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model that does not contradict the results. For sapphire
this could be the 3-level system given in Fig. 7.

At room temperature, both the ordinary as well as
the photoconductivity result from electrons lifted from
the occupied impurity level to the empty conduction
band. This would explain why the light had no inhuence
on the mobility measured in the Hall experiment.

Low mobilities are expected in ionic crystals, ' but the
measured 0.05 cm' U sec is quite low.

The large gap distance in the model is given in the
literature7 and the 0.85 to 1.1 eV gap comes from
photoconductivity measurements as a function of light
frequency. To have enough intensity we had to use
broad-band infrared Glters resulting of course in loss of
structure details if present.

' R. H. Bube, Photoconductiv@y of Solids (John Wiley R Sons,
Inc. , New York, 1960), p. 256.

7 N. B.Hannay, Semiconductors (Reinhold Publishing Corpora-
tion, New York, 1959), p. 54.

To check these gap values we plotted lno- versus T '.
For this we used ordinary high-temperature conductivity
values of sapphire published by the I inde Company
completed with the room-temperature value of our
sample. The high-temperature slope of the curve leads
to a gap of 7 eV; the low-temperature slope to a gap of
0.6 to 1.2 eV in fairly good agreement with the value
given before. The spread depends on the kind of model
assumed. '
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The equilibrium and nonequilibrium properties of an assembly of interacting spins are analyzed in the
case of paramagnetism (nuclear). The evolution towards equilibrium is described by a generalized Pauli
equation. This equation contains two relaxation times: a first one characterizing the evolution of the dipole-
dipole system to equilibrium and a second one describing the energy exchange between the dipole-dipole and
the Zeeman system. The real temperature of the system is the dipole-dipole one whereas the state of the
Zeeman system is given by a "chemical potential" fixing the mean magnetic moment. It is shown that the
Zeeman dipole-dipole relaxation may also be considered as a kind of Brownian motion problem of a collective
Zeeman coordinate in the "dipole-dipole heat bath. "

INTRODUCTION
'

N contrast with the rich development of the theory
& ~ of irreversible processes in many body systems' '
(gases, plasmas, solids) there is.a relative paucity of
fundamental work in the Geld of spin-spin relaxation of
paramagnetic substances. The difhculties in this domain
follow from the peculiar structure of the Hamiltonian.
The results of the general theory cannot directly be ap-
plied to this particular problem because one does not
know the properties of the unperturbed Hamiltonian.
One has to go formally ahead, working in an unknown
representation. If the Gnal expression can be written as
traces, they may then be evaluated following Van Vleck.
Let us also note that in many situations, series expan-
sions may be used in the powers of the ratios of local

L Prigogine, Iqoleqlelebreum Stotsstecat 3Iechonecs (Inter-
science Publishers, Inc. , New York, 1962).

~ R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).
I L. Van Hove, Physica 21, 512 (1955);23, 441 (1957).

magnetic field over external field JJt/Ps and )to&/kT, a
level splitting over the thermal energy. These expan-
sions greatly simplify the problems. A general treatment
has been given by Caspers, 4 starting from the expres-
sions given by Kubo and Tomita to calculate the spin-
spin relaxation time. An important progress in under-
standing the spin-spin relaxation mechanism has re-
cently been made with the introduction of the notion
of Zeeman and dipole-dipole temperatures by Anderson,
Hartmann, s and Provotoroff. s As shown by Jeener'
several problems are then easily handled using thermo-
dynamical methods. However, a justification of these
notions from first principle has not yet been given. In

4%. J. Caspers, Physica 26, 778 (1960).
~A. G. Anderson and S. R. Hartmann, Mugnetic und Electric

Resonunce und Reluxution, edited by J. Smidt (North-Holland
Publishing Company, Amsterdam, 1963).

