1957).

light as it passes through the bulb. For our initial
discussion of the spin-exchange collisions we will
consider only one region in the bulb and the dependence
of the density matrices on position will be suppressed.
We will ignore correlations between the rubidium-
electron systems and assume that the density matrix
for the electron-rubidium system is just the direct
product of the electron and rubidium density matrices.
That is, we write

(.,~)= (.)x (z)
p»(e) p»(~)

p»(e)p»(~)
ps'(e) p»(E) 0

p»(e) p»(~)

up(e)p»(~)
0

p22(e) pll(+)
0

0
P12 (e)P22 (~)

0
p»(e) p»(~).

(3)

"A. Messiah, QNuntlm 3fechunics (North-Holland Publishing
Company, Amsterdam, 1962), Vol. II, pp. 801, 872.

The following procedure will be employed to calculate
the e6'ect of collisions between the electrons and
rubidium atoms upon the density matrix. We will first
write the density matrix for the electron-rubidium
system which includes the momentum states. We will
then use the scattering matrix for rubidium-electron
collisions to calculate the density matrix after a collision
from that before a collision. We obtain the spin-space
density matrix by tracing over the momentum states
and finally the density matrix for either the electron
or rubidium by tracing over the spin coordinates
corresponding to the irrelevant particle. In writing
down the 5 matrix and the momentum states we shall
for purposes of normalization use a cubic box one side
of which has length L. The scattering of the electron
by the rubidium will be described in the center-of-mass
system using coordinates of the electron relative to the
rubidium. " The incoming wave for the electron-
rubidium scattering problem can be written in the form

(1/L+P) exp(ikp r)!sp),

where !sp) is the initial electron-rubidium spin state,
and the normalization is such that we have one electron
in th, e box. For distinguishable particles the scattered
wave will have the form

f (r,k,s) = (1/LPI') )exp (ikp' r)!sp)

+ (e'~'/r)M„, (k; kp)! Sp)), (5)

where 3II„p(k; kp) is a function of the angle between k
and kp and is in general a matrix in spin space which
allows for the possibility of changes in spin states during
a collision. For our calculations we will assume that
M„p(k; kp) can be written in the form

M„,(k; kp) =a(k,kp)+b(k, kp)og e, . (6)

This form of the M matrix results if one assumes that
there is no spin-orbit coupling and that the scattering
can be described in terms of independent phase shifts
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in the singletand tripletstates. With theseassumptions If we insert expressions (15) and (16) into Eq. (18),
we can write we obtain

M= fp(8)Pp+ fi(8)Pi, (7)

Pi=4(1—~. ~a)

In terms of the triplet and singlet phase shifts, the
scattering amplitudes are

and

00

fp= P(21+1)(e"'"—1)Pi(cos8),
2ik &=o

co

fi= Z(21+1)(~""—1)Pi(cos8)
2ik i=o

This model is the one which has been most commonly
used in the treatment of spin-exchange collisions.

The complete density matrix operator (including
momentum states) for the electron-rubidium system
can be written in the form

p=g
i k,s)P(k, s)(k,si,

k, s
(12)

where P(k, s) is the probability of finding the state
~k,s) in the statistical mixture. If we introduce the S
matrix relating the final scattered state to the initial
state after an in6nitely long time, we can write the
density matrix after a collision in the form

p'=5p5~.

In terms of the notation

(13)

S...(k'; k) =(k's'i Saks), (14)

the matrix elements of 5 are related to M by the
equation

S...(k', k) =8(k',k)8...
+2m i(2~A'//iL')8(E —E')M ~ (k' k) (15)

where E is the energy and p is the reduced mass. In
this same notation the initial density matrix is assumed
to be

(k's'
~ p ~

k"s")= 8 (k',kp)8 (k",kp) p...". (16)

The spin-state density matrix after a collision is given
by taking the trace over the momentum index. That is

where fp and fi are the triplet and singlet scattering
amplitudes and P3 and Pi are the projection operators
for the triplet and singlet electronic states. In terms of
the Pauli spin matrices the projection operators are

Pp ——-', (3+0, o/i),

s/s//k
8(k,k,)8(k,k,)8„.p, ...,8...,-

2ÃA2

+2 i 8(E—Ep)M„(kp,' kp)p, , 8, ;8(k,ko)
pJ'

2~5'~
27/i— ~8(E—Eo)8 p" "M "-t(ko; ko)&(ko, k)

pL 3

~2~5' '
+(2~)'i 8(E Z,)8(E —E,)—

(ALP

XM„(k; kp)p. , M, ;t(k; k) . (19)

When we sum over k we obtain terms involving
8(Ep—Ep). In order to interpret this expression we note
that in the derivation of Eq. (15) for the S matrix
the delta function arose from the time integral

Ch

8(E—Ep)=lim — e 'ie ~oi'/"—
' "2' (20)

it is convenient to let L, —& co, so that

dok LP 2pE) "' p,
dEdQ. (21)

(2pr)P (2s)P (k)'I (fi)'

When we perform the final sum over k, we obtain

Ak 2mi
pa/ =pari+T (P M „(kp, ko)p, ;

pL3 P s'

—P p„"M,";&(ko,' ko))
s//

+ dn g M„(k; ko)p. .. M,";t(ko, k), (22)
l /ls s

where the angular integral is over the angle between
k and kp and ~k~ = ~kp[. Thus, the time rate change
of the electron density matrix due to spin-exchange
collisions with the rubidium is

In accordance with this equation we can interpret
8(Eo—Eo) as being T/27rfs, where T is the time elapsed
in the scattering process. VVhen evaluating

g 8(E—E,)8(E—E,),

and

p„-'=P(ks i
SpSt

i ks),
dp(e) 27ri

(17) =o,/ihip Trip LM(8=0)p(eR)
dt

—p(e,R)M t (8=0)]
p„-'= g P (ksiS(k's')

s's/l k, k', k/l

X(k's'( pi k"s")(k"s"
i
St

i
ks). (18)

+ dQM (cos8)p(e, R)M t (cos8), (23)



where e,~ is the relative velocity of the electrons and
the rubidium atoms, Xg is the number of rubidium
atoms per cm', Trg stands for the trace over the
rubidium spin coordinates, p(e,R) is the electron
rub1dlum spin-space density B1R'tllx, M(cos8) ls Rli ab-
breviation for M„,(k; ko), and 8 is the angle between
k and ko. An analogous expression can be written
down for the time rate change of the rubidium density
matrix. It is

1/2 ss &eBA BosF p (35)

we can rewrite Eqs. (29) through (32) in the somewhat
simpler form

dp(e)

I'(R) —&(e)

2T-

1—~'I (R)
p»(o)

Tee

and the spin-exchange relaxation time for the electrons

dp{R) 2%i
=F,SA, Tr, $3II{8=0)p(e,R)

1+ixI' (R)
p»(o)

Tee

I (.)—I (R)

