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Calculation and Comparison to Experiment of Magnetoresistance
in the Noble Metals*
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Calculations of magnetoresistance in metals have been made taking into account the contributions of
open orbits. Details of the open orbits in copper have been worked out and the specific resistance has been
calculated for a number of current axes. Results of experimental measurements of transverse magnetoresist-
ance in oriented single crystals of copper and silver are reported. These results have been compared to the
calculation and both experimental and theoretical curves are given. Fermi surface neck diameters have been
derived from the data and comparison is made with data obtained from magnetoacoustic attenuation
experiments.

INTRODUCTION

'AGNETORESISTANCE measurements in single
- ~ crystals have recently been used to give sig-

ni6cant information on the Fermi surface in a number
of metals. The interpretation of experimental curves is
based on the theoretical work of Lifshitz eI, a/. ' who
pointed out the possibility of open-electron orbits in
many metals and the effects these will have on the
magnetoresistance.

In this paper we give an extension of the work of
I ifshitz and compare the details of the calculation with
experimental results obtained on oriented crystals of
copper and silver. In particular, a relaxation time is
assumed to exist and an expression is obtained for the
distribution function. Details of the open orbits in
copper are worked out assuming a nearly spherical
Fermi surface. Transverse magnetoresistance curves
are calculated for magnetic field directions near (001)
and currents parallel to (310), (210), (110), and (100)
axes. The results are then compared to the experi-
mental curves obtained for these same current axes.

Experimental results are also given for the Fermi
surface neck diameters in copper and silver. These
results are compared with recent measurements of
Bohm and Easterling' on copper and silver using
magnetoacoustic attenuation.

momentum. With f= fs+io this is

—e(E+c ' XvH). V q+r 'y=efs'v E.
This 6rst-order partial diGerential equation for q can
easily be solved along the characteristic curves that are
tangent to the force field E+vXH/c. If it is assumed
that E is small enough then the characteristics (the
orbits of the electron in momentum space) can be taken
tangent to vXH (otherwise the current would. not
depend linearly on E). Now define a parameter ts along
the orbits so that if p, is changed by dp, the position on
the orbit is changed by dp=v&&ndp, , where H=nB.
Then

dq/dt =vXn pp

and the Boltzmann equation becomes

1dg
+Q=v,

n lp
where

vp=erfs'g E

et= c/(erH) .
The solution of this equation for Q is

THE SOLUTION OF BOLTZMANN'S EQUATION

The Boltzmann equation is

—e(E+c ivXH) &f= —(f fo)/r—
if a relaxation time 7 is assumed to exist. The number
of particles at p in dp is 2(2srh) 'f(p)dp and fs is the
unperturbed Fermi distribution regarded as a function
of energy, c which in its turn is a function of the

sl(ts) =ae & e &'v(ts')dts'

This result is given by Wilson' LEq. (8.55.3)]. Note
that this is the only bounded solution so in fact Q is
determined uniquely. The origin of the parameter p is
obviously irrelevant. Since

8 ~~dp, =1,
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Q is a mean of v along the orbit by a distance of about
1/n in the direction from which the electron has come.

'A. H. Wilson, The Theory of Metals (Cambridge University
Press, New York, 1953).
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(2+A)s
v'lgpdp) ( .

If 0. is large we have the formula

tti = v+ v'/et+0 (1/n')

obtained by integrating by parts the integral for Q.
This gives the usual expansion of the conductivity for
small rH (high temperatures and low fields), e.g. , the
first term gives the conductivity tensor at zero field
$cf., Wilson Eq. (8.2.6)].'

If n is small g will depend on a long stretch of the
orbit and this will mean that the conductivity will, in
general, be a very complicated function of the direction
of the magnetic field. But if the orbit is periodic (i.e.,
either closed or open and periodic) then the integral for

Q need only be performed over one period a,nd

PO

The conductivity tensor is easily shown to be

2 d5
e= e'r vQ-

(2n-Pi)' n

integrated over the Fermi surface inside the Brillouin
zone. This surface integral can be written as a double
integral by using the parameters p and p&& (the com-
ponent of the momentum parallel to H); the result is

2

1
v(p, ')dla'+

jtlo 0

as would be expected from the fact that g is a weighted
mean of v. The projection of tti perpendicular to H can
easily be calculated from

ol

so

dp/dg= vXn

vi=nXdp/dp, ,

Qi=go 'nX&p+ (3)

where hp is the difference of momentum from beginning
to end of the period. If the orbit is closed this erst term
in the series is zero and the next term reduces to

—nXLp(y) —p(0)] + . (4)

where po is the period. The second term is a particular
integral and the first term a.solution of the homo-
geneous equation for Q.