e 3. N. Provotoroff, Zh. Eksperim. i Teor. Fiz. 42, 882 (1962)
Ltranslation: Soviet Phys. —JETP 1S, 611 (1962)' J, Jeener, following paper, Phys. Rev. 1BB, A4 8 (1964).
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this note we show that whereas the state of the dipole-
dipole system is described by a true temperature, the
state of the Zeeman system, i.e., the macroscopic mag-
netic moment, is given by the value of a quantity having
the properties of a chemical potential. The dynamics of
the evolution towards equilibrium is governed by a
generalized Pauli equation. Four characteristic times
appear in the phenomena: the "collision time" of the
order of the inverse of the linewidth, the dipole-dipole,
the Zeeman dipole-dipole, and the spin lattice relaxation
time. Here, the last one is supposed to be much larger
than all the others. It is also shown that the total mag-
netic moment plays the role of a collective coordinate
coupled with the dipole-dipole system and that the
Zeeman dipole-dipole relaxation may be considered as a
kind of Brownian motion problem for which equations
related to the Bloch equation' are set up.

A. EQUILIBRIUM PROPERTIES

Hamiltonian

The Hamiltonian of a rigid lattice of interacting spins,
placed in a large constant external field II p directed along
z, may be written as

angular moment MA gives a new eigenstate with
moment (M+s) A. The total Hamiltonian is

0&',=Xz+ P V&'&.
s=p, +I,+2

(A9)

Since the Zeeman Hamiltonian Xz commutes with V&'&

these two operators may be simultaneously diagonalized.
We, therefore, introduce as basis vectors the eigenstates

~
M,e) satisfying the equations

BCg
i M,rt) =Mhs)oi M,e),

V&'& iM, n)=E&&r, iM, rt).
(A10)

M is either an integer or a half integer, e stands for all
the quantum numbers needed to define the correspond-
ing eigenstate.

Zeeman and Dipole Temperatures, the Total
Magnetic Moment as a Collective

Coordinate

Anderson and Hartmann have shown that several
experiments could be interpreted if one admits that the
system is represented by a density matrix of the form

with
50zeenran+~interaction r (A1) (A11)

50,—p Q g „&rrI&rI„r. ,

j&I X, v

(A5)

A particular example is given by the dipole-dipole
coupling, then

X;=P h'ye[r, &, t(I,'It) —3r„. '(r; I;) (r, ~ I )]. (A6)

We shall introduce also the operators

V&e& —P P &
. &,rI &I rt&.

j&k 'A, v

(A7)

They obey the following commutation rules

fS„V&e&]=skV&e&. (AS)

Thus V(') acting on an eigenstate of Xz with total

' F. Bloch, Phys. Rev. 102, 104 (1956); 105, 1206 (1957).

Kg = II&&M.= ——(o&o/y)M „(A2)
where Ho is the constant external field along z, ~0 the
I armor frequency, p the gyromagnetic ratio, 3f, the z

component of the total magnetic moment, and 5, the z
component of the total angular moment. We denote by
I; the spin vector of the particle located at r, and use
the operators

I,'= (I,)„ I,+'= (I,).+t(I,)„. (A3)

They satisfy the commutation rules

PP,I;]=(—1)~+ () —r)IP+ 6;„(),.=0, ~1). (A4)

We choose an interaction Hamiltonian of the form

This raises two questions. The first one concerns the
stationarity of such states. We shall see in Part 8 that
these states are metastable because the V('~ terms of
the Hamiltonian induce transitions between the eigen-
states of Kg+V&o& with the consequence that the
Zeeman energy is no longer an invariant of the motion.
The second question concerns the separation of the un-
perturbed Hamiltonian Xz+ V&" in two parts and the
interpretation of kPz ' and kPD ' as temperatures of
two subsystems. This last problem shall be analyzed
presently. Under what conditions is it justified to speak
of two temperatures, a Zeeman temperature and a
dipole-dipole temperature to characterize such a meta-
stable stateP Generally speaking, the commutability
condition of Xz and V"& is not a sufFicient one. It is
furthermore necessary that the two Hamiltonians should
be independent, that is, the same variables may not
appear in both. The two Hilbert spaces spanned by the
eigenvectors should be different. The eigenstates are
then characterized by difterent quantum numbers so
that it becomes possible to define reduced density
matrices by taking partial traces over one of the sub-
systems. The situation is here analogous to the one
studied by Tomonaga' for collective coordinates. Adopt-
ing this viewpoint, one sees that the total magnetic
moment is a collective coordinate. However, this
coordinate cannot be disentangled from the other in-
ternal ones which appear in the dipole-dipole Hamil-
tonian. I.et us clarify this by writing the Fourier trans-
formation that is performed to introduce a spin wave

9 S. Tomonaga, Progr. Theoret. Phys. (Kyoto) 13, 467 (1955}.
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description if the spins are localized on a regular lattice.