2Tee

—p(o,R)M t(8=0)j

+ dQM(cos8)p(e, R)Mt(cos8) . (24)

If we assume that the M matrix can be written in the
foITI1 of Kq. (6) Rlld Ill'tloduce tile spin-fli closs sectloll
o.sF and the shift parameter It. where

TP

o SF=— dQ~f2 —f1~2=—p(2(+1) sin2(812 —811), (25)
P 3=0

dp(R)

P(e) —I'(R)

2TeR

I'(R) —I'(e)

2TeR

The presence of the imaginary term in Eq. (36) indi-
cates that the spin-exchange collisions have the effect
of rotating the electron spin, and thus they will lead to
a change in the electron resonance frequency. In a
similar fashion for' the rubidium we obtain

Q (2t+1) sin2 (8i2—8II),
|Tsar 2&' ~=0

(26) where

we can rewrite Kq. (23) in the somewhat simpler form

dp(e)/dt= ', F„Ar,os-F Tr, t' 3p(o,R)—
+ (1+2ix)(e, eII)p(S,R)+ (1 2ix)p(S,—R) (e, eli)

+( . .) (o,R)( . .)j. (»)
This form is the most convenient for calculational
purposes. For our simple electron-rubidium system

Here E, is the number of electrons per cm'.
In Appendix 8, this method is used to calculate the

change ln thc dcnslty 1TlatI'1x foI' hy(II'ogcn collldlng
with polarized electrons, rubidium colliding with
polarized electrons, and hydrogen with hydrogen. All
other relaxation mechanisms can be introduced through
the phenomenological equations

0
+e' O'R =

0
.0

(} 0~
2 0

0
0

2
—P»(o)

Tle

p»(o)

Pii(e) 2
—P22(o)

(39)

T2e

'l —p»(R)

The explicit equations for the time rate change of the
clcctI'on density matrix aI'c

~re

pi2(R) .
dPli(@)/dt I' l2+II&SFLP22(o)pll(R) pil(~)p22(R) j {29)

dp22(o)/dt =F.~&~o»t.p»(o)P22(R) —P22(o)PII(R) j; (3o)

dp»(e)/dt =2,IINFosF[ pi2(e)—
+ix(p»(R) p22(R))pi—2{e)j; (31)

dp21 (~)//dt =F,z&sos F[ P2i(o)—
ix{p»(R)—p22(R)) p»—(o) (32)

dp(.R)

P2i(R) -' —P»(R)

B. E8'ect of the Radio-Frequent:y Field.

I'(R) =pii(R) —p22(R),

j
oe will now consider thc cffcct of a radio-frequency

If we introduce the rubidium and electron polarizations field upon the electron density matrix. In the presence
of a static magnetic field EI2 along the direction of the
light beam (s axis) and a radio-frequency field

(34) 2HI cos &ot in the direction of the x axis& the Hamiltonian
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for the electrons will be

X= g—hatt OIIOI, 2—gqppII1J, cosMt. (41)

introduce the abbreviation

In terms of the Pauli spin matrices, X has the form 7 2 T2et T88
(51)

where

X=
2 AMptrz+ PtMitre cosMt,

MO gJpt OIIO/It j

Mi = —gZttt0%/It ~

(43)

and solve for the equilibrium case when

dpll/dt= tlp22/dt =dp12/dt= dp21/dt =0,
we obtain the equations

The equations of motion of the electron density
operator due to this Hamiltonian are

imp(e) =Xp(e) —p(e)X.

P12(e) = (P21(e))'

2+ T2 (Mp —tIMO —M)= ~0)y72 P (e),
1+(T2) (Mp»p —M)—

(52)

+ + P(e) . (53)
Tee —Tle Tee 1+(T2) (Mp»0 M)—

These equations are simplified if we transform to a p(R)
rotating coordinate system by means of the transfor-
mation

.
p (e) —eiezl t/2P (e)e

—iezM tl2

In this coordinate system,

iadp(e)/d = )e"z"'t'Xe "* 't' p(e) j
——,'&ME~.,p(e)j.

(46) C. Calculation of the Signals

%e now wish to include the eGects of the pumping
light and to complete the calculation of the electron
signals. The light absorption cross section for the
rubidium can be written in the form"

If we ignore the counter rotating components of the
magnetic 6eld, we obtain for the time rate change of
the density matrix elements the equations

(e)/dt = —-'i ( (e)— (e)) '

dp22(e)/dt iM1(P12(e) P21(e))

dp»(e)/dt= —i(M0 —M) p12(e) —2iMi(p22(e) —pii(e)) '

dp21(e)/dt =i(M0 —M) p21(e) —2iM1(pll(e) —p22(e)) .

(4g)

Combining the spin-exchange equations and the
other relaxation equations with Eq. (48), we obtain in
the rotating coordinate system the equations

tT(v) =crp exp( —4 ln2$(v —vp)/Avnj'}, (54)

where v is the frequency and hv~ is the full width at
half-maximum of the Doppler broadened absorption
line,

kvtl= 2(2 ln2) t (vp/c) (RT/IeI) t (55)

Here c is the velocity of light, E. the universal gas
constant, and M the molecular weight of rubidium.
The constant cTo can be estimated from the dispersion
theory expression for the total absorption cross section
for circularly polarized light,

2T-

dP»(e) P(R)—P(e) —,
' —pii(e) iM1

+ — (P ()—P ())
dt T le

tT(v)dv = OTtcTO, - (56)

dp22(e) P(e) P(R) 2 p22(e) 2M1

+ — (P»(e) —P21(e))
dt 2T„T&, 2

(49)
dp12(e)/dt (T +T2 )pl2 (e)

—i(MO —»0—M) P» —2~1(P22(e) —P»(e));

dp21(e)/dt (T +T2 )p21(e)

+2(MO»0 M)P21 22M1(P11(e)—P22(e))

where
»0——22rbvp ——P (R)tt/T. , (50)

These equations are a form of the Bloch equations and
they can be solved in a similar fashion. '9'0 If we

I(v,0)=IO exp( —4 1n2L(v —vo)/nhvilj2}. (57)

This assumes the light source has a Doppler spectral
distribution whose width is nd v~. The constant Io is

given by
2(ln2)'"

Ip —— I(v, 0)dv.
GÃ I Ap~

(58)

where ro is the classical radius of the electron and
is the oscillator strength for circularly polarized

Di(5Pit2 —e 5Sit2) resonance radiation. This expression
for the total cross section is the average of the cross
sections of the various magnetic substates of the ground
state. It will be assumed that the light intensity per
unit frequency range per second of circularly polarized
DTt photons 1S

"H. C. Torrey, Phys. Rev. 104, 563 (1956). ~' A. C. G. Mitchell and M. W. Zemansky, Resonance Radiation
20 A. Abragam, The Principles of 2Vuclear Resonance (Oxford end Excited Atoms (Cambridge University Press, Cambridge,

University Press, Oxford, England, j.961), p. 44. 1934), Chap. III, pp. 92-152.
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bine (63) and (64) in

