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Paramagnetism of Liquid Helium Three
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The object of the present paper is the elaboration of a theoretical model describing the paramagnetic
properties of liquid He3 throughout the region of existence of this phase. The model is based on a molecular
Geld theoretical type of approach. The ratios of the actual paramagnetic susceptibility of liquid He' to the
one it would have if it were an ideal paramagnet are predicted to be representable through a unique func-
tion depending on the reduced temperature variable. The latter contains the characteristic temperature of
the nuclear spin system, which, at the present time, is only available empirically through the susceptibility
ratio data. In the susceptibility ratio-reduced temperature representation all susceptibility ratios of liquid
He' fall on a single curve. This theoretical ratio curve describes very closely the experimental ratios, avail-
able through the work of the Duke University investigators, up to values of the reduced temperature of
0.90—1.0. Beyond this range the experimental susceptibility ratios become systematically larger than the
calculated ratios, the differences between them being small. Quantitative arguments will be advanced which
appear to explain satisfactorily these discrepancies and to indicate that the theory should be valid through-
out the whole range of the natural reduced temperature variable. The spin entropy-spin susceptibility rela-
tion, established and used previously, yields, with the theoretical paramagnetism model, rigorous lower
limits of the entropy, heat capacity and expansion coeKcient of the liquid throughout the region of existence
of this phase. With the recent extension of the melting pressure data to quite low temperatures by the
University of Illinois investigators, the rigorous spin entropy of the liquid along the melting line allows one
to estimate the entropy of the solid along the melting line and at low temperatures. Here the solid entropy
turns out to be less than R ln2, per mole, yielding the temperature of its heat capacity anomaly to be
below one hundredth of a degree Kelvin. The discussion of the liquid He'-solid Hes equilibrium, on the basis
of the above results, seems to render questionable any analysis of the thermal properties of the solid which
ignores the existence of its nuclear spin system even at medium temperatures. Finally, a semiquantitative
description of the entropy-pressure diagram of He discloses various singular characteristics of the liquid
entropy along the melting line in its pressure dependence, as well as the peculiar features of the solid entropy
at and around the melting pressure anomaly.

I. INTRODUCTION
' "N previous work' on the properties of liquid He' we

~- have attempted to develop a statistical thermo-
dynamic formalism of its nuclear spin system based on
the spin entropy-spin susceptibility theorem estab-
lished for a class of paramagnetics. In the various char-
acterizations of these paramagnetics we have empha-
sized" that the particular model-like description of
these systems was strictly auxiliary for the proof of the
theorem. This, of course, is as it should be to insure the
statistical thermodynamic nature of the spin entropy-
spin-susceptibility relation in the specified systems at
hand. Stated more precisely, the spin entropy-suscep-
tibility relation being of sufFicient generality, the
formalism of the susceptibility law could be dispensed
with essentially, as long as it was possible to verify that
the conditions of validity of the above relation were
safely satisfied.

Recent extensive and systematic experimental in-
vestigations'4 of the nuclear paramagnetic suscepti-
bility of liquid He' over wide temperature and pressure
ranges opened up new ways of gaining a deeper insight
into the underlying formalism of the nuclear spin

system within the limitations of a phenomenological
approach. The close approximation provided by the
antisymmetric ideal fIuid susceptibility formula, with
an empirical parameter, to the description of the ob-
served saturated liquid He' susceptibility law, ' as well
as the fair approximation with which the theoretical
formula, always with an empirical parameter, appeared
to represent the first compressed liquid He' suscepti-
bility data, seemed to justify the use of the antisym-
metric Quid formalism with the empirical parameter as
an analytical tool. The strictly approximate and in-
direct character of the above formalism has been always
emphasized" and the empirical parameter Ts(P), the
characteristic temperature of the nuclear spin system, '
offered alone a challenging problem through its nu-
merical values as well as through its remarkable be-
havior as a function of the macroscopic coordinates
such as the pressure p or volume V. The above approxi-
mate analytical formalism led first to recognize the
large numerical value of the partial volume expansion
coefficient arising with the spin system of saturated
liquid He', as well as to a semiquantitative description
of the partial thermal excitations and volume anomaly

' L. Goldstein, Phys. Rev. 96, 1455 (1954); Ann. Phys. (N. Y.)
15, 141 (1961).

2 L. Goldstein, Ann. Phys. (N. Y.) 8, 390 (1959).
3A. C. Anderson, W. Reese, and J. C. Wheatley, Phys. Rev.

127, 671 (1962).
4 A. L. Thomson, H. Meyer, and E. D. Adams, Phys. Rev. 128,

509 (1962).

' W M. Fairbank, W. B. Ard, and G. K. Walters, Phys. Rev.
95, 566 (1954).

'W. M. Fairbank and G. K. Walters, in Proceedings of the
Symposium on Liquid and Solid He' (Ohio State University Press,
Columbus, Ohio, 1958), p. 1 of the Supplement.

7 L. Goldstein and M. Goldstein, J.Chem. Phys. 18, 53$ (1950).
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of the liquid over essentially the whole region of exist-
ence of this phase. '

In the present paper we will derive a phenomeno-
logical model for the observed susceptibility law of
liquid He' valid throughout the extension of its phase
diagram, the phase transformation lines included. The
model thus predicts the universal character of the sus-
ceptibility ratio formula according to which the latter
depends uniquely on the reduced temperature r(p) or
pT/Ts(p)j, Ts(p) being the empirically determined
parameter of the theory. The susceptibility ratio
$7t(T,p)/Xp(T, p) j, at temperature T and pressure p,
with z the actual susceptibility and Xo the asymptotic
ideal susceptibility which the system would have if it
were a Curie-Langevin paramagnet, being a unique
function of r(p), all susceptibility ratio values of liquid
He' over the whole region of existence of its phase
diagram must fall on a single curve in the L7t/~o, r(p)]
representative plane.

Within the limitations of the phenomenological sus-
ceptibility-ratio law, the spin entropy-spin suscepti-
bility relation defines rigorously all the partial thermal
properties of the liquid arising with its nuclear spin
system. The formalism is then applied to a new evalua-
tion of the partial spin isobaric volume expansion co-
eScients of the liquid, which should approximate
closely the total volume expansion coe%cients at very
low temperatures and at high pressures, the melting
pressure included. There appears to be fair agreement
between the theoretical and the recent indirect experi-
mental determinations of the isobaric expansion coeK-
cient of the liquid' at very low temperatures and high
pressures.

To within the limitations of the above formalism,
and the approximations of the empirical T,(p) function4
and of the melting pressure line pttr(T) extended' down
to about 0.03'K, the analysis of the liquid-solid trans-
formation yields indications on a substantial deficit of
the entropy of the solid along the phase transition line
and at T&0.05'K from its maximum value of R ln2,
per mole. This suggests that the spectacular heat ca-
pacity anomalies of solid He' might appear at tempera-
tures T 0.010—0.005'K, a region which remained in-
accessible to experimentation so far.

%ith the calculated liquid and solid lower limit en-
tropies, we also discuss various aspects of the problem
of the equilibrium between the thermally anomalous
liquid He' and solid He'.

The paper ends with a semiquantitative discussion of
the entropy-pressure diagram of the dense phases of
He'. The singular character of the two phases along the
phase separation line emerges here again, with addi-

' L. Goldstein, Phys. Rev. 102, 1205 (1956); 112, 1465 and 1483
(1958); 117, 375 (1960); Ann. Phys. (N. Y.) 14, '77 (1961).

~ A. C. Anderson, W. Reese, and J. C. Wheatley, Phys. Rev.
130, 495, 1.644 (1963).I wish to thank the members of this Uni-
versity of Illinois group for advance communication of their recent
experimental data included in two preprints.

tional aspects of the thermal behavior of the solid at
low temperatures.

2. THEORY OF THE NUCLEAR PARAMAGNETIC
SUSCEPTIBILITY OF LIQUID He'

The nuclear paramagnetism of liquid He' throughout
the whole range of the variables of state of this phase
renders this liquid similar to a Weiss type of para-
magnetic system. "The latter is a nonideal paramagnet
as a consequence of the interactions between the carriers
Of the elementary magnetic dipoles. Consider the mag-
netic equation of state in the form

M= f(H/T, V), (1)

giving the ensemble average of the magnetic moment
3f, of the system of ideal elementary magnets occupying
volume V, induced by the application of a uniform
constant magnetic field of strength II, at the tempera-
ture T. The latter two variables of state appear neces-
sarily through the ratio (H/T) as imposed by the second
law of thermodynamics as first shown by Langevin. "
The generalization of the magnetic equation of state (1)
to nonideal paramagnetic systems postulated by
Weiss" consists in conserving the formal structure of the
function f$(H/T), V] and replacing the applied external
field B by an effective field acting within the system,

H,«= IX—h (2)

where h, the so-called molecular field, is a measure of
the opposition developed within the system to the
ordering effect of the applied external field. The molecu-
lar field h is assumed to arise with the interactions
within the system. For magnetic dipoles of strength p,
the classical magnetic equation of state with H,«re-
placing H on the right-hand side of (1), there being X
dipoles in volume V, is

M/Mp= cobol(pH tt/kT) —(kT/pH. ff) (3)
~o= &P,

or the Langevin function, " Mo being the saturation
moment and k Boltzmann's constant. On assuming"
that the molecular field h„ is of the form

h =eI
=eM/V,

where e is an empirical constant and I the magnetiza-
tion, or the magnetic moment per unit volume produced
by the applied uniform field of strength H, the effective
field expression (2) with (4) and the equation of state
(3) yield two equations for the two unknowns, H,«and
3f. In the limit of pII,««kT, one obtains at once the
susceptibility law

M/HV =x(T,V)
= sr(1Vp'/Vk)(T+ srnNp'/Vk) ' (5)
=C/(T+ 0),

' P. Weiss, J. Phys. Radium, 6, 661 (1907)."P.Langevin, Ann, Chim. Phys. 5, 70 (1905).
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with the Curie constant

C s Xtt'/ Vk,

mutual interparticle couplings is defined by

0=E,/2k, {1O)
and where

O~= nC,

is a characteristic temperature of the system arising
with the interactions in the nonideal paramagnet at
hand. The main feature of the preceding modification
of the ideal paramagnetic equation of state consists in
the formal preservation of the latter equation of state
in spite of the introduction of an additional term in the
response of the nonideal system to the magnetization
process. This additional term arises with the nonideal
character of the paramagnetic system; that is, with
interactions within the system.