If Ap. o is small this can be expanded in ascending
powers of 0. the first term of which is

hg

[oft]
~l "(

p, ()=2' fS

e '" v(& )d& ere'" e "v(& )d& Equations (3) and (4) were obtained by I.ifshitz et al. '
LEqs. (20), (21), and (19), respectively], but of course
the value of the constant part of (4) and the magnitude

Iooij" of the vector in (3) are not given by them since these
depend on the existence of a relaxation time. Note that
for a closed orbit po is the rate of change of the area of
the orbit with energy and I ifshitz et ut. ' deaned the
effective mass for the orbit by

[fOO]

X-Y =0

(b)

[I I 0]

[iioj

bg

[1 ioj

+ br
X Y = - 2

(c)

I r 2 bi 3 b/X+Y+2= Oz 2 y &g 7 ~2

(d)

Fio. 1. Planes containing a two-dimensional lattice of necks
connected together by the spherical part of the Fermi surface.
(a) Section parallel to (001) for s=0, (b/2); (b) section parallel
to (110) for x—y=0; (c) section parallel to (110) for x—y
=&(b/2); (d) section parallel to (1f1) for x+y+s=0, (b/2),
(2b/2) (3b/2)

DESCRIPTION OF THE FERMI SURFACE
OF CQ AND AR

The reciprocal lattice is body-centered cubic and if
the cube is of side b then —',b(+1, +1, &1) are basis
vectors for this lattice. The volume of the Brillouin zone
is b'/2 and a sphere of half this volume has the radius
0.391 b. The Fermi surface consists of a set of such
spheres centered at each lattice point, except that the
spheres are slightly deformed and, in fact, join together
through necks in the (111)directions where the unde-
formed spheres are only 0.084 b apart. The centers of
these necks (the center of the hexagonal faces of the
zone) are at the points stb(&1, &1,&1) plus any
reciprocal lattice vector. If the origin is moved to—orb(1, 1,1) then it is easily shown that the centers of
all the necks are at the points orb(l, m, ts), where l, m,
and n are arbitrary integers, i.e., the necks are on a
simple cubic lattice where the cube has side b/2. The
origin has been chosen at a neck and there is a sphere
centered at asb(1, 1,1).
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There are several planes that contain a two-dimen-
sional lattice of necks that are all connected together
by the spherical part of the Fermi surface. These are
the planes s=0, b/2, x—y=0 (but not +b/2), and
x+y+s=0, (b/2), 2(b/2), 3(b/2), and the section of
the Fermi surface by these planes is shown in Fig. 1.
The orbits in these planes are all closed.

It is clear that if the orbit plane is tilted through a
small angle 0 about some axis in one of these planes
(except x—y= &b/2), say about an axis in the direction
Dm0] in the plane s=0, then the tilted plane will not
cut through the necks some distance from the axis and
there will be an open orbit with a mean direction flm0].
In fact, if the necks extend a height h above and below
z=0, i.e., the planes z=+h just traverse the necks,
then necks will only be traversed within a distance
fi cot8 of the axis (for small h) until the tilted plane
intersects the planes of necks z=&b/2. If, however,
the tilt of the orbit plane is too large it will be impossible
to traverse necks indefinitely in the Dm0] direction
and the orbit will be closed, unless the axis Ltm0]
contains a line of connected necks. The axes $100],
L110],and $010] contain such lines of connected necks
and no matter how large the tilt of the orbit plane
there are always open orbits for these axes. The axes
L'110], $111], and $001] in the (110) plane and the

axes L011],etc. , in t.he (111)plane are similar lines of
necks.

Now consider the axis $310].For brevity, use b/2 as
a unit of length so that the plane z=0 has a square
lattice of necks and the side of the square is 1.Take the
magnetic field in the direction L13X] so that the orbit
planes are

x—3y+Xs= p

and these planes are tilted by 0 from the plane z=0,
where tan0=10'~9. If the necks extend a distance It

above and below the plane s=0 (as above) then in
order that the plane, Eq. (5), should go through the
neck at (x,y,0) (x, y integers) it is necessary that

x—3y—Xh (P(x—3y+ Xh.