T1R 2TeR

I(, ) ()d lp (,', R,,)p»(R, z) = — v,

~ — „' R,,)p»(Rvz) = I(v,z)~(v)dv lp»(

—,
' —p11 R,s) P(e,z) P—(R,s)

)(p(p))+ (p(v)) 68)+ P

(P (R)) 1

ET1B TeB

Geldination show sthat, i 6 df the magnetic 6 d
vera ed over. (5) 1 bhomogeneous, Eq. ca
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-' —p„R,z) P(.,s) P(R—,s)—,—p» R,z Tee —Tie Tee

T1R

we have theli ht intensity weand for eth variation in ig
'
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(P( )) (69)—0)1+( )'( p-& p-

Equation (61) has the solution

ed over s they canIf Eqs. (59) an d (60) are average ov
rewritten in the form

(70)

(71)

2TeR

rubidium po ar'ru
' '
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'' '

electron and ru
' '

The equilibrium e

1 toli i E .)
BI(v, z)/Bz =—0 V )

the equilibrium p
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' '
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~P( ))=(P( ))—(P( ))o

(p»(R)) = I v 0 1 e &&Be(v)zo—(pzo(B)))d

-'-.-(R)) (P())-(P(R))
2TeRlR

we can write

pÃee(v)zo—( pop(B)))dvI(v,0)(1—e ' "(P»(R)) =
(W (e)), (72)

2 eB
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'
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TlR 2TeR
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I(v,0)dv. (73)

eo

(A) =— A (s)ds.
Sp Q
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(65)
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denotes the average over s.

e. is he simp e e
of the rubi ium pothe behavior o

d by the bulb is
i

The tota g

A, (s) =

+00

e—(co/ a) &d'~

R =XB~psp[1—(P(R))],s=2XBopsp(pop(R =XBopsp

((o) ae
—("-("&.)'P —exp( —se- )j

(66) r= I(v,0)dv i(1—A (s)), (74)
p

f the cylindricalnal area o
dl' dabsorption Qas

toac ange' ' oarh e in rubidium po ar' '
be wri

(75)
the form
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Combining (68) and (69) we obtain the following equation ior the rubidium polarization in the presence
of the radio-frequency field:

Expanding this equation about the no radio-frequency field situation, we obtain for the change in rubidium

polarization due to the radio-frequency field the equation

A (s) " i 1 ~eR
I(v, 0)dv

i

~~"~&0 0 ~ '+&.a ' &ia ' ~~a ' ~.a ' &~~ T'.. Tie

(
—1

T +T 1+(d r rp+ (r ) (cd Scop co)—

(78)

Thus, the change in transmitted light is

Qo ~—1

BIr= —AA, (s) I(v, 0)dv -'+T.z '+T a ' T z '+T.a '[T,./'(T-+T z)]&

f Tee' Ny 7 iT2

L T '+ T„'—1+(o—'r r,+ (rp)'(happ —R&p —~)'
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This equation indicates that the electron line will have
a Lorentzian shape and a line center which is shifted

by the amount Rvo due to spin-exchange collisions. The
direction of this shift depends upon the phase shifts
and the rubidium polarization.

For the case where the electron-rubidium scattering
is purely s wave and spin exchange is the only mecha-

nism for the electron relaxation, the full width at
half-maximum of the electron line mill be

Av= (7rT„) '= (5'/m'v)Xg sin'(|Ip' —Bp') (80)

and the ratio of twice the line shift to the linewidth is

2pvp/Av= I'(R) cot(pp' —Bp') . (81)

These two equations show that the linewidth and line

shift are the same function of the phase shifts, that the
line shift can be larger than the linewidth and that the
llnewldth depends only on the spin-Alp cross section.

If we assume that the electron velocity distribution
is a Boltzmann distribution characterized by the

temperature T and that the phase shifts do not depend

upon the velocity, upon averaging Av over the Soltz-
mann distribution we obtain the equation

(Av). =iII'g(h/nz)'(2m/xkT)'I' sin'(Bp' —Bo'). (82)

EXPERIMENTAL TESTS OF THE THEORY

In this section of the paper we shall describe some

experiments which were performed to check the spin-

exchange collision theory. For this purpose, measure-

Inents were made on a simple system consisting of

quasifree electrons interacting with optically pumped
rubidium atoms. The large rubidium-electron spin-

exchange cross section and the high velocity of room-

temperature electrons make spin-exchange collisions

dominate the electron relaxation. The first part of this

section describes the apparatus and the second part
describes the details of the measurements.

NOOUL ATION

SOURCE

SIGNAL

GENERATOR

FREQUENCY

COUNTER

Fxo. 2. 81ock diagram of the optical pumping apparatus.

A. Apparatus

A block diagram of the optical pumping apparatus
is shown in Fig. 2. The principal difference between

this arrangement and that employed for other optical

pumping experiments performed in this laboratory
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FIG. 3. A drawing
of one of the absorp-
tion Basks in which
the electrons were
required to disuse
from the discharge
region into the ab-
sorption region.

was the manner of producing the static magnetic 6eld
and of shielding the absorption flask from the perturbing
influences of external magnetic fields. The field was
produced by a solenoid which was 36 in. long and 13 in.
in diameter. The solenoid winding consisted of two
layers of No. 18 Formvar insulated copper wire. The
wire was wound at the rate of 20 turos per inch into a
groove which had been previously machined into an

epoxy layer painted on the surface of the aluminum
coil form or on the previous winding. The solenoid was
placed inside three concentric magnetic shields. The
shield immediately around the solenoid was 14~ in. in
diameter, 38 in. long, and made of —,'6-in. -thick annealed
soft iron. The next shield was 16-, in. in diameter, 40 in.
long, and made of 0.030-in. -thick mu-metal. The
outermost shield was 18—, in. in diameter, 42 in. long,
and made of 0.030-in. -thick mu-metal. The ends of
the solenoid were covered with ~-in. soft iron plates.
To allow passage of the light beam a 3-in.-diam hole
was cut into the center of each of these iron plates.
Each of the shields was provided with a set of de-
magnetization windings. The shields were demagnetized
by passing a large ( 30 A) sixty cycle current through
these windings. For the experiments reported in this
paper the solenoid current was derived from a mercury
cell which had been packed in Styrofoam to increase
its thermal stability. The magnetic field used through-
out most of the experiment was 25 mG. With a good
demagnetization the full width at half-maximum of
the Rb'~ Zeeman lines (700 cps/mG) in a 500-cm'
spherical absorption Rask was 40 cps.