For an ideal collection of particles of angular mo-
mentum sA, of gyromagnetic ratio g, with the natural
unit pp of the magnetic dipole strength, the magnetic
equation of state becomes, instead of (3'),

M/Ms ——(2s+ 1/2s) cothD2s+ 1/2s) (gstt ~/k T)$
—(1/2s) cothL(1/2s) (gsttvP/kT) j, (7)

Mp= %gap,

as first shown by Brillouin. "The latter can be again
modified to represent a nonideal paramagnet within the
limitations of the molecular field hypothesis. ' In the
limit of low fields,

ttpH«kT,

Eq. (7) yields the quantum-mechanical susceptibility
formula,

lim x(T, V) =X(gtt, )'(s(s+1)/3VkT)
IgH((kT

=1Vtt.n'/3 Vk T,

ts tf (gtt) s(s+1) ~

While for a Keiss paramagnet, and in the limit of
validity of (5), one again recovers the latter, with the
Curie constant

C,=cVtt, tts/3 Vk,
and

0,=nC, .

The molecular Geld approach manifests itself in-
directly on the quantum-mechanical treatment of the
paramagnetism of a collection of bound, and hence in-
teracting, particles, within the approximations of the
Heitler-London description of such a system. The
latter corresponds to the Heisenberg model of the
system. "' At low fields and at sufficiently high tem-
peratures the Weiss law (5) is obtained, provided that
the characteristic temperature 0" arising with the

"L.Brillouin, J. Phys .Radium 8, 74 (1927).
"W. Heisenberg, Z. Physik, 49, 619 (1928). W. Pauli, in

I-e Magwetisrrte, Proceedertgs of the Sixth Solvay Cortgress ow Physics,
Brlxelles, 1930 (Gauthiers-Viiiars, Paris, 1932), pp. 17$-238.

where E is the total exchange energy of one of the
atoms with all the other atoms of the system. Kith the
finite range of the exchange energy of pairs of atoms,
(E,t), the total exchange energy (g; E,,;) or E, refers
to the sum of pair exchange energies of neighbors. Pro-
vided that E, be positive, paramagnetic behavior will

be assured, since the energy spectrum of the above
model contains a term

E(s)= s'E,/X,

62',~@II7 (12)

the e s being the individual energies in absence of the
field. Their distribution functions are, respectively, g;
being the density of the levels e;,

n"=g'fe pL +('"/kT)3+1} '. (13)

S being the total number of atoms of the system, and s
the total spin quantum number of the states in question;
that is, the number of those spins of the system which
are available for magnetization upon application of an
external homogeneous magnetic field. Stated in other
terms, the contribution to the magnetic moment in-
duced by application of an external field in the above
states will be proportional to s. In the ground state,
then, s —+ 0; there is no spin angular momentum, nor
a permanent magnetic moment. Formally, the energy
term (11) resembles the molecular field energy of the
Weiss model, where the field k, defined by (4), leads
to an energy proportional to (Is), the square of the
magnetization.

It should be noted that the quantum-mechanical
approximation formalism, "' while yielding the low
field susceptibility formula (5) with C, and O~, defined

by (9), has to be quali6ed concerning its validity at
T&Q~. However, in both the classical and quantum-
mechanical approaches toward the theory of nonideal
paramagnetic systems, the formal structure of the
theory of ideal paramagnetics is preserved. The parame-
ter 0, a characteristic temperature of the nonideal
system, is some kind of a measure of the lack of ideality
as manifested through the magnetic behavior of the
paramagnetic system at hand.

The preceding discussion suggests that a formalism
preserving approach in the theory of the magnetic
properties of liquid He', a system of bound atoms of
nuclear spin angular momentum k/2, might be useful
for a description of the nuclear paramagnetism of this
liquid. Here, the starting formalism is that of the limit-
ing asymptotic ideal antisymmetric fluid of atoms of
spin —,

' and elementary dipole moment p. In presence of
a constant and uniform magnetic field of strength H,
the ideal system breaks up into two subsystems with
the individual energies



PARAMAGNETISM OF LIQUID HELIUM THREE

M =/ip, (n;——N~+) . (15)

If M(T, V,H) is the magnetic moment induced in this
system, its magnetic energy is

—MH=Q P( pH—)n +/IHm+j, (14)
or,

the nonideality is expressed through the gneiss relations,
Eqs. (2) and (4). The molecular field approximation is
equivalent to the replacing of Hin '(20) by H, ff or
(II—k ), by Eq. (2). In the limit of pH, «&kT, one
obtains

The parameter n(T, V) or a(T,p) or the negative Gibbs
free energy per particle in units of kT, is de6ned through
the total number of atoms of the system, that is

N=Q'(I +g'+)

With e; being the free particle kinetic energies, expressed
in terms of the linear momenta p and mass m, the dif-
ferential distribution functions, in volume V, become

dn (p, T)=dg(p){ . }p—'
=4n. (V/k')p'dp{ }p ', (1/)

lim (M/IVy) = (pH. /kT)[ —F'( )/F( )j
PIIef f((kT

= [(pH/kT) /irIM—/Vk Tj
X[—F'( )/F ( )],

or the nonideal paramagnetic susceptibility law

M/HV= x . ;g(T, V)

C:L—F'(~)/F (~)]

T+o".L—F'(~)/F (~)j

(22)

(23)

where the curly brackets are the same as in (13) with
e; replaced by p'/2m. Finally, replacing the summations

by integrations over p, one has, with (14),

which is the molecular 6eld generalization of the ideal
susceptibility formula associated with (21), where

by (9),

M(T, V,H)
Ci= Np'/Vk; 0;=nC;. (24)

= (V/k') (2prmk T)' 'p

X[F(~—(pH/kT)) —F(~+ (pH/kT)) j
(18)

2
" x'~'dx

F(s)=
gn, e'+*+I

Also, with (1/) and (15), one has

It is of some interest to consider briefly the various
limits of (23). Since in the ideal Fermi gas formalism

(23a)

where To is the degeneracy temperature, it is seen that
at TOTO,

and, 6nally,

N= (V/k') (2prmkT)'"

X [F(n—(AH/kT))+F(n+ (/rH/kT)) j, (19) which is the limiting Pauli susceptibility" corrected by
the Weiss temperature 0*,. At high temperatures

M(T, V,H) F (cr (pH/kT)) —F—(n+ (pH/kT))
(20)

Np F(a—(AH/kT))+F(rr+(pH/kT))

a formula 6rst derived by Stoner, " using a somewhat
different approach.

Kith the well-known behavior of the Ii function,
(20) is easily seen to reduce to the Brillouin function
for spin —, particles at high temperatures. In the limit
of low fields, irH/kT«I, one recovers the moment
equation

M(T, V,H)
lim — = (pH/k T)[—F'(a)/F (a)j, (21)

I a((I r Prp,

F'(n) = dF/dn.

Our main object now is the study of the modi6cations
of the exact moment equation of an ideal antisymmetric
collection of particles of spin $ and actual magnetic
moment y. It is instructive to consider first the para-
magnetism of nonideal antisymmetric systems, where

'4 F. C. Stoner, Proc. Roy. Soc. (London) A165, 372 (1938).

lim [—F'(n)/F(n))~ 1,

and the limiting Weiss paramagnetic susceptibility (5)
is recovered. As a consequence of the molecular 6eld
assumption (2), in which the nonideality of the system
tends to resist the ordering effect of the external 6eld,
the nonideality superposes itself to the effect of sta-
tistics which imposes a type of order opposite to that
of the applied field. The susceptibility (23) is thus
always less than the limiting ideal Fermi gas suscepti-
bility. This result is, of course, similar qualitatively to
the one expressed by (5), whereby the susceptibility of
the limiting ideal paramagnetic system is reduced by
the molecular field correction (2), and the formalism of
the initial limiting system is qualitatively preserved.

As far as liquid He' is concerned, the observations
rule out the susceptibility behavior as expressed by
(23). This shows that the classical modifications of the
molecular 6eld approach are not valid here, in this
eminently characteristic quantum system. It is, how-
ever, possible to make use of a phenomenological ap-

"W. Pauli, Jr., Z. Physik 41, 81 (1927).
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proach which is more conform to the approximate
quantum-mechanical picture of the molecular Geld

method. The latter has no direct connection with the
original Weiss assumption, Eq. (2), but refers to the
modiGcation of the energy spectrum of the system
arising with the interactions within the system. This
approach yields thus a new Gibbs free energy per atom
or a new efIective parameter n, ff replacing the limiting
ideal antisymmetric Quid parameter n in the para-
magnetic moment equation (20). Or, since

lim & =-,'(C1/T)r
T small

,'C;/T—

which, with (21), (23a), and (30), requires that

&e& &) Tm& Ta)

(31)

(32)

nuclear paramagnetic susceptibilities, have been ad-
vanced by us previously' on the basis of simplifying
assumptions on the interactions within the system. In
terms of (28), one also has

n= G,g/k—T,

and the molecular Geld correction being n,
&eff = ff+&m,

= —(G;g/kT) —(G /kT),

(26)

(27)

where, in T and To, the macroscopic volume depend-
ence may be changed into pressure dependence with
the help of the equation of state. At high temperatures, ,

fx ff) 1 and the expansion of ( P'/P) —proceeds accord-
ing to ascending powers of (r„"),or,

ot=u(r), r= T/To,

remain unchanged in

(28a)

where G corresponds to the average corrective free
energy per atom. At low enough temperatures where
the temperature-entropy product term of the free
energy is small, and where in passing from n to n,«, the
pV product is kept constant, the modification of G;q
will occur essentially in its energy term. In the present
case, the main effect to be expected in G may reasona-
bly be attributed to the limiting effect of the atoms in
the nonideal system associated with an overall depres-
sion of the energy. This results, G being negative, in
raising o.,ff over and above the value of the limiting
ideal parameter n. In order for the preceding modiGca-
tion to satisfy the condition of preserving the formalism
of the magnetic properties of the starting ideal system,
it is necessary that the functional relation

lim X~= (C, /T)(1 —vr„—"'+ )
T large

(33)

where v is a numerical coefficient.
It should be noted here that the preceding phe-

nomenological model imposes no limits on the numerical
values of the characteristic temperatures T, or on
their dependence on the variables of state. The in-
equality (32) is conform to the observations and the
ensuing empirical determinations of the T (U) or
T (p) functions. It is seen on (31) and (5) that the
molecular field parameters T or 0" are defined through
the Gnite paramagnetic susceptibilities in the limit of
the absolute zero. The classical approach leading to
(25) contains both characteristic temperatures To and
e~

It will be observed that the low Geld nonideal para-
magnetic model considered here is such that its sus-
ceptibility satisfies the inequalities

O'eff —O' T~ r =T/T, (28b) X;g(X &Xo, (34)
where T represents the new characteristic temperature
of the system defined through the molecular Geld type
of average of the nonideal paramagnetic behavior of the
actual system. In the limit of low fields„one obtains
with (21) and (27),

lim 3f(T,V,H)/VH=X (T, V)
pHl kT((1

= (C,/T)l —j'(, )/~(, , )].
(29)

At low temperatures and within the ideal antisymmetric
Quid formalism

where X;~ refers to the susceptibilitv of the limiting
ideal antisymmetric Quid of the same density as the
actual Quid, and Xo stands for the asymptotic Langevin-
Brillouin susceptibility, Eq. (8), which the actual fluid
would exhibit if it were an ideal classical paramagnetic
system. The inequalities (34) are conform to the ob-
servations'4' throughout the region of the phase dia-
gram of He' reserved to the liquid phase and explored
so fal.