From this it is easy to find the possible types of orbit
for each value of Xh. At the critical values of Xh: 1, —'„
2, ~~, 3, ~ a new line of necks can be traversed and the
type of open-orbit changes. For Xh(1 there are no open
orbits. In Fig. 2, the section of the Fermi surface by
the above plane is shown for Xh up to 3. It will be
noticed that there are two types of open orbits, one has
a period of 6 quarter-circles and is seen in 1('Ah& —'„
the other has a period of 10 quarter-circles and can be

OR

i&),h& ~/2

(&)

()h &

2

&b)

OR

OR

2 (Ah(5/ (kh+ 5

Fin. 2. Open orbits for the $310$ direction. (a) Simple open orbit for 1&Ah&-„period of 6 quarter-circles; (b) 10 quarter-circle
period open orbit for —,

' &)h&2; (c) 6 or 10 quarter-circle period open orbit for 2 &Ah&-', ; (d) 6 or 10 quarter-circle period open orbit
for ~&kb&3.
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seen in —,
' &Xh &2. These open orbits have the smallest

value of bio apart from those for the $100] and $110].
The next shortest period for an open orbit is 12

quarter-circles and occurs for the axis t 210]. If the
magnetic field is in the direction L12X] and the orbit
plane is

x—2y+Xs= p,
[10oj [100],

[10oj,

where the angle of tilt is now given by tan8= 5'f'/X.
Again the critical values of Xh are 1, ~, 2, ~, ~ ~ ~ and
there are no open orbits for XI & 1. The open orbits are
all the same and those that occur up to Xh = 2 are shown
in Fig. 3.

The periods for open orbits in all other directions are
much larger except for the t 100] and t 110]directions.
For $100] the period is just 4 quarter-circles and for
L110] the period is 2 or 6 quarter-circles. For the t 100]
axis take the magnetic field in the direction $01X] and
the plane of the orbit

y+Xs= p.
At Xh = 2, 1, -'„2, ~ new rows of necks are added and
the open orbits up to ) h =

~ are shown in Fig. 4.
For the L110] axis take the magnetic field in the

direction $11X] and the plane of the orbit to be

x—y+Xs= p.
Again Xh =—'„1,—'„~ ~ ~ are critical and orbits for ) h up
to 2 are shown in Fig. 5.

It is easily seen from Fig. 1 that for H near [110]
the axes L331] 5113] t 221] I 112] 5110] 2001] and

t 111]have similar open orbits to those that we have
described for the L310], $210], $100], and L110] axes
for H near L001].

CALCULATION OF THE MAGNETORESISTANCE

Free-Electron Fermi Surface

Since the necks are quite small most of the orbits
are just circles (approximately) and the first step to
understanding the resistance is to calculate the con-
tribution to the conductivity tensor from circular

) h &

(a) (b)

Fio. 4. Open orbits occurring for the L100] direction up to Ail = sa.

ltll =n e ttIi (cos8, sin8) tnd8
0

= tI„cosP (cosP, sinP),

where 0&p&tr/2 and cotp=lrtrr, i.e., ltli has the mag-
nitude tI, cosIfi and is rotated by p from v, . All appear-
ances to the contrary this is the same as Wilson's3 Eq.
(8.51.3). The 1 components of the conductivity tensor
are determined by

Vlltlldfi = ttrtI1 Cosp (cos8, sin8)

)& (cos (8+P), sin(8+P))d8

cos18 sinP

Also

= 7I tSVl COSP'—sinP cosP

'Vl IlpI Id' = 2trtIWI I alld vlf I I dfr tI I I QJ de

If all the orbits were circular and the Fermi surface
was a sphere the conductivity tensor would be obtained
by just integrating the above results with respect to P«
which gives

cosP sing 0cos'P
1 e'tPs 0, (6)—cosP sinP cos'13

37r2 A3tn

orbits. We shall just assume e =P'/2m so that dil =md8
on the circle. At the point on the circle for which ltl, is
required we suppose 8=0 and use rectangular axes as
shown in Fig. 6."

Then Ip„= tIII and

which is just the sum of a projection operator parallel
to H and a rotation operator through the angle (—P)
about H (together with a scale factor).

1& lh&
2 Z~&)h(2

2

FIG. 3. Opell ol'bl'ts occul'1'lllg foi' tile L210j direction up to Ah =2.