Two types of absorption bulbs were used in this
experiment. The first type were 500-cm' spherical

FzG. 4. Full width at
half-maximum of the
electron-resonance line
as a function of the
temperature of the ab-
sorption Qask.

j+ 2—O

ILI

0 I I I I I I

IO I 5 20 2g PP
TEMPERATURE 'C

absorption flasks containing rubidium atoms, a neon
or argon buGer gas, and 2 Ci of tritium. The neon
pressure in the neon-tritium bulb was 38.2 mm Hg;
the argon pressure in the argon-tritium bulb was 36.9
mm Hg. The ionization produced by the tritium beta
rays furnished a source of quasifree electrons. Calcu-
lations indicated that the electrons would rapidly
thermalize so that the tritium was a source of thermal
electrons. In order to check that the measurements
were being made with thermal electrons, a second type
of absorption Qask in which the electrons were produced
in a discharge and allowed to diffuse into the main part
of absorption flask was constructed. Figure 3 depicts
this type of flask. It consisted of a 25-cm' bulb mounted
on the top of a 300-cm' bulb. The small bulb was
provided with two glass-covered electrodes and free
electrons were produced by a continuous radio-fre-
quency discharge between the two electrodes. The
electrons then diffused down to the main bulb. This
second type of bulb was constructed with helium and
neon buffer gases. The pressure in the neon bulb was
41.4 mm Hg; the pressure in the helium bulb was 40.2
mm Hg. The signals were best in the neon-tritium
bulb so it was used in most of the measurements.
Tests indicated that all of the bulbs gave similar
results for the linewidths and frequency shifts.

The temperatures of the absorption flasks were
measured with a copper-constantan thermo couple,
which was attached to the side of the absorption Qask.
The thermocouple calibration was checked with a
mercury thermometer. Solid carbon dioxide was
employed to reach temperatures below room tempera-
ture. The resonance signal was measured by amplitude
modulating the radio-frequency field with a mercury
relay and then observing the demodulated absorption
signal on a lock-in detector. The circular polarizer was
arranged so that it couM be quickly changed to give
either right or left circularly polarized light. The vector
giving the direction of the static magnetic field was
parallel to the direction of motion of the photons in
the light beam.
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FiG. 5. A comparison of the observed temperature dependence
(curve A) of the width oi the electron resonance line and the
temperature dependence expected from two proposed sources of
the linewidth. Curve C is for a temperature dependence of the form
T 'I'p(Rb), where p(Rb) is the vapor pressure of rubidium. Curve
3 is for a temperature dependence of the form T51'. Curve C gives
the expected temperature dependence if spin-exchange collisions
are the dominant source of line broadening; curve 8 gives the ex-
pected temperature dependence if collisions with the bu6'er gas are
the dominant source of line broadening.

B. Measurements

p(Rb) 1
Tl/2 —

p (Rb) T—3/2

T T
(g4)

where p(Rb) is the vapor pressure of the rubidium.

The first measurements were designed to determine
whether of not spin-exchange collisions dominate the
electron relaxation. The full width at half-maximum
of the electron signal was measured as a function of
temperature. In order to minimize rf broadening these
measurements were made with as low a radio-frequency
field as possible. The results are shown in Fig. 4.
Dehmelt, in his work. with electrons oriented by spin-
exchange collisions with sodium atoms, concluded that
collisions with the argon buffer gas were the principal
source of linewidth. The sharp temperature dependence
of the linewidth which we observed indicated that for an
electron-rubidium system the electron linewidth was

largely determined by the rubidium vapor pressure.
If collisions with the buGer gas are the main relaxation
mechanism, ' one expects the linewidth to vary as (T)'~s,
where T is the absolute temperature of the electrons in
the bulb. If spin-exchange collisions are more important,
one expects

Ap cr fI(RTb) irbeo ss' (83)

where Av is the linewidth, and the other symbols have
been defined previously. Inserting the temperature
dependence of the various quantities, one obtains

Figure 5 compares these two theoretical temperature
dependences with the observed temperature dependence
of the linewidth. The two theoretical curves were
normalized to fit the data at the upper end of the
temperature scale. Figure 5 indicates that the spin-
exchange theory gives the better 6t to the observed
temperature dependence. At the lowest temperatures
the experimental width is greater than one expects
from spin-exchange eGects. At these temperatures,
temperature-independent contributions to the linewidth
(e.g., an inhomogeneous magnetic field) become
important. The electron linewidth due to magnetic-held
inhomogeneity was approximately 100 cps. Figure 6
shows the data after the temperature independent
width has been empirically subtracted out. This was
accomplished by subtracting from each of the measured
linewidths that width required to make the measured
width at the lowest temperatures coincide with the
theoretical curve. On the basis of these Iinewidth
measurements, we conclude that the electron relaxation
is dominated by spin-exchange collisions and

= (const) . (P,s)
1+4)r rirs+ ((os—b(op oi) (rs)—

This equation gives methods for determining 7-2 and v&.

In order to determine these two relaxation times,

z 7—
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FIG. 6. A comparison of the observed linewidth with the tem-
perature dependence expected if spin-exchange collisions are the
only source of line broadening. The theoretical curve (dotted line)
is the same as curve C in Fig. 5. The experimental points plotted
here were derived from those plotted in Fig. 5 by subtracting the
constant jinewidth (~300 cycles) necessary to make the points
observed at the lowest temperature fall on the theoretical curve.

1/rs= T„'+300m .

In order to further investigate the electron relaxation
times, studies were made of the saturation behavior of
the electron signal. Equation (79) indicates that the
electron signal can be expressed in the form

Signal amp
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8Ir I (Rbsv) (86)

Figure 7 shows plots of lioewidth versus radio-frequency
field strength for various temperatures and for the
tritium bulb with a neon bu6er gas. The zero radio-
frequency field intercepts of the lines in Fig. 7 give the
values of v-2 for the various temperatures. The slopes
of the lines give values for r1/rs. Table I summarizes
the values of v2 obtained in the various measurements.
All of the bulbs gave a value for rI/rs in the range

measurements were made of the electron linewidth as a
function of the strength of the radio-frequency Geld.
Runs were made at various temperatures using both
the tritium and the discharge bulbs. The radio-fre-
quency 6eld strength, co&, was obtained by keeping the
radio-frequency oscillator set at the electron frequency,
increasing the static magnetic Geld until the Rb'~

signal was visible on the oscilloscope, and then photo-
graphing the rubidium signal. The rubidium signal
showed the characteristic modulation of the light due
to the nutation of the rubidium moment and the
angular frequency co1 for the electron was obtained
from the observed nutation frequency by using the
relationship

100

80
IJJ

~z 60
Q

~ 40

Z fn
tr)~~ 20

0
0

I
'I 2

SQUARE OF R F FIELD IN kc/sec

FIG. 8. A plot of the signal amplitude as a function of the square
of the radio-frequency Geld strength. The curve shown is a Gtted
curve of the form Jav12/(A+v p), where v& is the nutation frequency
which measures the radio-frequency Geld strength. Values of r2
obtained from this type of saturation curve agreed with those
obtained from the curves shown in Fig. 7.