(A12)

The q runs over the first Srillouin zone of crystal. The
I~" forms a complete set of commuting operators associ-
ated with collective coordinates. With this new system
we can easily study the interdependence of the spin-spin
and Zeeman systems. The total angular moment is,
then, Is (IqP'. On the other hand, the operator V' '

may be expressed as a function of the complete set
{Is"}including Iso. The problem is then to study under
what conditions the terms in Io' of the dipole-dipole
Hamiltonian V"& may be neglected, or when the sub-
spaces

~
M,n) with different given M may be considered

identical. Therefore, we express a typical term of V' '

as a function of the I~"

P I„&I;CsP (rs r,)—
k(l

=P P I,~I,' exp(iq r )C"'(r ). (A13)
a 1i

p~... sr,. exp( ——q+vM —PEsr „)—. (A14)

The multiplier v is fixed by the condition that M the
mean. value of M, is given. The normalization deter-
mines the potential

Thermodynamical Aspect

The problem is to develop the statistical thermo-
dynamics of systems with two invariants of the motion:
the total energy and the total magnetic moment. A
first method consists in starting from the relation
Ii = —kT lnZ, where the sum over states is restricted to
the subspace of given 3f. To avoid the difhculty of tak-
ing partial traces we note that the situation is completely
similar to that of a system with a given number of
particles. The total number of particles and the total
magnetic moment are operators with a discret spectrum
playing the same role. We shall, therefore, use a method
analogous to that of the grand canonical ensemble and
consider a Gibbs ensemble of systems characterized by
the density matrix

rI„r~ are the position vectors of spins k and l, and
r =rI,—r~. The eigenvalues of the I~" are of order one
and, therefore, in the absence of very special phase
correlations the I~~ are also of order one, except Io' which
is of order Ã+/(Ar)' ', S+ being the excess of up spins.
The relative contribution of the collective Zeeman
coordinate in V "& is thus (1V+/Ar)', and may be neglected
in the determination of thermodynamical properties
when (1V+/N)'«1. This is the usual situation in para-
magnetism, it supposes that A(ap/kT«1. This approxi-
mation is, therefore, typical of high temperatures. The
energy is, thus, the sum of two quasi-independent
contributions, the Zeeman energy and the dipole-dipole
energy. We may also say that the separation of the
Zeeman collective coordinate from the other degrees of
freedom of the dipole-dipole system applies when
1V+/X«1, because then most of the dipole-dipole energy
is in fluctuations. It does not apply when Iq+/X=0(1)
because most of the dipole-dipole energy is then in the
Weiss field. However, let us remark. that the partition
function (we now consider the case Pz=PD=P)

Z=P exp( —PBCz)P exp( —PV&")

does not factorize because the number of terms in the
summation over m still depends on M. As a result, the
thermodynamical quantities, for instance the entropy
and the energy, are in general not sums of independent
contributions coming from two subsystems. This is a
6rst aspect of the problem where we emphasized the
role of the total magnetization as a collective coordinate.
In the following section we shall develop another aspect
of the same problem: when a system has several
invariants of the motion, how can we know whether
they are independent or notP

q=ln Tr exp(vM —PV&s'). (A15)

Our ensemble is thus representative of a metastable
system. Such a system will evolve to the complete
equilibrium only when the effect of the perturbation
terms U&'&, (s&0) becomes important. The mean
angular moment (in units h) and the mean dipole-
dipole energy are given by

M= Bq/Bv q ED (Bq/BP) ~ (A16)

In the high-temperature, low-magnetic-moment limit,
one gets for the q potential the expression

q= Tr[-'P'V""+ ,'v'M'+ ]/-Tr1. (A17)

Dipole-dipole energy and angular moment are given by

En ———(Bq/BP) = —P Tr (V&' ')/Tr1,
(A18)M= Bq/Bv= v Tr(M')/Tr1.