3IL Rote added in proof. A left-handed coordinate system has been
used in Fig. 6. The anal answer is not affected, but a right-handed
system can be constructed by placing Qz and Vz in the fourth
quadrant and measuring e in a clockwise direction. The minus
sign in the conductivity tensor (Eq. 6) is then shifted to the other
cosP sinP term.
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The resistivity tensor is the reciprocal of this:

53m
tanP

—tanP 0

0

and it is clear that if the potential drop is measured in
the direction of the current the result is just the same
as if P =0, i.e., there is no magnetoresistance. However,
the electric field is rotated by P away from the current
so that there is a Hall eRect and P is the Hall angle.

Open Orbits

%e first consider in detail the calculation of the
magnetoresistance when the current is parallel to $310]
and the magnetic field. is near the L001] direction. In
Fig. 2 the possible open orbits are shown when the
magnetic field is tilted by 8 from [001] and 8 is de-
creased (as li is increased) from the value at which open
orbits appear for the first time (tan8=10'" h) to the
value at which closed hole orbits appear for the first
time (tan8=10"'h/2). Consider first the region of l~,

1&Ah&~, and suppose the central Brillouin zone has
its necks at the points (x,y)= (0,0), (1,0), (0,1), and
(1,1) on the planes z=0 and s= 1.Then, if p in Eq. (5)
lies between the values —3&(Xh—1), the necks at
(0,1), (1,1), and (2,2) are traversed and in Fig. 2(a)
the circle with —3 inside it is the section of the Fermi
surface inside the central zone. If p lies in —1& (l~h —1)
the necks at (0,0) (1,1) (2,1) are traversed and the
circle with —1 inside it is inside the central zone.
Finally, if p lies in 1& (Xh —1), the necks at (0,0) (1,0)
(2,0) are traversed and the +1 circle is in the central
zone. There are, therefore, three separate ranges of
momentum parallel to II for which there is an open-
orbit traversing the central zone near a=0 and each
of these ranges is of thickness 2 P h —1)/(10+ii')'I'.

Fio. 6. Plot showing relative directions of vr and Qi.

If rH is large then Q is a constant all along one of
these orbits and we can calculate Q, from Eq. (3),
where hp= (3,1,0) and

Qr
——(3s.m)

—'n X (3,1,0),

since the length of a quarter-circle of orbit in units of p,

is risrr/2. Now consider the interval of p, —3& p h —1),
then (integrating only inside the central zone)

v,f,dpi= 2nX (1,0,0) (3s.its) 'nX (3,1,0)

(the 2 is due to the fact that there are two open orbits).
The integral over this range of P~~ multiplies the above
result by 2(Xh —1)/(10+i~')'I'. Note that this must be
multiplied by (b/2) if the dimensionless unit of mo-
mentum is not used. The calculation for the other two
ranges of p is the same and, if the three answers s,re
added and multiplied by 2 to account for the similar
orbits near the plane s= 1, we find

2s'r (b s 1
e«= —

~

— nX (3,1,0)nX (3,1,0)—,'o$, (7)
(2s.ls)'E2 s tN

where
~~2()~h ( t

(b)

y)2()hc ) 4 2(lti's —1)
$P.) =10—

3 (10+it')'I'

for the contribution to the conductivity tensor due to
open orbits if 1&Ah&~~.

For 2&Ah&2 the open orbits just considered are
still possible, for example with p in the range—3+ (2—lib), and the contribution to the conductivity
tensor due to them is given by Eq. (7) with

)&)h (&~2

(c)

]()h (~y
2

Frg. 5. OPen orbits occurring for the L110]direction uP to Ah=as.

4 2(2—Xh)
$(l~) =10—

3 (10+ii')"s
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and these orbits are of diminishing importance. There
are also new orbits as shown in Fig. 2 (b); e.g. , if p is in
the range —22&(X12—2) then the necks at (0,1), (1,1),
(2,2), and (1,2) are traversed, if (2,1) is traversed
instead of (1,2) then p has to be in the range
—

ss& (Xh—2). The thickness of these ranges of p&~ is

2 () h ——',)/(10+) ')'I

For the contorted orbits on the right that occur when
pisnear —2, —2, 2, ands, Q, is