Then also noting that spin-exchange collisions consti-
tute the main source of the electron linewidth, we obtain

r—I+T —I

(r—I+T -I) (T —I+T —I) T —I+T —I

From this equation and the experimental value for
rI/rs we obtain the equation

r1/rs= 1.0+0.1. (87) —I+T —I (90)

In general LEq. (78)]

T II
—I+r I+TIB I

(;+T„)(T.. +T„-)+T—. T,-

and from the dependence of the 7.2 on the temperature
we obtain the relation

TI ~1/300m. .

N(Rb at T)
rs(20'C) = rs(T).

E(Rb at 20'C)
Here IV(Rb at T) is the number of rubidium atoms/cms at
temperature T.

(88)T -I((r—I+T —I ~

ince the rubidium resonance is broadened. by the light Tmx, z I.The values of r2 obtained for various bulbs and various

source while it is not broadened. when the discharge is
bulb t p tu e .The 1 f r2ref d t 20'C r btam d
from the equation

turned on, we coriclude that

O
f22
O
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FzG. 7. Plots of the square of the electron linewidth versus the
square of the radio-frequency field strength. The zero radio-
frequency Geld intercept gives a value for r2 and the slope a value
for rl/r2. The numbers beside the curves give the temperature of
the bulb when the measurements were made. The curves at 26'C
and 25.75'C ir dicate the reproducibility of the measurements for
diferent runs.

Bulb type

Neon-Tritium
Neon-Tritium
Neon-Tritium
Neon- Tritium
Neon discharge
Neon-Tritium

Temperature
in 'C

12
13.5
14
20
20
26

r2 ln sec

4.9X10 4

4.5X10 4

3.8X10 4

1.9X10 4

2.4X10 4

1.0X10 4

r2 referred
to 20'C

1.9 X10 4

2.2 X10-4
1.9 X10 4

1.9 X10 4

2.4 X10 4

1.85X10~

This gives the order of magnitude of the electron
relaxation which is not strongly dependent upon
temperature. If it is assumed that 100 cps of the 300-cps
temperature-independent portion of the linewidth is
due to magnetic-field inhomogeneity, this leaves 200
cps of the residual linewidth unexplained. This could
be due to interaction with the buGer gas. In his experi-
ment on electron-sodium spin-exchange collisions in an
argon buffer gas (70 mm Hg argon), Dehmelt attributed
5 lac/sec of the linewidth to electron-argon collisions.
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TABLABLE II. Measured values of the frequenc shift Thncy s i . e tntium
( . m g neon) was used for these measurement .

greater than 90%%uz.

or t ese measurements the rubidium polarization wa lwas a ways

FIG. 9. A recorder tracing of one of the electron lines. For this
recording the modulation frequency was 10 cps, the lock-in-
detector time constant was 0.03 sec, and the temperature of the

3760 c s. The
bulb was 20'C. The full width at half-maxim f h'

cps. e width due to magnetic Geld inhomogeneity was
approximated 100 cps the width due to spin-exchange collisions
1500 cps. The dots indicate a Lorentzian fit to the experimental

Bulb
temper-

ature
in 'C

10
16
16.7
17.5
17.8
18.5
18.9
19.3
20
20.7
21.1
21.3
21.8
22.4
22.6
22,9
27

Bvp

Shift
in cps

—10—20—28—20—32—23—33—30—35—37—30—30—47—31—36—36—60

Av
Linewidth

in cps

730
1100
1200
1250
1270
1350
1400
1450
1500
1620
1650
1670
1800
1950
2000
2050
3000

Bvp

—0.014—0.018—0,023
—0.016—0.025—0.017—0.024
—0.021
—0.021
—0.023—0.018—0.018—0.026
—0.016—0.015—0.018—0.022

5vp

hv —300

—0.023—0.025—0.031—0.021—0.033—0.022—0.030
—0.026
—0.029
—0.028—0.022—0.022
—0.031—0.019—0.021—0.021—0.022

Our measurements indicate a much smaller interaction
with the buffer gas.

Measurements were also made of the signal amplitude
or various strengths of the radio-frequency field.

Figure 8 shows a typical plot of signal amplitude versus
the strength of the radio-frequency field. A second
value for 72 was determined from these measurements.
The values of 7-2 obtained in this fashion agreed with
those obtained from the linewidth rneasureme t

In
uremen s.

n order to study the line shape of the electron
resonance a lock-in detector was used to record the
shape of the line. A typical recorder tracing is shown
in Fig. 9. Figure 9 also shows a Lorentzian fit to the
observed line shape. It is apparent that the line is well

represented by the I.orentzian shape.
The other major aspect of the theoretical expression

to be verified is the predicted frequency shift. The
frequency shift was measured by erst observing the
electron resonance frequency with left circularly polar-
ized light and then with right circularly polarized light.
This operation changes the sign of the rubidium
polarization and consequently the direction of the shift.

he shift was then determined from the equation

v (left) —v (right)
8vp=—

This sequence of measurements was repeated until a
precise value for the shift was obtained. Measurements
of the Rb'~ Zeeman frequency were interspersed to
correct for any drifts in the magnetic field. The electron
resonance frequency was smaller when left circul I

ol
circu ar y

po arized light was incident on the bulb. For this
situation the rubidium polarization was positive. For
bulb temperatures less than 35'C, the rubidium polar-
ization was greater than 90%. The measured values of
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FIG. 10.A plot of twice the absolute value of the shift versus the
temperature of the absorption Qask. The dashed curve gives the

exchan e
expected temperature dependence if the shift is d

ange collisions. For the bulb temperatures used in these

90
measurements the rubidium polarization was al t

%. The electron resonance frequency was greater when right
circularly polarized light was incident on the absorption Qask

I

1020

the shift are summarized in Table II. No shifts greater
than 3 cps were observed in the rubidium resonance
frequency when the circular polarizer was switched
from right to left circular polarization. Figure 10 shows
a plot of the absolute value of the shift in the electron
requency versus temperature. For comparison there

is also shown the variation with temperature of the
rubidium density in the bulb. Figure 10 indicates that
the shift depends upon the rubidium density. Table II
shows that the shift divided by the linewidth varies
slowly with temperature.

Frrom the experimental measurements we conclude
that the form of the theoretical expression for the
optical pumping signal is correct. It remains only to

etermine the magnitude of the spin-Qip cross section 7
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and to see if the magnitude of the shift is physically
reasonable. The spin-Qip cross section can be deter-
mined either from the measured value of T„or from
the ratio of the frequency shift to the linewidth. The
erst method requires knowledge of the rubidium

density in the bulb; the second method does not
depend upon the rubidium density, as long as the
rubidium polarization is constant. There are at present
in the literature several expressions for the vapor
pressure of rubidium. The rubidium density versus
temperature derived from three" "of these expressions
is shown in Fig. 11.