The description of the above nonideal paramagnetic
system may be modiGed through the use of the sus-
ceptibility ratios

lim (—F'/J )=$ (—n.ff)
—'

T small

=EL—~+I~-Ij ', (30)

since ff or ( G /kT) is always p—ositive if the correc-
tive term G is determined by lowering the energy in
correcting for the nonideality. Plausible arguments for
this situation, required by the observed liquid He'

= x„T/C,

y standing for V or p, and C being the appropriate
Curie constant associated with the actual system. Since
the susceptibility ratio defines the spin entropy, ' the
latter together with the empirically obtained functiona l
relations T (V) or T (p) allows a rigorous derivation
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of the partial thermal properties of liquid He' arising
with its nuclear spin system. ' 8

The main characteristic of the preceding model re-
sembles that of the Weiss model of classical nonideal
paramagnets. At low magnetic field strengths, the
temperature dependence of the ideal Langevin para-
magnetic susceptibility is modi6ed, in the nonideal
system, by substitution of the eRective temperature
(T+0) for the temperature T, in the susceptibility
law. The over-all formalism preserving feature of the
molecular field-theoretic model is an important element
of this approach. In our problem posed by liquid He',
the ideal asymptotic system is that of a Fermi gas of
spin —, point atoms with the eRective el.ementary dipole
moment p,.Through the quantum-mechanical formalism
of the molecular 6eld approach, it is possible then to
modify the ideal Quid formalism, preserving its over-all
structure to a degree, so as to be adapted to the nonideal
paramagnetic system. This is achieved formally by re-
placing the ideal free energy by the one including
formally the average quantum-mechanical molecular
6eld energy term. This is then equivalent to replacing
the natural reduced temperature variable of the ideal
system, T/Ts, Ts being the ideal gas degeneracy tem-
perature, by the effective reduced temperature T/T„(p),
where T (p) is the empirically derived characteristic
temperature of the system. This phenomenological pro-
cedure preserves the formal structure of the ideal Quid

paramagnetic susceptibility theory. Inasmuch as T (p)
can be completely different from To, referring to the
ideal Quid of the same density as the actual system, it is
seen that the possibility for a perturbation theoretical
scheme allowing to derive T from To is rather remote.
The preceding approach toward the nonideal para-
magnetic behavior of liquid He' does not seem to
impose clear limitations on the validity of the theory
as far as the length of the interval of the eRective re-
duced temperature $T/T (p)7 is concerned.

We turn now to the comparison of the phenomeno-
logical theory of the nonideal paramagnetic suscepti-
bilities obtained above with the recent detailed
measurements. '4

through
~.rr(T,p) = fLr (p)7= fP'/Ts(p) 7 (37)

is a unique function of the reduced tamperature r(p)
or T/Ts(p) throughout the region of existence of the
liquid phase of Hc', fbis function is. identical with the

3. COMPARISON OF THE THEORETICAL AND
EXPERIMENTAL PARAMAGNETIC

PROPERTIES OF LIQUID He'

According to the phenomenological theory of the
nonideal paramagnetism of systems like liquid He'
formulated above, the susceptibility ratio law

x(T p)/xo(T p) = I"r~.«(T p)7//I'r~—.«(»p)7
(36)= —~'I r(p)7/~Lr(p)7,

one occurring in the ideal spin one-half antisymmetric
fluid formalism, with Ts (p) being though an empirically
determined characteristic temperature of the spin
system with its characteristic pressure dependence to be
determined also by observations, at the present phe-
nomenological stage of the theory. We shall henceforth
replace the subscript m used in the preceding section
by the subscript zero.

Stated in other terms, the susceptibility ratio law

(36) requires that, when represented as a function of the
reduced temperature r(p) or $T/Ts(p)7, all suscepti-
bility ratio values in liquid He' must fall on a single or
universal curve. The latter is associated with the collec-
tion of ideal Fermi systems of particles of spin angular
momentum 0/2. Various limiting series representations
of the susceptibilitv ratio have been given previously
by Stoner. "The exact numerical evaluation of the sus-

ceptibility ratio law over an extended range of r has
been performed in this Laboratory by Jordan and
Crandall" using electronic computers. The suscepti-
bility ratio (36) has been given in graphical form by
us, ' ' to within the factor (ln2), up to values of r equal
to 5. Our task is now a close study of the experimental
evidence for or against the formula (36).

As mentioned in the Introduction, there are, at the
present time, two important series of liquid He nuclear
magnetic susceptibility determinations originating at
the University of Illinois' and Duke University. 4 The
Illinois group, guided by Dr. Wheatley, with its own

technique of measurements of the various thermal
properties of liquid He' down to temperatures of the
order of 0.01—0.03'K, depending on the pressure applied
on the liquid, limited the susceptibility determinations
to temperatures T&0.10'K. This low temperature
range was supplemented by susceptibility determina-
tions at one or two higher solitary temperatures for
purposes of an experimental normalization procedure.
The Duke University group, led by Dr. Meyer, explored
the paramagnetic behavior of liquid He' throughout the
temperature range 0.05—1.0'K, in a systematic way.
The pressure interval investigated by both groups of
investigators extended up to or somewhat above the
minimum of the melting pressure. For purposes of
judging the accuracy with which the susceptibility law

(36) is capable of describing the magnetic properties of
liquid He' over the allowed range of variations of its
thermodynamic state coordinates, the Illinois and Duke
University data shouM have been combined into a
single set as representing, at the present time, the ob-
served magnetic properties of liquid He'. This is, how-

ever, excluded for the time being because of as yet un-

explained numerical differences between the two sets of
experimental results. The Ts(p) values of the Illinois

"E.C. Stoner, Proc. Leeds Phil. Lit. Soc. Sci. Sec. 3, Part IV,
191 (1936) and Part VII, 403 (1938); J. McDougall and E. C.
Stoner, Phil. Trans. Roy. Soc. London 237, 67 (1938).

"Th. L. Jordan, Jr., and K. R. Crandall (unpublished). .
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group are consistently larger than those of the Duke
University workers at the lower and medium pressures.
At the higher pressures these characteristic tempera-
tures seem to agree better. As a result, the functional
dependence of To on the pressure seems to be con-
siderably stronger with the Illinois than with the Duke
University data. An explanation of these differences
may become possible in the future, when the two sets
of results mav be combined and, in addition, these com-
bined data may be supplemented by susceptibility de-
terminations in the less accessible regions, as well as
with those in other regions of the phase diagram of
liquid He' which remained unexplored so far.

For our immediate purposes, the systematic Duke
University magnetic measurements, with their dense
coverage of the extended temperature interval, recom-
mended themselves for their analysis in connection
with the susceptibility law (36). With the option of
one set of data, however more complete than the other,
one automatically increases the degree of the limitations
on the validity of the conclusions Ko be drawn from the
confrontation of the theoretical paramagnetic behavior
and the chosen set of measurements.

The collection of the important data of the Duke
workers4 is included in their Table I. This gives
Lx(T,p)/TXO(T, p)j or Ly(T,p)/C$, at the pressures of
0.5, 6.8, 13.6, 20.5, 30.5 and 30.7 atm, and at a series of
temperatures from 1.0'K downward, with the extrapo-
lated limits of the above property at T —+ 0. From these
limits one obtains, with (31), the characteristic tem-
peratures To(p), denoted by T in (31). It is to be
noted that the tabulated values of (y/C), given by the
Duke workers, result from smoothing their own experi-
mentally determined (x/C) values.

In the present studies the susceptibility ratios (X/Xo)
or (xT/C) are of cardinal interest. These ratios are
essentially equivalent to the tabulated data of the Duke
workers, being the product of the temperature T and
the tabulated numbers. Actually, the table of suscepti-
bility ratios would carry larger relative errors, possibly
the double of the relative errors of the susceptibilities
themselves. Disregarding the highest pressure data of
30.7 atm which are very close to the 30.5 atm data, the
five other isobaric susceptibility ratios are described by
a collection of some eighty values, each given at sixteen
temperatures, omitting their vanishing values in the
limit of the absolute zero. The susceptibility ratios
Ly(T,p)/X, (T,p)$ along isobars have been determined
as a function of the temperature. In terms of the reduced
temperatures r(p), or LT/To(p)1, the temperatures of
the Duke4 table give rise to a number of nearly identical
r(p) values with the attendant very close susceptibility
ratios. These close agreements of the experimental sus-
ceptibility ratios at the nearly identical r(p) values are,
of course, conform to the predicted paramagnetic be-
havior of liquid He' according to the molecular field
type of theoretical model advanced in the present work.