(52r222)
—'nX (3,1,0),

and the contribution of these to e» is given by Eq. (7)
with

1.6—

0.6—

O.O
' o

I6

S II [sl oj

I ' o i o I o4 6 Ip l6
ANGLE QF H FROM [OOlj

1 2() h ——',)
$(X)= 10—

5 (10+)2)»2

Similarly, with the orbits on the left and orbits near
s=1.The result for o» is Eq. (7) with

4 2(2—Xh) 4 4 2() Is—2)
P(),)= 10- +10 —+— . (9)

3 (10+X')'~' 5 3 (10+X')"'

For 2(hh(ss the open orbits shown in Fig. 2(b) are
still possible though their thickness is now decreasing
and the orbits shown in Fig. 2(c) begin to appear near
p= —4, —2, 0, 2 and p= —5, —3, —1, 1, 3. For this
range of XI2 o» is given by Eq. (7) with

/4 4i 2(-', —X7r) /4 4q 2() Is—2)
$(X)=10 -+- +10 —+—

(5 3) (10+As)»2 (5 3/ (10+)P)»2

= 10(32/15) (10+F2) 'I'. (10)

A little thought will show that this result remains true
for all Xh&2.

The above calculation only gives four of the nine
components of the conductivity tensor and those only
for the open orbits. In fact this is enough to estimate
the magnetoresistance as we shall now show. First let
us choose new rectangular axes 1, 2, and 3 that are
parallel to (3,1,0), nX (3,1,0), and n, respectively. The
e&& that we have just calculated in this system of
coordinates (o;;,ij =1, 2) can be written

1 ssrPs 0 0

32r 52222 0 At
where

3 b~s—
~

= 1/(2.) =O.159,
42r2 2p)

and the factor in front of the expression has been chosen

For the simple orbits on the right that occur when p is
near —— ———5 1 3

2) 2) 2
1 2(),a——,')

$(X)= 10—
3 (10+As)»2

pJG. 7. Graph showing calculated values of the function g(X)
as the magnetic Geld sweeps through the L001j pole. Current
parallel to L310]. SpeciGc resistance is a constant times this
function.

(12)

The function $() ) from Eqs. (8), (9), and (10) is shown
in Fig. 7 with h taken to be 0.1, which is close to the
experimental value found for copper. It will be noticed
that the break in the curve at 8=11.9' is due to the
two types of open orbit, in effect the contorted orbit
pulls down the maximum of $.

For the [210] current direction the open orbits forI near [001]are all of the same type (Fig. 3) and it is
easily shown that

2e'r b '
o'»= — nX (4,2,0)nX (4,2,0)—$,

(22rk)s 2 2rm 20
where

4 2(Xh —1)
~ p, ) =2ox-

6 (5+) 2)»2
1(Ph(-,'

=20(4/6)(5+F2) '" —'() Is. (13)

The function $ is shown in Fig. 8 with 12 again taken to
be 0.1. The resistance is given by Eq. (12) with this
new $, but the same A.

For the [100] current direction the open orbits are
again all of the same type (Fig. 4) and

2e'~ b '
o„= — nX (2,0,0)nX (2,0,0)rs) „

(22ri2)2 2 2r222

to be the same as for the free-electron conductivity Eq.
(6). We must add to Eq. (11) the result for all the
circular orbits which will nearly be Eq. (6) if the necks
are small. Now if we use the fact that 0. is small then
P is near 2r/2 and sinP=1+, cosP=nm+, and
again assuming the necks are small the 1, 1 component
of the resistivity tensor, i.e., the specific resistance in
the [310]direction, is
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J // [2 I 0]

I I

l6 l2 8 4 0 4 6 l2 16

ANGLE OF H FROM [Oofj

FIG. 8. Calculated values of f (/) plotted for the [001jpole
and [210j current direction.

where
4 2Xh

$()I)=4X——
2 (119)I/2

FIG. 9. Calculated values of p(h) plotted for the [001)pole
and [100jcurrent direction.

= ('6/'3) (2+)") "' )ih&1. (15)

The resistance is given by Kq. (12) and $ is shown in
Fig. 10. The break in the curve at 0=8' is due to the
two types of open orbits.

For H near [110]and the current directions [331]
and [113] there will be a resistance similar to that
found for the [310]axis above, i.e., with a break in it
due to two types of open orbits. For the [221] and
[112] current directions the resistance is similar to
that found for the [210] axis above and there will be
no break because there is only one type of open orbit.
For currents in the directions [110] and [001] the
resistance is like the [100]case above and has no break,
but the [111]axis has a break, since it is like the [110]
case above.