Rather than calculate the cross section, we shall use
the formula

(A ' 2mc' '"
(~.),.=x,

i
c s(p —s'),

&mc m.kT

0 Q.5 1 0.5 0

FIG. 12. A plot of the
expression [sin (Sp —bs )
+3 sin'(Srs —Si') g versus the
s-and p-wave singlet and
triplet phase shifts. The
spin-Qip cross section is
given by multiplying this
expression by 7r/k'.

t5 2.0 25 20 i5

GQ 2
I

CQ
4
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O O 0.5 I.O O.5 O

I I I

7r 7r 37r
4 2 4

3 I

(Bo—80)

the data in Table I and subtract out the 300-cps
linewidth which seems to arise from sources other than
spin-exchange collisions, we conclude that for T=20'C

(Dv), =1300&100cps.

where

S(P—5') =P (21+1)sin'(5P —8()
L=p

If we insert this expression into Eq. (92) and use the
value of the rubidium density from curve A in Fig.
11, we obtain

to calculate the phase shift sum, S(P—8'). Equation
(92) is the linewidth averaged over a Boltzmann
distribution for the electrons assuming that the phase
shifts do not vary with the electron velocity. If we use

12
10

IQ

E0

O

010
O
(Q

K

& IO'

P(2l+1) sin'(8 '—5 ') = l.l+0.1.
L=O

(94)

1 sin2(8s' —8s')+3 sin2(its —5r')

2 sins(ass —8s')+3 sins(its —5t')
(95)

This equation shows that x is a function only of (5s' —8s')
and (its —8t'). Figure 13 gives the behavior of x as a
function of these two parameters. From Table II we

conclude that experimentally

x=+0.05+0.01.

From the measured value of S(5s—5') and the measured
value of ~ we conclude that

Figure 12 shows the value of this phase-shift sum for
various values of the s- and p-wave phase shifts.

If we assume that both s- and p-wave phase shifts
are present then the theoretical expression for the
ratio of twice the shift to the linewidth LEq. (26)] is

or
8p' —Sp'= —

~m
—e,'1 (96)
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FIG. 11.A plot of the rubidium density versus temperature. The
expressions used were:

Curve A~ log1pp(Rb) = —4302/T+11.722 —1.5 log1pT;
Curve B"log1pp (Rb) = —4560/T+12. 00—1.45 log1pT;
Curve C~ log1pp(Rb) = —4558/T+11.985—1.45 log1pT.

2' G. G. Grau and K. L. Schaefer, Landolt-Bornstein Zahlen2oerte
Nnd FNnktionen Als I'hysik, Chemic, Astronomic, Geophysik, Nnd
Technik (Springer-Verlag, Berlin, 1960), Vol. II, p, 7.

23 Metals Eeference Handbook, edited by Colin J. Smithells
(Butterworths ScientifIc Publications Ltd. , London, 1955),Vol, II,
p. 613.

'4 R. W. Ditchburn and J.C. Gilmour, Rev. Mod. Phys. 13, 310
(1941).

Sp' —bp' ——~~x —e, ,'97)

where e is positive and small. In addition (Sts—St') is
small. This solution is quite reasonable physically. One

expects the attraction between the rubidium and the
electron to be greater in the singlet than in the triplet
state. A mass spectrometer measurement in which the
Rb ion was observed has been reported. " If the
singlet state of the Rb ion is bound and the triplet
state is unbound, the proper zero-energy phase shifts

2' V. M. Dukel'skil, E. Vo Zondberg, and N. J. Ionov, Dokl.
Akad. Nauk S.S.S.R. 62, 232 (1948). (This paper can be obtained
in translation from the Chief, Photoduplication Service, Library of
Congress, Washington, D. C., using the reference number RT
2125.)
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density and linewidth, one can determine it from the
ratio of the frequency shift to the linewidth. This
removes one of the most dificult aspects of measuring
spin-exchange cross sections.

When Lewis" derived his expression for the frequency
shift, he replaced the rubidium-electron interaction
with a delta-function interaction of the proper strength
and calculated the expectation value for the energy of
the electron in a gas of rubidium atoms. He assumed
that the part of the energy which depended upon the
rubidium polarization and the collision cross section
gave the proper value for the energy shift. This method
essentially replaces a time average by an average over
phase space. In a spin-exchange coHision there is a high
probability of a spin-Rip and consequently the time

.average cannot be simply replaced by a phase-space
average.
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are Sm- for both singlet and triplet s-wave scattering.
Both phase shifts ultimately decrease as the energy in-
creases. If there is a singlet bound state near zero energy,
the singlet phase shift becomes ~x and the triplet 5&—

&,

Hence,

(}n this basis (8s'—8s') would be given by Eq. (9'1). A
measurement of the total cross section for thermal
electrons colliding with rubidium such as has been
reported for electrons on cesium" would give R check
on this hypothesis and permit a determination of both
singlet and triplet phase shifts. It is interesting to note
that in his work on electron-sodium collisions, Dehmelt
also concluded that bp~~m, that singlet-s scattering
was dominant, and that the cross section was near the
theoretical maximum.

CONCLUSION

A theory has been devised to account for the nuclear
and electron relaxation due to spin-exchange collisions.
This theory predicts a frequency shift in addition to a
linewidth. The frequency shift and linewidth both
depend upon the same combinations of the singlet and
triplet phase shifts. The existence of the frequency
shift makes it possible to measure spin-exchange cross
sections when the density of atoms is not known.
Rather than. determining the cross section from the

~" C. L. Chen and M. Raether, Phys. Rev. 128, 2679 {1962).
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APPENDIX A

Application to the Actual Rubidium Isotopes

In this appendix we will consider the case of one of
the actual rubidium isotopes colliding with quasifree
electrons. For this purpose we will choose Rb'~ which
has a nuclear spin of ~~. The results of our analysis can
easily be extended to Rb" which has spin —,'. The
exact behavior of the rubidium density matrix wiH

depend upon the spectrum of the light source, the
6ltering of light by the bulb, the rubidium-rubidium
spin-exchange collisions, the amount of reorientation
in the optically excited state; the spin-exchange
collisions with the electrons, and the relaxation proc-
esses which restore the rubidium populations to
equilibrium. To analyze all of these in complete detail
is a dificult problem for whose solution there is not
sufEcient data at the present time. In our analysis we
shaH show that when the absorption Qask is illuminated
with D&(SP&~s~ 55~~s) resonance radiation, the total
light absorption and the driving force for the spin-
exchange orientation of the electrons are the same
function of the diagonal elements of the rubidium
density matrix. On this bRsls wc cxpcct thRt thc opticRl
signals for electrons in spin-exchange equilibrium with
the real rubidium isotopes will be very similar to those
for the spin-zero rubidium model.