K=En+Ez
= $—P Tr(U& ")—vho&s Tr(M')]/Tr1, (A19)

'0 U. Fano, Rev. Mod. Phys. 111,689 (1958).

It is only in this limiting case that E& is a linear function
of P and M a linear function of v. The easiest way of
seeing that P and v are independent in this case consists
in remarking that the first terms of the Taylor expansion
of (A14) are also the erst terms of an expansion of p in
orthogonal operators as used by Fano, "since Trt V'M]
=0. P and v are coeKcients of this expansion and may
therefore be chosen independently. The total energy is
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From this, we can evaluate the potential

p= (aE,/aM) s= ~s v/P—. (A21)

The fact that energy and entropy are sums allows us,
in this high-temperature low-magnetic-moment limit,
to defiiie a Zeeman temperature. One has

(BS/BEg)) (BS/BEg) jg—1/T' 1/Tg),
(A22)

aS/cjEz= 1/Tz= &v/~o.

There is, thus, a simple relation between v and the
"Zeeman temperature"

v= Aces/~Tz=M Tr(1)/Tr(Ms) . (A23)

In conclusion one may say that there is only one tem-
perature, which is the dipole-dipole one, whereas the
state of the Zeeman system is described by a multiplier
v related to a chemical potential. " However, it is
possible to replace this quantity by a Zeeman tempera-
ture in the limit considered and as a result of the peculiar
properties of the Hamiltonian. This is actually a simple
illustration of the fact that equilibrium conditions be-
tween subsystems are given by an equality of tempera-
ture when the Hamiltonian is the only invariant. When-
ever, besides the Hamiltonian, there exists another
analytical invariant, the equilibrium is determined by
a relation between the corresponding Lagrange multi-
pliers. We shall see in Sec. 8 that the cross-relaxation
phenomena furnish a beautiful example of this rule.

and the entropy is (for spins I)
S=—k Tr(p lnp) =S .„+Sg)+Sz

=Xk In(2I+1)
—k[P' Tr(Vt"')+ v'- Tr(M') j/2 Tr1. (A20)

B. DYNAMICS OF THE EVOLUTION
TOWARDS EQUILIBRIUM

We now take into account the V&'& terms (s&0),
which cause, besides a shift of the levels, a coupling of
the collective coordinate Jo' with the dipole-dipole
system. This plays the role of heat bath, (in the sense
that it is a many-body system rapidly reaching its
equilibrium state) with the peculiar situation that the
largest part of the specific heat is carried by the single
Zeeman collective coordinate. As a result, the tempera-
ture of the "dipole-dipole heat bath" varies when
brought in thermal contact with the Zeeman system.
For initial distributions of the types (A14) the de-
struction of the magnetic moment as analytical in-
variant may be described in the high-temperature limit
as an evolution of two subsystems to a common thermal
equilibrium. We shall first set up a Pauli equation for
the complete system in order to study the approach
towards equilibrium. The treatment we present here
differs from previous ones by the explicit introduction
of the representation with basis vectors

I M, ts). It gives,
therefore, a deeper physical understanding of the time
evolution mechanism. It shows the necessity of extend-
ing the calculations to the fourth order in the perturba-
tion and introduces the concept of a dipole-dipole re-
laxation time, which is the basis of the dynamical justi-
fication of the equilibrium considerations of Sec. A.