=4(4/2) (1+)12) '", )Ih) 2.

The resistance is again given by Eq. (12) and $ is shown
in Fig. 9.

For the [110]current direction the open orbits are
of two types (Fig. 5) with /Is ——Ir//I or 32r//2 and

2e'r b' 1
Ir„= — nX (110)nX (110)2$,

(22r/2)2 2 2rm

where

4 2Xh
q(X) =2X-—

(2+$2)1/2

4 2(1—)ih) 4 4 2(h/2 —-', )=2X- +2 -+-
(2+)t2)1/2 3 1 (2+) 2)1/2

-,'()h(1

to the theory discussed above. In the case of copper,
specimens 15 to 20 mm long with 1-mm' cross sections
were prepared by acid sawing from large copper single
crystals. Back reflection Laue techniques were used to
orient the crystal for cutting. Final accuracy of the
sample axis orientation was —,".The specimens were
mounted in a sample holder and immersed in a bath of
liquid helium. Ratios of the room temperature resistance
to the resistance at 4.2'K ranged, from 1500 to 1800 for
the as grown samples. In a number of cases the ratio
was increased to 4000—5000 by oxidizing the sample
for 24 h before making measurements. This increased
the magnetoresistance anisotropy by a factor of 5, but
data taken before and after oxidation gave the same
result for the angles between maxima.

The silver specimens were prepared by growing
randomly oriented single crystals six inches long with a
square cross section 1 mm on a side. Seventy crystals
have been grown and fifteen were selected whose axes
were within one degree of the stereo triangle boundary.
Specimens 2—,'in. long were cut from these crystals.
Both 99.999% and 99.9999% purity silver was used.

EXPEMMENTAL RESULTS

Transverse magnetoresistance measurements have
been made on a large number of oriented specimens of
copper and silver and the results analyzed according

Io lo lo I I
l 6 12 8 4 0 Io 'o

l2 l6 e
Looi]

FIG 10. Calculated values of $(X) plotted for the [001j pole
and [110]current direction.
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The resulting room temperature to helium temperature
resistance ratio was 500 and 1000, respectively.

All of the measurements have been made in a mag-
netic field of 13 500 G. The potential drop across the
specimen was measured with a Rubicon microvolt
potentiometer, the unbalance of which was fed into a
photoelectric galvanometer and amplifier system
driving a chart recorder. The sensitivity of the system
was 5X10 ' V. A recorder tracing of the potential drop
across the sample was made as the magnet was rotated
through 360' with the 6eld perpendicular to the sample
axis.

Experimental rotation diagrams are shown for copper
and silver in Fig. 11.The high double peaks occurring
symmetrically about the low-index poles are due to the
open-orbit regions discussed above in the theoretical

section. These maxima in the resistance show an B'
field dependence and the angle of separation can be
used to calculate the neck diameter of the Fermi
surface.

The maxima are located inside the open-orbit regions
and as was pointed out in the section on calculation of
magnetoresistance, the maxima occur at an angle for
which closed hole orbits are first possible. This can be
seen for example in Fig. 2(c) for the L310j current axis.
The closed hole orbit is indicated by the light closed
curves and first occurs for Ah= 2. The function $ has its
maximum value at the corresponding value of 0 which
is considerably less than the value of 0 for which open
orbits first occur, i.e., tan0=10'I" h or Ah=1. The angle
between the two maxima for each current direction can
be used to give an independent determination of the
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FIG. 11.Transverse magnetoresistance rotation curves obtained
for copper and silver. (a) Recorder trace for t 310) axis of copper;
(b) recorder trace for silver. Crystal axis 14' off (111) toward
(110).

(b)

Fin. 12. Gnomonic projection of data obtained for the
I 001$

pole. Polar coordinates are used with @ as the angle and tang as
the radius. p is the angle between the current direction and the
direction $110$. B=angle at which hole orbits first occur. The
half-squares are drawn using the formula tans sin&=2h[ooi~/v2.
(a) Data from copper. (b) Data from silver.

Fermi surface neck height h. For field directions
sweeping through the $001j pole it is readily verified
that if P is the angle between the current direction and
the direction L110j, then hole orbits first occur at an
angle 8 given by

7r 3'
tan8 sing= 2h[ppt]/K2,

4 4
where k is in units of (I'i/2).