In order to free the present discussion, as much as

possible, from involving subjective quantities associated
with the data, it seems necessary to omit essentially all
considerations relative to the estimated experimental
accuracies and precisions. The analysis in depth of
these aspects of the data should be, of course, always
an important part of any account and description of
experimental results and measurements. In the present
case, the experimental uncertainties refer to those of
the thermodynamic state coordinates, T and P, as well
as to those of the susceptibility determinations.
Actually, the problem of estimating the experimental
errors in the susceptibility determinations appears to be
more dificult than would be the case with techniques
whose principal goal would be the direct measurement
of this physical property. In the nuclear magnetic reso-
nance techniques used in the experimental investiga-
tions of the equilibrium magnetic properties of liquid
He', resonance frequencies or periods rather than am-
plitudes form the principal objects of measurements.
While the amplitudes are proportional to the induced
paramagnetic moments and, hence, define the suscepti-
bility of the sample investigated, the possibility of am-
plitude determinations appear to be more of a windfall,
of secondary and reduced interest, and the ultimate
physical property associated with the amplitudes is in-
extricably tied to the a priori inaccessible apparatus
constant. In order to extract from the measured ampli-
tudes the susceptibilities it is indispensable that the
apparatus constant be determined however indirectly
and with inevitable uncertainties, which, of course, will

always plague the numerical values of the so derived
susceptibilities. Using the early recognized approach'
of the liquid He' paramagnetic susceptibility toward
the asymptotic ideal Curie-Langevin limit, it is either
assumed at some higher temperature, T&1.0'K, that
the ideal limit has been reached, ' or one attempts to
justify the reaching of this limit, always from below,
within the limits of the reduced precision of the tech-
nique in this range of highly reduced "amplitudes" or
susceptibilities when compared with the low tempera-
ture amplitudes. In principle, the actual susceptibilities
never reach their asymptotic ideal limit, so that, the
above "normalization" procedure can never be justified
rigorously. It is thus seen that the limitations inherent
in the nuclear resonance techniques will raise difFiculties
for a detailed confrontation of the experimentally de-
rived susceptibilities with those evaluated with the phe-
nomenological theory of paramagnetism developed
above, whose validity does not seem to be limited to
finite intervals of the thermodynamic state coordinates
of liquid He'.

Various difhculties of physical character result from
the above normalization procedure. This requires that
at some medium temperature 7, and at T& T'„, the
susceptibilities should be ideal, within the precision of
the technique used. At T&T„, the susceptibilities are
manifestly nonideal. According to the theory of the
spin system, ' ' the normalization procedure is equiva-
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C.&0,
C=0,

o, „/0,
n, „=0,

T&T„
T& T„+.,
T& T„
T& T„+.

The heat capacity and expansion coefFicient jumps
would occur at the chosen T values. Heat capacity
measurements, " experimental investigations of the
equation of state" "of liquid He' and volume expansion
coefIIicients measurements" at medium temperatures
rule out the above "normalization" discontinuities.
Furthermore, in attributing ideal susceptibilities to the
liquid at T& T„, allowing this property to effectively
reach its upper limit of strictly asymptotic character,
should have the effect to accelerate its rate of increase
at the approaches of T and overestimate the actual
susceptibility. This modification of the susceptibilities
should become less effective at lower temperatures dif-
fering increasingly from T„.

The preceding discussion, while hardly exhaustive,
indicates that the conclusions to be drawn from a de-
tailed comparison of the theoretically obtained sus-
ceptibilities with the highly indirect experimental ones
will have to be strongly qualified because of the multiple
limitations of the data.

We give in our Table I the eighty experimental sus-
ceptibility ratios of the Duke University group, 4

grouped according to their reduced temperatures r(p)
or $T/Ts(p)j, the characteristic temperatures To(p)
being also empirical and having been derived by these
investigators from their own data. 4 The v values of the
table appear in the numerical tables of the calculated
ratios fx(T,p)/X, (T,p)7 or (XT/C), obtained by
Jordan and Crandall, 'r which accounts for their carrying
more decimal figures than warranted by any experi-
mentally determined reduced temperatures. The second
column gives the experimental susceptibility ratios, the
third contains the calculated ratios, the fourth represent
their relative deviations, the fifth and sixth give the
liquid temperatures and pressures. Clearly, part of this

"T.R. Roberts and S. G. Sydoriak, Phys. Rev. 98, 16'/2 (1955).
'9 E. R. Grilly and R. L. Mills, Ann. Phys. (N. Y.) 8, 1 (1959).
~ R. H. Sherman and F. J. Edeskuty, Ann. Phys. (N. Y.) 9,

522 (1960).
» E. C. Kerr and R. D, Taylor, Ann, Phys. (N, Y.) 20, 450

{1962).

lent to postulate that the temperature and pressure
derivatives of the spin entropy S,(T,p) vanish dis-
continuously at T„.Or, one should have

dS,/dT&0, T&T
dS,/dT= 0, T& T~,

and,
(BS./BP)p/0, T&T„,

(BS./r)P) r 0——, T& T„+,

or, in terms of the partial spin heat capacity and spin
volume expansion coefFicients,

Table I giving (yT/C). ,~. as a function of r in the range
0.0& v &5.0, is, of course, an exact table of the theoreti-
cal ratios. There are no data over r ranges at v &0.10,
and at ~&4.0. We also give in Fig. 1 the theoretical
susceptibility ratio curve at 0&v&4.0, together with
the eighty experimental points.

With all due reserve entailed by the various limita-
tions of both qualitative and quantitative character of
the data4 accepted for the present discussions, our
Table I and Fig. 1 seem to justify a first tentative con-
clusion. Namely, the theoretical susceptibility ratios
appear to fully describe the experimental situation over
a limited range of the reduced temperature v, extending
to about 0.90—1.0. At 7&1.0, the systematically larger
experimental ratios might suggest some positive correc-
tion term to the phenornenological theory. It is to be
noted that while systematic, these deviations might be
still compatible with the possibly large experimental
uncertainties. From the point of view of the molecular
field theoretical type of model, developed in the pre-
ceding section, its apparent breakdown at the rather
large values of 0.9—1.0 of the natural independent
variable of the problem, v, is rather unexpected, to say
the least. If the theory had broken down at much
smaller values of r, the breakdown would have sug-
gested an asymptotic validity only of the theory,
limited to a small range of v. In view of the tolerable
values of the systematic positive relative differences
between the experimental and calculated (xT/C)
values, at r&1.0, we would like to advance now a
possibly acceptable explanation of this discrepancy.

It may be justified at the present time, to adopt ten-
tatively a less conservative attitude in the comparison
of the experimental and theoretical susceptibility
ratios, provided one attributes the systematic deviations
at v&0.90—1.0, to the difIiculties arising with the over
all decreased experimental precisions at and above the
normalization temperature T, leading to the above-
mentioned inconsistencies arising with the adopted
normalization procedure. This tends to lift the values
of the susceptibilities derived from the experimentally
accessible resonance amplitudes over and above their
actual values. This lifting effect may reasonably be
expected to become more effective beyond the vertex of
susceptibility ratio curve where this curve has curva-
tures distinctly below its maximum curvature realized
at its vertex. The curvature, or the reciprocal of the
radius of curvature, is defined by

-=
~

d'/dT (XT/C) ~/$1+(d/dr(XT/C))'j"' (38)
P

or, in terms of the spin entropy-susceptibility relation
this may also be written as,

-= (~/~ )(C.( )/R) —(C-/R )/
P

r (ln2) [1+LC,/Rr (ln2) $'js '. (39)
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TABLE I. Experimental and theoretical nuclear susceptibility ratios of liquid He .

0.00
0.025
0.030
0.050
0.060
0.070
0.080
0.085
0.090
0.095
0.10465
0.12000
0.13932
0.13954
0.15517
0.16000
0.17442
0.18576
0.18605
0.20690
0.21333
0.23256
0.23256
0.24768
0.26667
0.27586
0.27907
0,30960
0.31008
0.32000
0.32558
0.34483
0.3/152
0.37209
0.37335
0.38760
0.41379
0.41861
0.42667
0.43344
0.46512
0.46512
0.48000
0.48276
0.49536
0.53333
0.54264
0.55172
0.55728

0.157
0.179
0.205
0.206
0.226
0.233
0.253
0.267
0.267
0.296
0.302
0.322
0.327
0.348
0.368
0.378
0.374
0.420
0.420
0.431
0.420
0.450
0.491
0.466
0.486
0.488
0.510
0.509
0.533
0.560
0.544
0.544
0.574
0.566
0.608
0.616
0.592
0.611
0.648

0.00
0.03748
0.04497
0.07484
0.08973
0.1046
0.1194
0.1267
0.1341
0.1414
0.1557
0.1777
0.2053
0.2056
0.2276
0.2343
0.2541
0.2694
0.2698
0.2973
0.3056
0.3299
0.3299
0.3485
0.3711
0.3817
0.3853
0.4190
0.4195
0.430
0.4358
0.4552
0.4809
0.4814
0.4825
0.4956
0.5184
0.5224
0.5291
0.5346
0.5592
0.5592
0.5702
0.5722
0.5811
0.6065
0.6124
0.6180
0.6214

1.27
0.56
0.00
0.00—0.88—0.43—0.40—0.75—1.12—0.34—1.32—2.48—0.92
0.00—0.82—1.06—2.94
0.24
0.00
0.23—3.81—1.11
2.04—3.22
0.62—1.64—157—2.55
0.75
4.29—2.76—2.76
0.70—1.06
4.44
1.62—3.38—1.15
4.17

0.045
0.04S
0.045
0.06
0.045
0.06
0.045
0.06
0.08
0.06
0.08
0.10
0.06
0.08
0.10
0.08
0.12
0.10
0.08
0.12
0.14
0.10
0.12
0.16
0.14
0.10
0.12
0.18
0.16
0.14
0.20
0.12
0.18
0.14
0.16
0.20
0.14
0.16
0.18

0.5
6.8

13.6
0.5

20.5
6.8

30.5
13.6
0.5

20.5
6.8
0.5

30.5
13.6
6.8

20.5
0.5

13.6
30.5
6.8
0.5

20.5
13.6
0.5
6.8

30.5
20.5
0.5
6.8

13.6
0.5

30.5
6.8

20.5
13.6
6.8

30.5
20.5
13.6

(
xT) xT exp-calc

C ], p C .,). exp ('K) (atm)