Master Equation for Interacting Spins Systems

It has been established, that under very general condi-
tions, the time evolution of a large system with a con-
tinuous energy spectrum is governed by a non-
Markovian master equation. ' "Neglecting temporarily
the contribution from the nondiagonal elements of p at
time zero, the diagonal elements of p satisfy"

a,(uI p(t) Iu)=
m

dr le ~ ~

m —2 $$ 0

Tm —3

drm 2

X(~ILV(), LV( t), L "LV(r=s), LV(0), p (t—r)3" jl~)s', (»)

where p" (t) is the diagonal part of the density matrix

p" (t) =~
I &)(&I p(t) I &)(~I.

tion representation of V,

V (t) = exp (t'Xst/ft) V exp (—inst/t't) . (83)

The Hamiltonian has been written 3C=Ks+XV, the
Ik) are the eigenstates of 3Cs and V(t) is the interac-

"The chemical potentials introduced by E. A. Desloge and
W. A. Barker t Phys. Rev. 108, 924 (1957)] correspond to a de-
scription in terms of the Zeeman states of individual spins and
these authors introduce only one temperature which is the lattice
temperature. In the case of the solids with spin-spin interaction
considered here, the spin system has a continuous energy spectrum
and the state of individual spins are not invariants of the motion
with our unperturbed Hamiltonian. One has a chemical potential
not for each Zeeman state of a single spin, but for each spin species.
The temperature introduced here is that of the spin system.

The subscript d i indicates that no intermediate states
should be represented by a diagonal element of p. This
is precisely the condition to be fulfilled in order to get
one and one single t factor in the formal solution for

p(t) "One then. recognizes in the right-hand side the
time derivative of this formal solution. In applying this

's P. Resibois, Physica 29, 721 (1963).
"We use the two notations ps;s=ik~p~kl.
'4 For further details concerning the general theory of irreversiblt;

processes, see Refs. 1 and 12,
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general formalism to our problem we put

KO=Xz+V&o& l&U= g V'&.
e/0

(84)

fields one may simply take the square of the S matrix

2Ã
b(—E~,„E~—,„.) ~P P(M,e ~

e n"

The eigenstates of the unperturbed Hamiltonian are
denoted by ~M,n). We do not know these eigenstates.
Nevertheless, we shall perform the calculations formally,
assuming that an occupation number representation
with continuous wave vectors exists. This hypothesis
which is already implicitly assumed in Van Vleck's
work, " is necessary for any theory of this kind. The
expressions we obtain may afterwards be used to calcu-
late traces which can be evaluated in any representation.

We now proceed to evaluate the kernel of this integral
equation up to the terms in )4. Going then to the limit
)v-q, that is, considering the collisions as instantane-
ous, we derive a generalized Pauli equation. The collision
time 7 q which appears here is of the order of the inverse
of the linewidth Aor. This follows from the fact that the
usual asymptotic formula,

X V&'& (E»r „—E»r, „—shcoo+$E) V& &

( M, rt) (
'.
(87)

Using the formula

lim(x+ie) '=P(1/x) —in.b(x),
c—+0

and dropping the b terms (high field approximation),
one gets

2'
b(Esr, „—Esr,.„)~P—LV&'&, V&-'&]»r.

, &k& /s&&t&0p~'. (88)
gg S

Finally, the Pauli equation takes the form:

~tPM, n; M, n

lim d(o
Q~OQ

f(~)e'"dt = 2n.Tf(0), (85)

2'——Z ~ (2 U&'&) &&r, ;3r,;I
'(p~, ;;3r,; p»r, .; s—r.)

n'

XbL(M' —M)hcop+E~, „—Esr. ,„.]
may be applied as soon as T»(h&u) ', h&e being the
frequency interval over which f(co) varies appreciably.

2'
+—Q[Q PU&'&, V&—

'&]»r, , n&, /sh&op)'
n' e

Collision Operator

(a) 2'erms irt X'. They correspond to transitions
M~~M&1 and M~~3E~2. These are the usual
second-order transition probabilities. They describe an
energy transfer between the Zeeman coordinate and
the dipole-dipole system and become more and more
important for low fields. They are

X (pM, nl;sf, n' p»r „,sr „)b(Enr „Esr„). (8—9)

One easily sees that in this approximation and in the
absence of special initial phase correlations one may
neglect the contribution of the nondiagonal elements of
p at time zero, since they always contain at least one
factor X more then the retained terms. Our equation is
thus valid when the relations

2'
~ (2 U&'&)ns, ;»r,

e

XbPE~ „Esr.„+(M' M—)h(so]. (86)—

hold.