We will erst consider the optical absorption. If we
have Ro optical transition between an atomic ground
state characterized by the quantum numbers F„M„
I, J„I.„Sand an excited state characterized by the
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quantum numbers P„M„I, J„I,„S,the total cross
section for the absorption of circularly polarized light is

o„(Fg, Mg, I, Jg, L„S—& F„M„I, J„L„S)dv
(2F',+1)

~
W(J,J,F,F, ; 1I)~'

87r r Q (2F',+1)
~

W (J,J,F,F, ; 1I)
I

'

)&
~
C(Fg1F.; M,KM,) ~' (A1)

where W (J,J,F,F„1I) is a Racah coefficient,
C(F',1F', ; Mph, ) is a Clebsch-Gordan coefficient 27 X

is the wavelength of the radiation, g is the lifetime of the
excited state and s; is +1 for left circularly polarized
light and —1 for right circularly polarized light. This
expression can be conveniently rewritten in terms of
the intensities of the hyperhne lines in the multiplet.
In this form it is

o.(Fg, Jg., Mg —g F„J., M.)dv

3 X'
=——

~
C(Fg1F, ; MgsMg) ('

Sm v

Intensity of (F,'J, —& F,J,) emission line
X

Total intensity of all emission lines from P, J, level

(A2)

Using this expression the standard tables of multiplet
intensities can be used to calculate the absorption
cross sections. The actual cross section will have a
Doppler shape of the form

og(v)=opg(Fg Jg Mgi Fg Jg,Mg)

)(' tg
—4 ln2pv —g(FgJg ~ FeJe)/ngn j~ (A3))

where

ap„(Fg, Jg, Mg —+ F„J„M,)

The absorption cross sections for the various magnetic
substates of Rb'~ when it is illuminated by left circu-
larly polarized D~ resonance radiation are summarized
in Table III. If we assume that all the optical hyperfine
transitions have the same frequency we can write the
light absorption for the cylindrical bulb of Fig. 1 in
the form

BI(v,s) X(Rbs7)o, (v)
[p,s(Rbs7)+ 2pss(Rb'7)

+3p44(Rb' )+4pss(Rb )+psp(Rb' )

+2p77(Rb 7)+3pss(Rb )]g (A5)

Fg(Rb' )=Tr[o ggp(Rb' )j 7 (A7)

where 0-„ is the Pauli spin matrix which operates on
the electron coordinate, then we can write

8I (v, s) = —X(Rbs7)or (v) [1—F,(Rbs7) J. (A8)

This equation is very similar to Eq. (61) and can be
solved and averaged in a similar way. If we introduce

E(Rb")
F,(Rb) = Tr[o „p(Rbss)]

Ip (Rbss)+N(Rbs7)

where p;;(Rb") are the diagonal elements of the density
matrix for Rb', where the indices 1, 2, 3, 4, 5, 6, 7, 8
refer to the states (2,2), (2,1), (2,0), (2, —1), (2, —2),
(1, —1), (1,0), (1,1), respectively, and where or(v) is
given by the equation

1 )' 2(ln2)'"
or(v) =—— o

—41n2[{v—vg)/nvn]g (A6)
87r r 7r'"(hv27)

If we introduce the electron polarization for Rb ~

through the deining equation

2(ln2)"'
o„(Fg, Jg, Mg —+ F„J„M,)dv (A4).

m'1~6 v~

E(Rbs')+- Tr[o„p(Rb )), (A9)
E(Rbss)+E(Rbs')

I2 A~ I(v,0)dv ~——(1—A (S)),i
(A10)

S=[$(Rbss)+X(Rbs7)lo&sp[1 —Fg(Rb) j. (A11)

we can write for the total transmitted light
TmLE III. The optical absorption cross sections of the vari-

ous magnetic substates of Rb for left circularly polarized
D1(SP1I2 —+ SS1~2) optical resonance radiation. The numbers in the
table are relative cross sections and should be multiplied by

1 ~~ 2(ln2)11~ V—V0

exp —4 ln2 where
167'- ~ m'~'b, v~ AVD

to obtain the magnitude of the cross section.

State

Relative
cross section

2, 2 2, 1 2, 0 2, —1 2, —2 1, —1 1, 0 1, 1

0 1 2 3 4 1 2 3

'7 M. E. Rose, E/mentary Theory of Angllar Momently (John
Wiley Bz Sons, Inc., New cwork, 1957), pp. 32—124.

A comparison of Eqs. (66) and (74) with (A10) and
(A11) shows the relationship between the rubidium
model with no nuclear spin and the actual rubidium.

Now we wish to consider spin-exchange collisions
between Rb" and the quasifree electrons. If we neglect
the effects of the nuclear spin in the collisions and
assume that the temperature is high enough that one
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does not have to worry about the conservation of
energy in the hyperfine transitions, Eq. (27) can be
used to calculate the change in the electron and
rubidium density matrices. We need only deal with the
full 8X8 density matrix for the Rb. The matrix for
cr(Rb'c) cr(e) is listed in Table IV. A straightforward
calculation using this matrix and Eq. (27) for the case
where the rubidium density matrix is diagonal and the
electron matrix has o8-diagonal elements shows that

P, (Rb")—P (e)

W[CC

2T-

1+i~P,(Rb")
[»(e)

Tee

Tee

P (e) —P (Rb")

2T-

(A12)
where

1/T„=c,abc's%(Rb'c)o. sp) (A13)

and that for the electronic polarization of the rubidium

TeRb"

dP (Rb' ) P(e) —P, (Rb")

dt
(A14)

where

1/2'cabcc = ['cab "&(&)0». (A15)

~ M

«rl

8
CV

H[CC

CC[CC

A similar set of equations can be derived for collisions
between Rb'5 and the electrons. We conclude that for
electrons colliding with rubidium atoms, the Rb'~ and
Rb" can be replaced by an equivalent spin one-half
system whose electronic polarization is equal to the
electronic polarization of the rubidium.

~ ~

I

~HfCC AICC

~ ~ « ~

Q

~ « ~ a
WICC CC[CC QCC

~ ~ 6 ~ A ~

Q

~C[CC H[CC CC[CC

+CC QCC ~[CC +CC W[CC ~[CC ~ W[CC

&fC\ W[CC

Q
~ A

V([CC CC[CC CC[CC

I a a ~

K[CC +Cc

g[CC ~ t ~ 8 ~ ~

o I S
0

APPENDIX B

Application to Other Systems

It is instructive to calculate the change in the
density matrix due to spin-exchange collisions for
systems more complicated than the electron spin
system. The main purpose of this investigation is to
determine the pattern of the frequency shifts and the
spin-exchange linewidths for more complicated systems.
First consider the case of collisions between polarized
electrons and hydrogen atoms. We shall assume that
there are no off-diagonal elements of the electron
density matrix and then calculate the change in the
hydrogen density matrix for the cases where we have
a single radio-frequency field present. We will use e;;
to denote the elements of the electron density matrix,
H;; to denote the elements of the hydrogen density
matrix, and P(e) to denote the electron polarization.
For the hydrogen density matrix the indices 1, 2, 3,
and 4 denote the states (1,1), (1,0), (1, —1), and (0,0),
respectively. The matrix for cc(H) cr(e) is summarized
in Table V. Using this Inatrix the change in the hydro-
gen density matrix due to spin-exchange collisions with
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TAsr. E V. The matrix rr(H) e(e). The state labels are written so that the 6rst two numbers give the state of the hydrogen atom and
the last two the state of the electron.