0.61920
0.62016
0.62069
0.68966
0.69767
0.69768
0.77519
0.80000
0.92879
0.93023
1.03448
1.06667
1.16279
1.16279
1.23839
1.33333
1.37931
1.39535
1.54799
1.55039
1.60000
1.62791
1.72414
1.8S759
1.86047
1.86667
1.93799
2.06897
2.13333
2.16718
2.32558
2.32558
2.41379
2.47678
2.66667
2.71318
2.75862
3.09598
3.10078
3.44828
3.87597
3.90
3.95
4.00
4.10
4.25
4.50
4.75
5.00

fx&

(c .„
0.680
0.638
0.657
0.690
0.675
0.702
0.704
0.768
0.825
0.804
0.831
0.852
0.834
0.870
0.908
0.910
0.908
0.924
0.950
0.912
0.948
0.966
0.955
0.978
0.984
0.987
0.960
0.984
0.992
0.994
1.0
0.990
0.994
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

(x~)
Eci,.„
0.6563
0.6568
0.657
0.6905
0.6941
0.6941
0.7256
0.7346
0.7750
0.7/54
0.8014
0.8084
0.8274
0.8274
0.8403
0.8544
0.8605
0.8626
0.8798
0.8801
0.8849
0.8875
0.8957
0.9056
0.9058
0.9063
0.9109
0.9185
0.9218
0.9235
0.9306
0.9306
0.9341
0.9364
0.9427
0.9441
0.9454
0.9536
0.9537
0.9602
0.9664
0.9667
0.9673
0.9679
0.9690
0.9706
0.9730
0.9750
0.9768

exp-calc
T

exp ( K)

3.53 0.20—2.98 0.16
0.00 0.18
0.00 0.20—2.81 0.18
1.14 0.30—3.12 0.20
4.30 0.30
6.06 0.30
3.61 0.40
3.61 0.30
5.16 0.40
0.84 0.50
4.94 0.30
7.49 0.40
6.15 0.50
5.18 0.40
6.60 0.60
7.37 0.50
3.51 0.40
6.65 0.60
8.18 0.70
6.18 0.50
7.40 0.60
7.93 0.80
8.21 0.70
5.10 0.50
6.71 0.60
7.06 0.80
7.04 0.70
6.90 1.00
5.96 0.60
6.04 0.70
6.40 0.80
5.70 1.00
5.60 0.70
5.50 0.80
4.60 1.00
4.60 0.80
4.00 1.00
3.40 1.00

p
(atm)

13.6
30.5
20.5
20.5
30.5
0.5

30.5
6.8

13.6
0.5

20.5
6.8
0.5

30.5
13.6
6.8

20.5
0.5

13.6
30.5
6.8
0.5

20.5
13.6
0.5
6.8

30.5
20.5
6.8

13.6
0.5

30.5
20.5
13.6
6.8

30.5
20.5
13.6
30.5
20.5
30.5

One finds that the vertex is at about r close to 0.47,
while the curvature did decrease by a factor of about
two at r close to 0.95. It should be noted that the graph
of Fig. 1 is somewhat deceptive because of the diferent
linear scales of the ordinate and abscissa. By Table I,
the normalization procedure is equivalent to force the
ratio curve to reach its "asymptote" at r values of
about 2 to 3, depending on the pressure. The asymp-
totic region of the experimental ratio curve is effectively
eliminated and its curvature made to drop discon-
tinuously to zero at the r value of about 2. This is a
likely explanation of the systematic though fairly small
excess values of the experimental susceptibility ratios
over the calculated ones at increasing r values beyond
g,bout r&0.90—1.,0. A verification of this tentative con-

elusion might be possible by renouncing the normaliza-
tion procedure used so far, and, above all, by increasing
the experimental precision so as to increase the normal-
ization temperature T' or the normalization r values.
In this way, the condition imposed upon the experi-
mental susceptibilities to become ideal at these elevated
T„or r„values will have a more moderate effect of de-
formation, and the possible agreement between the ex-
perimental and theoretical susceptibilities may extend
over a wider range of r values than realized at the
present time.

If this second less conservative attitude advanced
here is given up for the first more cautious one, then,
as stated already, within the various limitations men-
tioned in the course of this analysis, the theory appears,
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FIG. 1. The liquid He' theoreti-
cal paramagnetic susceptibility
ratio curve (yT/C), as a function
of the reduced temperature v., and
the experimental data obtained by
the Duke University investigators,
Ref. 4.
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to describe satisfactorily the data over the range
0&v&0.9. This in turn would justify the use of the
susceptibility formalism based on the molecular field
theoretical type approach as a basis for the theory of
the thermal properties of the nuclear spin system of
liquid Hes over a limited range of v, but throughout the
pressure range of existence of this phase. As mentioned,
the formalism is to be completed by the empirical con-
nection between the characteristic temperatures To of
the spin system and the pressure p.

To resume then, as required by the theory advanced
here, all susceptibility ratios X(T,p)/Xs(T, p), or
[z(T,p) T/C), of liquid He' fall on a unique curve when
represented as a function of the reduced temperature
r(p) or!„T/Ts(p)g, up to about r 0.9—1.0.

We turn now to various applications of the theory of
the spin system advanced here.

4. THERMAL PROPERTIES OF THE NUCLEAR
SPIN SYSTEM

By the spin-entropy-spin-susceptibility relation, the
entropy of the nuclear spin system is

~.(T,p)/l~= (i»)l x(T,p)/x (T,p)3, (4o)

or, since the right-hand side depends only on the re-
duced temperature r(p), the spin entropy S,(T,p) is
also a function of this natural variable. We have used
this property of S previously' on explicitly assuming
that the ideal antisymmetric Quid formalism may be
used as an analytical approximation in the description
of the nuclear spin system. The molecular field theoretic
type approach followed in the preceding sections
removes the necessity of this assumption, and when it
is used in conjunction with the pressure law of the
characteristic temperature Ts(p) of the spin system,
the equation of state of the latter becomes fully de-
termined. This then is the basis of a rigorous statistical-
thermodynamic formalism of the partial thermal prop-
erties of liquid He' arising with its nuclear-spin system.
It yields a rigorous lower limit of all those thermal
properties of this liquid which can be represented addi-
tively in terms of those of the spin system and those
arising with the degrees of freedom other than spin.
The limitations of this statistical-thermodynamic
formalism are determined by those of the theory of
paramagnetism discussed above, to which one has to
add the uncertainties arising with the empirically de-
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v on either one of these coordinates.

The spin-heat capacity has been discussed pre-
viously"' and will not be considered here any further,
since its functional form is identical with the one
assumed in earlier work.

The partial isobaric spin expansion coeKcient
n, (T,p) or the product n, ,s(T,p)V(T,p), that is, by
(41) and the definition of ~(p),

025

rived functional connection Te(p). By thermodynamics,
the constant pressure heat capacity of the spin system is

C. .(T,p)/Z
= (T/~) Ps.(T,p)/~T j.
=

j r(p)/&j(d/dr)LS. (~)j
=5(l»)L~" (~.«)/J' (~ «) ~ (~ «)/~(~. &f)j,

(41)

where use was made of the relation (36) and (3/), as
well as of those of the ideal antisymmetric Quid for-
malism' ' valid to the extent of its intervention in the
theory of the nonideal spin paramagnetism developed
here. The universal character of (X/Xp) S (r) and
C (s) clearly emerges here through the reduction of
these thermal properties to their sole dependence on the
reduced temperature v.. The dependence of these
thermal properties on one of the other coordinates of

hC
0
e~
o -6

b0

-10

I I I I l I I I I l I I I I l I I I I l I I I I

0 0.05 0.j 0 0.I 5 Q20 G25
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Fzc. 3. The partial spin expansion coefELcients e of liquid He
along the indicated isobars and the melting pressure p~ as a
function of the temperature.
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p. (atms)

FIG. 2. The analytical Gt to the empirically derived character-
istic temperatures of the nuclear spin system of liquid He' as a
function of the pressure Ts(p), with the data points.

&. „(T,p) V (T,p) = $8S.—(T,p)/Bp)r
gas.—(.)/a. j,(d./dp) (4»

= &C.,,(r)/Ts(P) X~Te(P)ldP3,

is, however, of great interest inasmuch as this quantity
is now rigorously expressed formally with the help of
the empirical function Ts(p). The limitations involved
in the previous evaluation of this property' have now
been lifted. The estimation and assessment of the pre-
cision of the numerically evaluated spin expansion co-
eKcients through the rigorous relation (41) presents a
dificult problem at the present time. The errors in
V (T,p) are likely to be quite small s' those in C., „(r)
involve the errors in the numerical values of Ts(p),
while the precision of the derivatives [dTs(p)//dpj
depends critically on the empirical Ts(p) relation.

The Ts(p) function resulting from the Duke Uni-
versity data is given in Fig. 2 as the drawn curve, which
is a least square Gt with a hyperbola type function with
three parameters, to the data points given on the graph.
The Ts(p) function has been extrapolated beyond the
last highest pressure data point over a limited pressure
interval.

Using the empirical4 Tp(p) function, we have ob-
tained in Fig. 3, several n „(T,p) curves, along the
indicated isobars, together with o. ,„~, or the spin-
expansion coeKcients along the melting pressure line
psr (T). The temperature interval extends only to
0.25'K, so that these calculated spin-expansion co-
efBcients although lower limits of the total volume-
expansion coefficients n„(T,p), may be fair approxima-
tions to the latter over the above restricted temperature
range. Actually, the approximation achieved by o, „on
n„ improves as the temperature decreases, so that e
should be fairly close to the exact total expansion co-
eKcients at T&0.10'K. Although similar to the 0, 's

obtained in the previous calculation of considerably
poorer approximation, the new values are larger nu-
merically than the earlier ones. ' As to the o. ,„~values
along the melting pressure line, these are based on a
slight extrapolation of the empirical Ts(p) function
from 30.5 to about 33 atm. This extrapolation is per-
formed in terms of the analytical least-square 6t of the
empirical Ts(p) data.

At the present time, an approximate evaluation of
the additive positive partial nonspin expansion co-
efEcient represented by the thermodynamic relation"

-,.(T p)=l".(T P)x (»p)C-,.(T,p)/V(T p), (43)
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is hardly feasible. Here, e„ is a parametric function,
Xz is the isothermal compressibility and C,„the con-
stant pressure nonspin heat capacity. Values of the
latter are not available, while the parameter e„can
only be reached through the subtraction of the theo-
retical o,,'s from the experimental 0.„'s.