&collision~~'rdipole-dipole + 'rdipole Zeeman~~'rspin-lattice

Discussion of the Maser Equation

(b) Terms in &'. They also correspond to an energy
exchange between the Zeeman and the dipole-dipole
system. Since they are in a higher order in ) and describ-
ing the same processes as the previous terms, we shall
neglect them.

(c) Terms irt X'. There are two types of such terms.
Those describing an energy exchange between the two
subsystems and those bringing the dipole-dipole system
towards equilibrium. The first class of processes is
neglected for the same reason as in (b) and we proceed
to calculate the second class. The different contributions
may be classified using the diagrams introduced by
Fujita."However, it turns out that in the case of high

"J.H. Van Vleck, Phys. Rev. 74, 1168 (1948)."S.Fujita, Physica 28, 281 (1962).

The rate of the transitions is determined by the order
in the perturbation but also by the possibility of con-
serving energy. The eigenvalues of Kz+V&'& form a
band spectrum, one band for each M. The overlap be-
tween the different bands depends on the magnitude of
the external field. For a weak overlap, transitions from
one band to another (6M= s&0) are highly improbable
because the relevant density of states becomes ex-
tremely low. On the other hand, the conditions of con-
servation of energy is easily fulfilled for transitions
within the same band (AM= 0).As a result, the relation
& '/Tl&z((X /Tr&r& holds for high fields.

Dipole-Dipole Relaxation

Let us suppose that the external field H0 is such that
the dipole-dipole relaxation time is much shorter than
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Zeeman Dipole-Dipole Relaxation

The basic equation describing the variation of the
Zeeman energy is

&,(»pXz)
=Itoio g MVM, m;M —s,n' Vir s, n', M,a—

m, n, n', s

X(2~/&)h(&~, .—&u ...)

X (psr, n. ;sr, e psi—s, n'sr —S, n') ~ ,(811)

An estimation of the Zeeman dipole-dipole relaxation
time has been given by Hartmann and Anderson' using
the hypothesis that p is at any time of the form (A11).
We treat this problem as some kind of Brownian motion
of the collective Zeeman coordinate in the "dipole-
dipole heat bath. "Taking the trace of the master equa-
tion over the dipole-dipole system we obtain equations
closely related to the usual Bloch equations, with the
peculiarity that the temperature of the heat bath varies
during the process. Let us assume that the diagonal
elements of p have the form

pM, n;M, n 0si;M exp( —Pii&'.)/Triavil
=o~, sr exp( —pDE„)/g(M),

with the normalization

pM, s;sr, n P oM;M
M, n M

(812)

'7 P. G. de Gennes, J. Phys. Chem. Solids 4, 223 (1958).' A. G. Redfjeld, Phys. Rev. $/6, 315 (1959),

the Zeeman dipole-dipole relaxation time. In the master
equation, (89), one may then neglect the terms in V'
describing an energy exchange between the two sub-
systems, getting a set of separated equations for each M:

Siwr, ', ir,.=2~/@ZIP LV",V' ']sr, ";s, I'
n" s

X(pM, n", sr, n"pM, e;sr, n)5(+M, n +M, n") ~ (810)

The system reaches its equilibrium in two steps. The
first one is governed by the Eqs. (810) which describe
the evolution of the dipole-dipole system to internal
equilibrium. The characteristic time of these processes is
in ),—4. However, as long as the eigenfunctions and eigen-
values of t/'(" remain unknown, it is not possible to go
from (810) to a Boltzmann-like equation which should
give us explicitly the dipole-dipole relaxation time. One
expects that this time is of the order of (d«o) '(FIs/Hi)'.
It would be most interesting to measure this time,
setting up experiments in which the distribution of the
dipole-dipole energy is not a canonical one and to study
its relation with diffusion processes. ""The second step
in the evolution towards equilibrium is characterized by
an energy between the Zeeman and dipole-dipole sub-
system, it brings the whole spin system to equilibrium,
this is the Zeeman dipole-dipole relaxation.