If polar coordinates are used with p as the angle and
tan8 as the radius, then the above equation is a straight
line making intercepts on the $100] and L010] axes of
2htpp~~. The directions of H for which hole orbits are
just possible is a square of diagonal 4h[ppi] in this
gnomonic projection in which L001) is used as a pole.
In Fig. 12 we show half of two such squares with the
experimental points obtained for copper and silver.
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Fio. 13. Gnotnonic projection of data obtained for the [110]
pole. The half rhombs are drawn using the equation tane sin&=2h prop/V3. qb and 8 are again defined as in Fig. 12. (a) Data from
copper. (b) Data from silver.

2hltrpl and v2hltiol on the L110] and L001] directions,
respectively. The region for existence of hole orbits is
a rhomb and the appropriate rhombs for copper and
silver are shown in Fig. 13.A fit with the experimental
data gives 2h[Qp] =0.29 for copper and 2h~»p] =0.23 for
silver. It should be noted that there is twice the amount
of information at this pole since for example $331]and
L113]are independent current axes.

In the case of copper three experimental points are
shown in Fig. 13(a) for the [001]current axis. Two of
these points were obtained from the same crystal the
smallest and largest values of 8 being measured from
two different (110) poles while the middle value was
obtained from a diferent crystal. This variation in
angle is probably due to the extreme sensitivity of the
rotation diagram to orientation when the current is
along a low-index direction. This was first pointed out

The values of 2htppy] found for copper and silver are
2h&ppi]=0. 21 and 2h~pp&]

——0.19, respectively. There is
no obvious reason why the maxima for the various
current directions should all lie on the same straight
line, although the fit for the copper data appears very
close. It may be that the more complicated open orbits
occurring for arbitrary current directions are just com-
binations of the simpler orbits like f310] worked out
above.

When H sweeps through the L110] pole, the closed
hole orbits occur at an angle 0 given by

tang sing= 2hlirsl/K3,

where hftrsl is the neck height in the L110] direction
and P is the angle between the current direction and
the L111]direction.

In a gnomonic projection with the pole in the direc-
tion L110] this is a straight line with intercepts of

TABLE I. Comparison of experiment and theory for the mag-
netoresistance peaks near the [001$pole for four difFerent current
axes. The value of Ag/(nm)' is equal to the calculated magneto-
resistance at the peak and should be compared to the experimental
value of p(H)/p(0).

Current axis

L310j
[210$
L-»0j
[100j

Exp. 0.

esu

2.56X10"
1.23 X 102'

2.15X10»
2.39X 10~'

Theo (
1.06
0.88
1.54
1.57

p(&)
Exp.

j (0)

90
50
85

104

Ag

(o.m)'

130
26

140
170

4 J. R. Klauder and J. E. Kunzler, in The Fermi SNrface, edited
by W. A. Harrison and M. 3. Webb (John Wiley R Sons, Inc.,
New York, 1960), p. 125.

by Klauder and Kunzler4 for the L001] current axis.
The "rabbit ears" which occur experimentally for the
$001] axis have not been accounted for theoretically.
The largest values of 8 are obtained from poles for which
the "rabbit ears" are smallest.

The large value of 8 found for the L111] current
directions can be accounted for from the calculation of
the magnetoresistance for this current axis. The result
is similar to Fig. 10 calculated for the L001] pole with
J parallel to L110]and shows the resistance continuing
to rise beyond the point where closed hole orbits first
occur. This is indicated by the change of slope in Fig. 10.

The magnetoresistance curves calculated theoreti-
cally for field directions near the f001] pole were com-
pared with the experimental measurements. In par-
ticular, a relaxation time was calculated from the
residual resistance measurement for the L310] sample
of copper. This was found to be r=tiso/tres=1. 2X10 "
sec using the measured value of 0-. The conductivity
of the L310] sample at helium temperature was meas-
ured as 2.56X10"esu which is consistent with a room
temperature value listed in tables of 5.7)&10'~ esu for
copper and gives a ratio of 4500 for this sample. Using
the above value of the relaxation time, the calculated
magnetoresistance at the peaks near L001] should be
130 times the zero-field resistance,

(A &/( m)n'= 130) .