A glance at the n, -curves of Fig. 3 shows that below
about 0.06'K, or so, where these spin expansion co-
efhcients should be close to the observed total expan-
sion coe%cients of the liquid, experimental discrimina-
tion of the expansion coefficients along isobars p& 10—15
atm may hardly succeed. At increasing temperatures,
with o.„becoming more significant a narrowing of the
band of the actual expansion coeKcient curves may be
expected on the following grounds. In (43), the nonspin
heat capacity C „and compressibility X& factors,
with their decrease on increasing pressure, overtake the
increase in L1/V(T, p)]. With the rate of decrease of
o.„„being likely the largest at the lower pressures, and
the smallest at the higher pressures, the lowest pressure
n, 's will be raised the most by their complement of o.„„
the highest pressure n, 's will be raised the least. Hence,
the differences between the various total n„'s, at the
same temperature, will be minimized as compared with
the differences between the n „values at the various
pressures. As shown by us previously' ' the family of
n, „curves, are modified by the positive n„,„'s so as to
insure the lower pressure o.„'s to reach their zero first,
and the higher pressure n„'s to reach their zero at in-
creasingly higher temperatures. This interval of the
zeros of o.~ extends from about 0.50'K, at saturation
pressure, to about 1.25'K, at 47 atm, approximately.
The complete coalescing of the total expansion coe%-
cient curves along the various isobars is hard to con-
template at T&0.10'K, although their differentiation
above 15 atm may become quite laborious experi-
mentally, within the expected, possibly fairly large,
experimental errors, at T&0.25—0.30'K. Qualitatively,
this may account for the recent indirect determinations
of n„ in compressed liquid He by the University of
Illinois investigators. These workers could not truly
discriminate between the isobaric expansion coefFicients
at the same temperature, along isobars in the pressure
range 14&p&29 atm. Within the experimental un-
certainties, the indirectly obtained o.~'s seemed tobe
distributed along a single curve in the (n„,T) represen-
tative plane, at T&0.25—0.30'K. A cursory comparison
of these experimental determinations of o,„with the
calculated o., „s of Fig. 3 indicates only qualitative
agreement. More than this couldnot be expected because
of the lack of discrimination of the n„data over the
indicated pressure range as well as the lower limit char-
acter of the calculated O. ,„values.

It may be hoped that direct measurements of the
expansion coefFicients n„of liquid He will be performed
allowing a more extensive analysis of the partial spin-
expansion coefFicients, at the low temperatures where
they should be good approximations to the actual ex-

pansion coeKcients of the liquid. Similar comparisons
of n, „or of (—V(T,p)a, ~] or (BS /Bp)r could be
made with the pressure derivative of the liquid en-
tropies at the low temperatures, when they become
available.

5. LIQUID AND SOLID He' ALONG THE PHASE
SEPARATION LINE

S.1. Some Thermal Properties of the Dense
Phases at Equilibrium with Each Other

at Very Low Temperatures

With the rigorous formalism of the nuclear spin
system of liquid He' throughout the whole region of
existence of this phase, it becomes possible to obtain a
first outline of the entropy diagram of He'. This sketch
of the entropy diagram is based partly on the approxi-
mate entropies of the liquid and solid in equilibrium
along the phase boundary line at the lowest tempera-
tures. At the present time, the diagram still has a wide

gap at and around the temperature of anomaly T of
the melting pressure minimum. Beyond about 1.0'K
or 40 atm, the entropies of the dense phases at the phase
separation line are available with good approximation
through the work of Grilly and Mills" and that of
Sherman and Edeskuty. "

Our main object now is the evaluation of the ap-
proximate entropy values of solid He' along the phase
separation line, relying on the corresponding approxi-
mate entropies of the liquid in equilibrium with the
solid. In thermodynamic equilibrium, the total entropy
of the liquid is, in terms of the theory of the nuclear
spin system,

S,(T,p) =S.&'&L (p)]+S..&'&(T,p), (44)

the degrees of freedom of spin of the nonideal para-
magnetic system and the degrees of freedom other than
spin forming two subsystems which allow the represen-
tation (44) of the total entropy. ' Since at T)0, partial
or component entropies are positive definite quantities,
one has, with (44),

lim infSr, (T,p) =S &~&Lr(p)], (45)

or the partial spin entropy is a lower limit of the total
entropy. At low enough temperatures,

S."'L (p)]»S-"'(T,p), T«T.(p), («)
and, at low pressures, at saturation or somewhat above
saturation, the ratio fS ~ '/S„.&"]&&&&«,~ has been
estimated by us' to be about 5 to 5.5. At increasing
pressures, we have shown' that the low temperature
partial entropy ratios may reasonably be expected to
increase as a consequence of the spin entropy increase
and the normal but small decrease of the nonspin
entropy. The entropy change on solidification is, from
thermodynamics,

AS(T) =SL(T)—S.(T) (47)
= LVL(T) V.(T)](dp~/dT), —
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5, and V, standing, respectively, for the entropy and
volume of the solid. A lower limit of the solid entropy
along the melting line is then given by

lim infS, (/) = lim infSr, (T)—DS(T)
=S."&I (p)j-»(T), (48)

where BS(T) is an empirically determined quantity.
The partial spin entropy S &~' jr (p~)g along the melting
line is fully determined by the formalism of the spin
system derived above. The To(p) relation has to be
used here to pressures of about 33 atm which necessi-
tates the extrapolation of the empirical Ts(p) law
from about 30.5 atm. In (47), the volume difference

(Vr,—V,) may reasonably be expected to change only
very little at T&0.32—0.33'K, at which temperature
there is a measurement of this volume change due to
Mills, Grilly and Sydoriak. "

The experimental melting pressure values have been
studied through various types of analytical least square
fits by Dr. R. K. Zeigler and K. A. Perego, of this Labo-
ratory. The various analytical per(T) functions have
been obtained under the constraint that they reduce to a
vertical osculating parabola in the (p, T) plane, in the
neighborhood of the vertex of the melting line. The data
6tted analytically over the temperature range 0.03-
0.40'K are a composite of various melting pressure
measurements of the Illinois group, ' the Los Alamos"
and Ohio State University" workers. The results of the
latter group v ere known to be higher systematically
than those of the Los Alamos group, "and the Illinois
workers' could reconcile them with their own data and
with those of the Los Alamos group on reducing them
uniformly by a constant pressure Ap. Over the above
temperature range, with the large number of data
points, the various analytical expressions approximated
the melting pressure data with rather good accuracy.
This happens whether imposing upon the analytical fit
the coordinates of the vertex or letting the latter to be
determined also by the 6tting process. They also yielded
the derivatives (dpsr/dT) which differed by a few

percent at most with the various 6ts and over most of
the temperature range. The class of analytical fits
which carried no constraints as far as their behavior
was concerned in the limit of the absolute zero became
invalid physically in this limit, and they were used only
down to about 0.02'K. It is worth mentioning, although
no use was made of it at all, that some of these analyti-
cal p je(T) approximations indicated the existence of an
inQection point at somewhat above the beginning of the
range, T 0.04'K, or somewhat below it, T 0.025'K.

The analytical approximations having yielded similar
AS-values, it appeared justified to assume tentatively
that in the lower limit of the solid entropy S„in (48),

22R. L. Mills, E. R. Grilly, and S. G. Sydoriak, Ann. Phys.(¹Y.) 12, 41 (1961).
23 D. O. Edwards, J. L. Baum, D. F. Brewer, J. G. Daunt, and

A. S. McWilliams, He/elm Three, edited by J. G. Daunt (Ohio
State University Press, Columbus, Ohio, 1960), p. 126.

Tmr. E II. Calculated lower limits of the liquid He' entropy and
heat capacity and of the solid He' entropy along the melting
line.

PM
(atm) Sr„sr/R Ss, M/1t CL, M/+

0.020
0.025
0.030
0.035
0.040
0.045
0.050
0.055
0.060
0.065
0.070
0.075
0.080
0.085
0.090
0.095
0.100

32.91 0.083
32.76 0.104
32.61 0.123
32.47 0.143
32.33 0.162
32.19 0.181
32.06 0.199
31.93 0.216
31.80 0.233
31.67 0.249
31.55 0.265
31.44 0.281
31.32 0.294
31.21 0.308
31.10 0.322
31.00 0.335
30.90 0.347

—0.448—0.438—0.427—0.417—0.407—0.397—0.387—0.377—0.367—0.357—0.348—0.338—0.329—0.320—0.311—0.302—0.293

0.531
0.542
0.550
0.560
0.569
0.578
0.586
0.593
0.600
0.606
0.613
0.619
0.623
0.628
0.633
0.637
0.640

0.082
0.102
0.120
0.137
0.153
0.168
0.181
0.193
0.203
0.212
0.219
0.226
0.231
0.235
0.238
0.240
0;242

AS(T) was rather well determined. The spin entropy
S,& '(r(p»)) is fully tied to the paramagnetic suscep-
tibility of the liquid along the melting line and its theo-
retical description, which we saw above to be quite
satisfactory at r (p) &0.90—1.0. With the approximations
stated one obtains, in a straightforward way, the lower
limits of the solid entropy along the phase separation
line. They are included in Table II, which also gives
the melting pressure per(T), calculated with a par-
ticular analytical fit, the lower limit of the liquid
entropy SL,~, through its spin entropy S,,~' ', and
the approximate entropy changes on solidihcation
d,S(T). The last column gives the lower limit of the
liquid heat capacity CL,~, that is, its spin heat capacity
C, ~' '. All entropies and heat capacities are in molar
units.