) p 2)
1, 0; -'„

0, 0; -'„

) 2)
1, 0; —,',
1 1
0, 0;*;,

1
2
1
1 1
2j 2
1
2

2
1
21

2p 21
2

1) 21 2 10 —'~ 1 —1 —' —' 00 $ —' 11 —' —-' 10 —' —j' 1 —1 —' —g 00 —'

TABLE VI. The expression Tr,[—3p+(I+2k}(o', 'rrn)p+(I —2k)p(e, 'rrn)+(rr, o'n}p(rr, err)] for a spin-exchange collision be
tween polarized electrons and hydrogen atoms. %hen multiplied by -„v,HS(e)0 sp this matrix gives the time rate of change of the hydrogen
density matrix due to spin-exchange collisions. This matrix is a summary of several calculations and is valid when one set of oft-diagonal
elements, such as H24 and H42, is not equal to zero.

1, 0

4&»H11+2&11H 2

+2e11H44—2e11(H42+H24)

[—3+(1—k)P(e)]H„

1, 0

[—3+ (I+k)P (e) ]H»

—3H»1 H44
+2&22H1112e11H33
+[H24+ H42+k (H4a —H~4) ]P(e)

0, 0

L
—3+ (1+ix)P(e) )H14

[—3—(1—k)P (e) ]H23 —3H24+ H42
+2~11H33 2~»H11
+[H44+H»+k(H44 H22)]P(e)

0, 0

[—3—(1+k)P(s)]H»

[—3+ (1—k) P(e)]H4& —3H42+H24
+2&11H33—2&»H11
+PH44+H» &,(H44 —H»)3 (&)

—4@11H33+2@»H»
+2e»H44
+2e22LH42+H24]

[—3—(1 k)P (e)]—H„

[—3—(1+k)P (s) ]H8,

3H44+ H»
+2@»H11+2e11H33
+[H24+H4R+&K(H24 H42)]P(s)

TABLz VII. The expression Tr,[—Bp+(I+2k}(e(s) e(H)}p+(1—2k)p(rr(e) e(H))+(e(e} e(H))p(o'(e) e(H))] after the terms
which will average to zero have been discarded. When multiplied by 4v. rrlV (s)osr this matrix gives the time rate of change of the hydro-
gen density matrix due to spin-exchange collisions with polarized electrons. This matrix is a summary of several calculations and is valid
when only one set of off-diagonal elements, such as H24 and H42, is not equal to zero.

1, 0

—4e»H11
+2«i[H»+«4]

[—3+ (1—k)P (e) ]H2g

[—3+ (1—i~)P (s) ]H4g

1) 0

[—3+ (I+k}P(e)]H&2

—3H»+H44
+2[&22 H1 1+«1H3 8]

[—3 —(1+k)P(e)]H32

3H491H94

I
—3—(1—k)E(e) jH23

—4&11H33
+2e22LH»+H44j

L
—3—(1—ix)P (e) jH43

o, o

[—3+(1+k)P (e) ]Hr4

—3H24+H42

[—3—(1+k)P (e)]Ha 4

—3H44+H»
+2e»H11+2e11H33

polarized electrons can be calculated from Eq. (27).
The result of this calculation is summarized in Table VI.
As written this matrix is the summary of Ave inde-
pendent calculations and it is only valid when one
pair of off-diagonal Tnatrix elements such as H2~ and
8~2 is present. Also for this calculation we have assumed
that the time is Axed and that we have one particular
value for the off-diagonal matrix elements. In general
the off-diagonal elements will vary with time and only
those collision produced additional terms which have

the correct time dependence will give a contribution to
the change of the oQ'-diagonal elements. If we set
equal to zero those terms with the incorrect time
dependence, the equations simplify. The simplified
expression for the change in the hydrogen density
matrix is summarized in Table VII. Table VII indicates
that the frequency of the (1,0) —+ (0,0) transition will
not be shifted, that the (1,1)~ (0,0) and the (1, —1)—+

(0,0) transitions will be shifted in opposite directions,
that the (1,1) —+ (1,0) and the (1,0) —+ (1,1) transitions
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will be shifted in the same direction and that the
linewidth of the Am= +1 transitions will depend upon
the electron polarization.

A second system of interest is rubidium colliding
with electrons where there are off-diagonal elements of
the rubidium density matrix. We will make the calcu.-
lations for Rb" and we will assume that the electron
density matrix has no off-diagonal elements. Ke will

use e;; to denote the elements of the electron density
matrix, E;; to denote the elements of the rubidium
density matrix, and P(e) to denote the electron polar-
ization. For the rubidium density matrix the indices 1
through 8 denote the states (2,2), (2,1), (2,0), (2, —1),
(2, —2), (1, —1), (1,0), and (1,1), respectively. The
matrix for o(Rb") ~ o(e) is summarized in Table IV.
The change in the rubidium density matrix due to
spin-exchange collisions can be calculated from Eq.
(27). The result of this calculation is summarized in
Table VIII. As written this matrix is the summary of
15 independent calculations and it is only valid when
one pair of off-diagonal matrix elements such as R2~
and 8~2 are present. This result is very similar to that
obtained for the hydrogen-electron system and the
same kind of observations can be made about it.

A third system of interest is that of hydrogen atoms
colliding with hydrogen atoms. For this situation the
two particles are identical and the calculation must be
modified to take this into account. This can be done by
using the expression

p =4 Z. L I &) le)+ I

—&)Q I
&)j

&&P(&, )L& I &&I+( tQ&
—&ll, (»)

for the initial density matrix. Here Q is the operator
which interchanges the two hydrogen atoms (both pro-
ton and electrons) and the wave functions have been
normalized so that there are two particles in the box.

where

+(1+2i~)(o(H) o(H))p(H, H)

+(1—2i~)p(H, H)(o. (H) o(H))

+(o(H) o(H))p(H H)(o(H) o(H))3

+ osp' TrrrL —3p(H, H)Q

+ (1+2i~') (o (H) o (H))Qp(H, H)

+ (1—2k') p(H, H)Q(o. (H) o.(H))

+ (o (H) o (H))Qp(H, H) (o (H) o.(8))]), (B2)

o.sp ———g(2l+1) sin'(5P —5&'),
P l=o

(B3)

0'spK = P (2l+ 1) sin2(5, '—5&'),
2k

o sp' ———g (2l+1) (—1)' sin'(8P —5(')
jp l=o

o'sp K = P(2l+1)(—1)' sin2(5P —8&'). (B6)
2k' &=0

The matrix for o.(H) o.(H) is summarized in Table IX.
The expression for the time rate of change of the
hydrogen density matrix is summarized in Table X.

The equation for the change of the density matrix LEq.
(27)] then becomes

dp(H) oHHNH
&esp TrnL —3p(H, H)

dh 4