The experimentally measured value of the ratio p(H)/
p(0) for the peak was 90. These results along with those
from the other three axes for which the open orbits
have been. analyzed and the function $ explicitly calcu-
lated are listed in Table I. We have listed the experi-
mental value of the conductivity at helium tempera-
ture, the experimental value of the ratio p(H)/p(0),
the calculated value of $, and the calculated value of
A ]/(nris)' at the peaks.

In three cases the value of (A $/(nm)') is higher than
the experimental value of p (H)/p (0) while for the t 210]
current axis (A $/(nm)') is lower than the experimental
value p(H)/p(0) by a factor of 2. The low experimental



A530 COLEMAN, FUNES, PLASKETT, AND TAPP

on this anisotropy in the relaxation time might be
obtained by analyzing data obtained from samples with
the same current axis containing different impurities.
More accurate experimental measurements and more
detailed analysis will be necessary, however, before any
definite information can be obtained.

Slow rotation diagrams were run for a number of
samples in order to pick up changes in slope in the
resistance peaks such as predicted for (310) in copper
(Fig. 7). A well-defined change was not observed in
this sample, although a number of other samples did
show a definite change in slope such as the experimental
curve for silver shown in Fig. 11..

[r is ]

I I

0 DS ~I ~I5

(b)

FIG. 14. Experimental points obtained by Bohm and Easterling
(Ref. 2) for copper and silver using ultrasonic attenuation. (a)
Drawing indicates projected neck thickness for copper in the
[0017 dirctioens; (b) drawing indicates projected neck thickness
for silver in the [0017 direction.

value of p(H)/p(0) for the $210] axis relative to the
others is due to the lower value of the conductivity and
the fact that $ has a smaller value for this current axis.
The low value of f is due to the fact that the open
orbits for the 1210] current axis have longer periods
(12 quarter-circles) than those found for the other
current axes which were analyzed. This can be seen by
comparing the orbits in Fig. 3 with the other orbits
pictured in Figs. 1 to 5.

These results depend on the measurement of the
zero-field potential drop across the sample, and this
was measured. with an accuracy of &1&(10 V which
corresponds to one division on the fine dial of the
potentiometer. If the potential drop were in error by
a factor fX(potential drop), then the experimental
value of p(H)/p(0) would be multiplied by 1/f and
the theoretical value by 1/ f'. For example, the potential
drop in zero field for the [310]axis was 0.025&0.01 yV,
and the maximum values of the factors 1/f and 1/f'
couM therefore change the numbers in Table I on the
order of 50%. Within this uncertainty the experimental
and theoretical values are in fair agreement.

The theoretical results have been calculated using
the assumption of an isotropic relaxation time. As
discussed by Ziman, ' this is probably not true and one
might expect a considerable variation between, say,
the belly and the neck of the Fermi surface. Information

' J. M. Ziman, Phys. Rev. 121, 1320 (1961).

COMPARISON OF MAGNETORESISTANCE WITH
MAGNETOACOUSTIC ATTENUATION

Bohm and Easterling' have made very complete
measurements of the Fermi surface in all three noble
metals using magnetoacoustic attenuation. In Fig. 14
we reproduce their results (in units of b/2) for the neck
shape in. the (110) plane for copper and silver. Two
tangents have been drawn to the necks which are traces
of (001) planes, i.e., they have the equations s=&h
and define the neck height in the $001] direction. As
we have seen, the magnetoresistance measurements for
H near the L001] Pole give 2hlpst]=0. 21 for Cu and
0.19 for Ag which are in good agreement with 0.205
and 0.17, respectively, calculated using the data of
Bohm and Easterling.

From Bohm and Easterling's data on Cu, it is clear
that the open-orbit regions about the L001] pole will
be limited by the curvature of the Fermi surface rather
than by the neck diameter in the (111) plane. The
importance of this curvature can be seen by calculating
the neck thickness in the $112]direction assuming the
open orbits to be limited only by the neck in the (111)
plane. This gives 0.26 as calculated in a previous paper'
which is considerably less than the value of 0.30 ob-
tained by Bohm and Easterling. In the case of silver,
the curvature does not seem to be as important in
limiting the open orbit regions.

The magnetoresistance measurements with B near
the L110] pole give the thickness of the necks in the
$110] direction as 0.29 for Cu and 0.23 for Ag. The
acoustic attenuation measurements of Bohm and
Easterling give 0.30 for Cu and, assuming a circular
neck, 0.22 for Ag (this is their measurement in the
$112]direction).
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