Within the limits of validity of Table II, at the lowest
temperatures, the lower limit of the solid entropy S.
falls considerably below the limiting asymptotic spin

entropy of R ln2. Even with the extreme assumption,
which attributes to the nonspin entropy a value equal
to the spin entropy, it is only at about 0.035'K that
the solid entropy could reach the full spin entropy
value. Actually, it is rather difIicult to see how the non-

spin entropy of the liquid can reach, at the low tem-
peratures of Table II, values larger than about (0.20—

0.25)S &~&. If the latter situation prevailed, the solid

entropy would become R ln2 at about 0.08—0.085'K.
It is also possible to use a relation simila, r to (48) to

obtain approximate lower limits of the solid He' heat
capacities along the melting line. One has here

lim infC, ,~(T)=C, '~&Lr(psr)) —AC(T), (49)

with hC(T) standing for (CL, se —C, ,sr). This heat ca-
pacity difference along the phase boundary line is

AC= T(d/dT)AS(T)
(5o)= T(VL V,) (d'pM/dT'), —
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on the assumption that (d/dT) (VL—V,) is very small
at the lowest temperatures and the term, T(dpss/dT)
X (d/d T) (VL—V,), may be omitted in comparison with
the term retained on the right-hand side of (50). The
lower limit solid heat capacities are, of course, also
available through the lower limit solid entropies S,,~
of Table II. One finds that these lower limit solid heat
capacities vary between 0.042 and 0.088. over the
temperature range (0.02—0.10)'K, with a hump at
about 0.06—0.07'K. The latter may be spurious, and at
the present time the order of magnitude of the lower
limit solid He' heat capacities is of signidcance as
another aspect of the solid He' entropy being below
E ln2, within the limitations of the approximate
Table II.The thermodynamic entropy and heat capacity
differences, (47) and (49), include of course the con-
tributions of all degrees of freedom. It is hoped that
experimentalists may soon investigate the interesting
magnetic and thermal properties of the dense phases of
He' at and in the vicinity of the melting line.

5.2. Some Points of the Liquid He'-Solid
He' Equilibrium

The earliest observation on the susceptibility of solid
He' appeared to suggest' that the solid susceptibility
ratios belonged to an extension of the family of suscep-
tibility ratio curves of the liquid. This in turn seemed
to justify'' the discussion of the thermal properties
of the solid arising with its nuclear spin system, whereby
the latter, according to the observations, " exhibited a
fairly large characteristic temperature even though
smaller than in the highly compressed liquid. The dis-
cussions of the thermal properties of the solid were tied
to the early susceptibility observations. ' In the light
of the approximate solid entropy value of about
(0.53—0.58)R at 0.02'K, derived above, the heat ca-
pacity anomaly arising with its spin system must occur
at T&0.02'K, or the characteristic temperature of the
spin system of the solid must be considerably smaller
than indicated by the early susceptibility measure-
ments' which have not been substantiated so far. The
discussion of the thermal properties of solid He' along
the melting line' have to be qualified accordingly.
Namely, the suggested thermal anomaly of the solid
extending to medium temperatures may now be un-
justi6ed because of the highly reduced characteristic
temperature of the spin system of the solid according
to the just calculated approximate solid entropies. In
pursuing the earlier suggestion advanced by us'- on the
basis of the 6rst susceptibility observations in the solid,
the Los Alamos group" used a strictly thermodynamic
analysis of their liquid He'-solid He' equilibrium data.
On adopting the not too unjusti6ed attitude that the
elastic behavior of the solid is normal, requiring its iso-
thermal compressibility x., s (pss) to be smaller than, or
at most equal to, that of the liquid in equilibrium with

it, Xr, ,s (Pss), the analysis showed that the solid should

exhibit anomalous thermal properties below about
0.95-1.0'K. It should be noted in this connection that
Bridgman'4 called attention to the situation that in a
liquid-solid transformation the elastic anomaly of the
solid in the form just stated, X, ,r(Psr)&Xr. , s(Plrr),
could not be ruled out. On postulating that solid He'
must have normal thermal properties at medium tern. -
peratures, the liquid He'-solid He' equilibrium data"
tend to impose elastic anomaly upon the solid. Recently,
Heltemes and Swenson" have made heat capacity
measurements at constant volume on compressed solid
He', that is away from the boundary line, although the
latter might have been approached. Since the solid tem-
perature was T)0.3'K, where even the early "solid"
susceptibility observations claimed the reaching of the
ideal paramagnetic susceptibility limit, all contributions
of the nuclear spin system of the solid to its heat capac-
ity at these temperatures have been neglected ab Novo."
The measured heat capacities could be analyzed in terms
of a Debye and an Einstein heat capacity, both of which
appeared to yield through the volume variations of their
respective characteristic temperatures, fairly constant
Gruneisen parameters. The constancy of the latter param-
eters suggested the use of the Debye-Einstein solid
model, corrected by these empirical parameters, in evalu-
ating the isobaric expansion coefficient. Clearly, the
above model in its form used by Heltemes and Swenson2'
could not but yield positive isobaric expansion coeK-
cients for the solid. These then combined with the Los
Alamos liquid He'-solid He' equilibrium data" could not
but vield isothermal compressibilities X, ~ of the solid
which had to be larger or at least equal to the isothermal
compressibility XL z of the liquid in equilibrium with
the solid along the melting line at T&0.30'K.

The analysis" of the thermal properties of solid He'
based on the model equation of state which allows only
Debye and Einstein excitations to determine the
thermal properties at T&0.30'K needs additional justi-
fication to be satisfactory. Indeed, we have already
attempted to point out in the preceding sections that if
the paramagnetic susceptibility of a system was actually
shown to be nonideal over a 6nite range of some state
coordinates, such as the temperature for instance, that
system cannot become an ideal paramagnetic at finite
temperatures, unless it exhibits a magnetic transition
process which imposes ideal behavior on it in a dis-
continuous fashion. If such a transition did not exist,
as is the case in the liquid phase according to data
available there at the present time, then the ideal limit-
ing behavior of the spin system is an asymptotic one,
or, the spin entropy in the solid phase S, (T,p) might
be expected to be of the same type as S,~fr(p) j, the
liquid entropy, at higher temperatures. Hence,

S...(T,p)/R= (ln2) (1—o L0 (p)/T$), T»O', (51)
~ P. W. Bridgman, in Physics of FIegh Pressscre (G. Bell and

Sons, Ltd. London, 1952), p. 215.
25 K. C. Helte~es and C. A. Swenson, Phys. Rev. 128, 1512

(1962).
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where o(x) is some function of the temperature and
another variable of state, through the parameter O~,

and 0 is such that
lim o(x)-+0. (51a)

x small

It should be noted that the dependence of o on T and p,
through 0!T in (51) is strictly illustra, tive inasmuch as
the actual high temperature behavior of S, , is unknown
a,t the present time. On the basis of (51), it is of course
possible that, to a fair degree of approximation, at some
value of T, T)&O, S, , may be close to R ln2, the ap-
proach being necessarily from below. However, it is
seen that along an isobar,

C.,,&'& (T,p)/R= (ln2) (0/T)~'(0/T)
(52)o' (x)= do/dx& 0,

and along an isotherm,

(aS, ,/ap) T ———(R ln2) T 'a'(0'/T) (a0/ap) r
= ( )(c, "—(0/T)/O)(aO/aP)~

(53)

Hence, the spin heat capacity and spin expansion co-
efficient, the latter proportional to (—)(aS, /ap), ~,
may not have approached their limiting vanishing
values close enough. If the heat capacity- and expansion
coeKcient arising with the degrees of freedom other
than spin are quite small, which appears to be the case
over a range of temperatures even at T&0.30'K, the
contributions of the type (52) and (53) of the spin
system to the thermal properties of the solid cannot be
ignored. Stated in other terms, the analysis of Heltemes
and Swenson" is based on the implicit assumption that
the derivatives of an asymptote may be substituted for
the asymptotes of the derivatives, an assumption which
needs to be closely justi6ed to be acceptable in the case
of the spin system of solid He'. lt would seem then that
the preceding considerations, while essentially qualita-
tive, tend to set aside, at the present time, the tentative
conclusions reached2' on the thermal properties of solid
He' resulting from an analysis which totally ignores the
possible intervention of the nuclear spin system even at
T&0.30'K. Unless and until satisfactory proof is pro-
vided for the justified omission of the eBects of the spin
system on the thermal properties of solid He', the
problem posed by the latter remains more widely open
than it ever was.

It should equally be noted that at T&1.0'K, the
apparent solid compressibilities

have escaped, we presume, the attention of Heltemes
and Swenson. " Actually, the Sherman-Edeskuty iso-
thermal compressibilities of the liquid along the melting
line, at T&j.0'K, are larger or at least equal to the
solid compressibilities indicated by Heltemes and
Swenson. 2' Clearly, an assessment of the precision of
these compressibilities appears to be quite dificult.
Also, as shown recently with Dr. Mills, "the derivative
(dV, /dpsi) is singular at T„and the problem of the
thermal properties of the solid at and around the
melting curve minimum are far from being settled. It is
equally worth noting that Grilly and Mills" were the
first to point out that at melting pressures, psf&50
atm, there were indications of the extreme closeness of
the liquid and solid Hes isothermal compressibilities
along the phase separation line.

The preceding studies clearly suggest the importance
of direct measurements of the solid He' expansion co-
e%cients and compressibilities along the melting line.
These should be helpful toward an understanding of the
equilibrium between solid He' and the thermally
anomalous liquid He', a problem which was stated in
fairly general terms by us recently'~ in connection with
He4.

5.3. The Entropy Diagram of He'

With the approximate liquid and solid entropies de-
rived above at the low temperatures, and the entropies
of these phases at T&1.0'K which became available
some time ago through the saturated liquid entropy, "
the entropies of compression" and the entropy changes
on solidi6cation, ""it is possible to sketch the principal
lines of the entropy diagram of He . We will limit our-
selves here to the entropy-pressure or (S,p) diagram.

One of the simplest lines of this diagram refers to the
entropy of the saturated liquid, Sr, (p,) which has as its
tangent at the origin of the diagram the S axis itself.
The singularity of the pressure slope dSI. (p,)/dp, is

imposed essentially by the nuclear spin system. Indeed,
one has

dSr/dP, = (aSn/aP)z+ (aSz/aT), /(dP, /dT)
(54)= —Vr„,o.z„,„+Cz„„/T(dP, /d T),

where p, refers to the saturation vapor pressure, Ul,
the liquid volume, o.L „its isobaric expansion coeKcient
and C~,„ its constant pressure heat capacity at the
saturation line. By the Nernst theorem,

7C, ,sr= —V. '(d V,/dP~), lim ni„„—+ 0, lim (dp, /dT) —+ 0, (55)

with the derivatives taken along the phase boundary
line, and resulting from the Grilly, Mills and Sydoriak
work"" on phase equilibrium, have not been con-
fronted with the liquid isothermal compressibility de-
terminations of Sherman and Kdeskuty. The extensive
liquid He' equation of state data of these workers at
T&1.0'K, up to and including the melting line, must

while, the theory of the spin system requires that

lim (Cl. , „/T) —+ const. (56)

s6 L. Goldstein and R. L. Mills, Phys. Rev. 128, 2479 (1962)."L.Goldstein, Phys. Rev. 122, 726 (1961);128, 1520 (1962).
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Hence, (51) yields

lim (dSz/d p,) ~ +~ .

lim (dS, , M/dp~) ~+ ~,
&~(&a+)

lim (dSz ~/dpiz) —+ —~,
u~n~(~ )

(59)

or the pressure slope of Sl, ~ has an infinite jump at
p~(T.),
A(dSL, 3z/dpM)T~ (dSL,M/dpM)T~+

—(dSz iz/dp~)r, ~ ~ . (60)

This shows how the melting line anomaly carries over
into the entropy diagram through the singularities (59)
of the pressure derivatives of Sz ~ at p~(T, ). The
Sz,~ or Sz(p~) curve has a vertex with a vertical
tangent at p~(T ).

The SL, ~ line resembles a wide mouthed parabolic
curve whose upper branch at Sz,~&Sz[piz(T, )j de-
creases uniform1y with pressure toward its vertex. The
entropy Sz[p~(T,)j is still somewhat uncertain. Esti-
mates based on entropies of the compressed liquid
evaluated with incomplete constant pressure heat ca-
pacities of still exploratory character" ' locate
Sz[p~(T )j at values close to Rln2, within rather
generous limits (+8S). At any rate, the osculating
parabola of Sz,zz(p) at its vertex is

Sz Q(p) Sz,&[p~(T.)j=or[p —p~(T, )j, (61)—
eo standing for a constant.

It is seen in Table II that at about 0.02'K the melting
pressure reaches some 33 atm, approximately, and the
entropy of the liquid has decreased from about 0.4R',
at 0.10'K or 31 atm to about 0.1R at 0.02'K or 33 atm,
or by a factor of about four over a pressure interval of
2 atm. Now, whether the melting line p~(T) has con-
tortions or not at T(0.02'K, the nuclear spin system
of the liquid imposes again a singular behavior on the

28 M. Strongin, G. O. Zimmerman, and H. A. Fairbank, in Pro-
ceedings of the Eighth International Conference on Lom Temperature
Physics and Chemistry, London, 196Z (Butterworths Scientific
Publications, Ltd. , London, to be published).

The Sz, (p,) curve rises thus steeply and increases
monotonically to some finite large value, around 2E.,
at the critical pressure, p. 1.15 atm.

An interesting if auxiliary line of this (S,p) diagram
is the straight line p= p~(T,), which is tangent to the
entropy curve of the liquid Sz(p~) along the melting
line P~(T) at the minimum melting pressure pic(To)
Using again the thermodynamic relation equivalent to
(54), along the melting line,

d ~L,M(p)/dp I l (pM)czL, (pM)

+Cz,,/T(dp~/dT), (58)

one has, with nz, ~ and Cz, „being finite at pu(T ),

and with it
lim (dSz, jz/dp) ~ —~, (62a)

if p~(T) approaches p~(0) monotonically from below,
while

lim (dSz, is/dp) ~+~, (62b)

if p,iz(T) approaches p~(0) from above. The branch of
Sz(p~) at Sz,~z&Sz[pM(T, )J decreases monotonically
in case (62a), inside the pressure interval pM(T, )&p
&p~(0), with vertical tangents at both ends of this
interval. If Sz„3f did not decrease rnonotonically in this
pressure interval, its derivative must have at least one
singularity inside it, in addition to those at the limits
of the interval.

The region reserved to the liquid phase of the (S,p)
plane is thus included between the finite S(p,) arc, the
pressure axis and the Sz,~(p) curve. The interesting
family of entropy lines of this region is that of the iso-
therms Sz(p, T). These isotherms form three groups.
Those of the lowest temperature, group I, are anomalous
throughout the length of their finite arcs. They start at
S(p,) to increase monotonically until they reach the
Sz„i'(p) line. If T (p,) is the temperature at which the
locus of vanishing isobaric expansion coeS.cients reaches
the saturation line, the group I isotherms are such that

(BS./Bp) r& r.(„,) & 0; n, ,,(T,p) &0,
T&T.(p.). (63a)

The isotherms of group II are normal over part of their
finite arcs, and anomalous over the rest of their arcs.
These isotherms have as their limiting curve the one
which starts out at p, (T ) with a vanishing tangent;
those of T& T (p,) leave Sz(p, ) with normal or nega-
tive slopes. The latter increase toward zero to become
positive and stay positive until they reach the Sz,~(p)
line. These are such that

(BSz/Bp)r r.&„i=0; (BSz/Bp)r &0,
T.(p.)&T&T.(p), (BSz/Bp)r&0,

T (p)&T&T~(p~) i (63b)

where T (p) is the locus of vanishing zz's or that of the
minimas of Sz(p), at p, (T,)&p&pM(T, ). While the
first member of this group leaves Sz(p,) with vanishing
pressure slope, its last member reaches Sz,M(p) with a
vanishing slope. These isotherms are those of 0.50 and
1.25'K with p, (T ) and pM(T ) being, respectively,

pressure slope (dSz ~/dp) in the limit of the absolute
zero. Using (58), the first term on the right-hand side
may be omitted because of the vanishing of nz, ~(p~)
at T—& 0. In the second term, with CL„~ being the sum
of the two positive definite partial heat capacities
C „(~)and C„,„(~',the term with the spin heat capacity
yields

lim (C.,„'z'/T) —+ const. ,
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almost vanishing and about 47.5 atm. Finally, the
isotherms of T&1.25'K, group III, all decrease mono-
tonically to end on Sz.,sr(p), at T&1.25'K, psr&47. 5
atm.

In contrast with the region of the (S,p) plane re-
served to the liquid phase, the region associated with the
solid phase is as yet essentially unexplored. As was the
case with Sr, ir(p), S,, sr(p) is only known over finite
arcs. We have in Table II the approximate lower limit
entropies of the solid along the melting line over the
intervals of 0.02—0.10'K, and the pressure range of
30.9 to about 32.9 atm. At 0.10'K, S, ~(P) may be in
the range of 0.66—0.688, and at 0.02'K, this entropy
has decreased to about 0.53—0.558. The entropy branch
of the solid at S, ,sr(S, ,sr['Psr(T, )j, between 0.10'K
and 0.32—0.33'K, or T, and over the pressure interval
of about 2 atm, increases from 0.66-0.688 to
Sl.,~)ps&(T,)j, which may be close to R ln2, or 0.69R,
a very small change indeed. At the present time, the
Los Alamos equation of state data' yield SII,M(P)
values between 1.0 and 2.0'K varying from about 0.71E.
to 0.758, approximately. Assuming here that the spin
entropy is close to its asymptotic limit, the nonspin
entropy of 0.028 to 0.068 appears to be compatible
with phonon entropy if due account is taken of the
expected increase of the characteristic temperature of
the phonons over the above temperature range, or the
pressure range from 39 to about 76 atm, or the volume
interval of 23.5 to 21.0 cm'/mole, approximately, ac-
cording to the Los Alamos data """The upper branch
of the solid entropy S., M(p) will have to decrease from
about 0.71R, at 1.0'K, to the value of Sr„sr+.~~(T )j,
the entropy at the vertex of Sl. sr(P) at T,. If the latter
is close to R ln2, it is seen that over the rather wide
temperature range (1.0—0.33)'K, and the pressure inter-
val, between 39 and 29 atm, the entropy change is quite
small. In the (S,p) diagram then the approach of the
lower and upper branches of S, ~ toward the vertex
Sl,„,sr+M(T, )], as well as the way these two branches
of the solid entropy join remains undetermined at the
present time.

The upper and lower branches of S,,~ form the
boundary of a very narrow strip of the (S,p) plane on
both sides of Sr,=S,~fpsr(T, )],and over the indicated
temperature and pressure ranges. If they joined
smoothly at the vertex at Psr(T ), the Sn, sr and S,,~
curves would have a 6rst order contact at the common
vertex. To the extent that one de6nes, in thisaKne
plane, a curvature or radius of curvature, through the

use of homogeneous coordinates possibly, the smooth
joining of the two branches of S, ~ would be accom-
panied by a very large curvature at the vertex. If these
two branches did not join smoothly, then with Eq. (58)
written for the solid,

dS, (p)/dp= (BS, /Bp) +C, , /T(dP /dT), (58a)

it is seen that with finite derivatives,

(dS, ~/dP) „ii,(r.~)(0, (59)

at p~(T~) and Pjr(T, ), the constant pressure heat
capacity should be such that the second term on the
right-hand side be finite, its denominator vanishing at
psr(T, ). It is assumed here that the expansion coeK-
cient of the solid is 6nite at T . This then raises the
problem of the behavior of the constant pressure heat
capacity of the solid, or of that of its isobaric expansion
coefficient at pM(T,). Strictly speaking, at T, and

psr(T ) the constant pressure heat capacity of the solid
cannot be defined directly, since at the isobar of pM (T,)
the solid exists only at a single point of state coordinates

[psr(T, ),Vsr(T, ),T,g. As discussed by us recently" the
constant pressure heat capacity at psr(T ) could be de-
fined through a limiting process. The same problem
arises with (BS, ir/Bp)r at Psr(T,). If the latter is
finite, C, ,„would have to vanish at psr(T ), a situation
dificult to contemplate since C„at Vjr(T,) seems to be
finite, the Vjr(T,) isochore being a finite arc."With the
expansion coefficient or (BS, sr/Bp)r being finite, the
needle shaped S,,~ curve at the approach of the vertex
Sr, sr(T,) with (59), or with a cusp of vanishing slope
at the vertex, appears unlikely at the present time

These discussions emphasized the importance of ex-
perimental investigations of the low pressure solid He'
in the vicinity of the melting line over a wide tempera-
ture range. A clarification of the solid entropy curve in
the pathological region of the melting pressure minimum

appears to be of particular interest.
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