One gets

8 o si, = —g(21'sriir'I osr, sr —exp( —Pi&sA(dp)

with
Xosr+. , w+,g(M)/g(M+s)]}, (815)

rsri«'= g VM, „., sr+„„-'Vjr+...', M,~"exP( —PDE~)
n n'

XL /Ag(M)]h(&jr, —& +, , +shcos). (816)

In (815),Pn is still a function of time which is deter-
mined by the conservation of the total energy

(d/dt) Trl p(Kz+V&'&)]=0 (817)

In the case of small deviations from equilibrium one may
look for a solution of the form

o jr si(h) =., g (M) exp[j8n (t)M Aors]/Tr 1 . (818)

(815) then gives the equations

(d/dh) pz= g 2&Mi«'M '(pi) p—z) . — (819)

Remembering that M is very large, that I'&~' varies
slowly with M, and that the relevant values of M are
practically equal to M, the set (819) may then be re-
placed by a single equation which is the equation written
by Hartmann, Anderson, ' and Provotorov. '

(d/dh)pz QTrLV&'& V——& 'orbal(Esr „—Esr+, , +s~p)]

X (p p)/»(—&.') (82o).

Let us remark that a large external rotating Geld can
always be included in a new unperturbed Hamiltonian
by means of a unitary transformation. As a result the
spin systems evolves then towards a canonical distribu-
tion in the rotating frame as assumed by Redield. "This
problem shows the importance of the interference
between external force and collision processes in a
Boltzmann-like equation.

Cross Relaxation

The formalism may easily be extended to treat the
problem of two or more spin species. ' " Let us, for
instance, consider the case of two spin species. The
Hamiltonian is

X=ae (1)+Xz(2)+V&"(1)+V&" (2)
+V&'& (1,2)+ . (821)

"A. G. Redfield, Phys. Rev. 98, 1787 (1955).
"N.Bloembergen, S. Shapiro, P. S. Pershan, and I.O. Artman,

Phys. Rev. 114, 445 (1959)."P. S. Pershan, Phys. Rev. 117.109 (1960).

and the equilibrium distribution

o sr,.sr ——g (M) exp (pi)Miho&s)/

Q g(M) exp(pnMtuoo) . (814)
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As in (A9), the sum of the Zeeman terms and of that
part of the interaction which commutes with them is
taken as unperturbed Hamiltonian. The basis vectors
satisfy

Lgf.z(1)+Xz(2)jIM„M„n)
= A(Mitor+M2tos)

I Mr, M2, tt), (822)
L&'oi(1)+ Vto'(2)+ V"'(1,2)j I Mr, Mstrs)

=Ettr, , ttr, , IMr, 3Is,rt).

The equilibrium properties of such systems are charac-
terized by three invariants: the total energy (or the
dipole-dipole energy) and two magnetic moments (or
Zeeman energies). The density matrix representing an
ensemble of such systems is

P j/II, M2, ; MI, ~2, ~

=exp( —If+ viMi+ vsM2 PEsr, , ttr, , ) (823)

where the potential q is given by

q=ln Tr exp{vrMi+vsMs
—

PI ~"'(1)+V"'(2)+l'"'(1 2)3) (824)

The mean angular moments (in units f't) are given by

M;= cjoy/Bv, (825)

and the chemical potentials by

ft;= (&Et/BM;)s= T(BS/&M;—)tr, . (826)

final values of P, Mi, Ms are determined by the
equations

P (ct1~1+cr2™2)
—Mrnr Tr1/Tr(Mrs) —Mstr2Tr1/Tr(Ms') =0, (828)

Ml/trl+M2/tr2 = C ED+M1&1+M2&2=Et

expressing, respectively, the conditions of chemical
equilibrium, the condition already expressed by (827),
and the conservation of energy. An alternative treat-
ment consists in remarking that we now have two
Zeeman collective coordinates, a linear combination of
which being coupled to the dipole-dipole system through
the V(') terms. This is most easily seen if one rewrites
the Zeeman Hamiltonian in the form

3'z=-',
I Se(1)/Ql+S, (2)/trs)(nttor+trsto2)

+-,'LSt(1)/ui —S,(2)/nmj(nisei —nsto2) t (829)

where that part of the Zeeman Hamiltonian that be-
comes coupled to the dipole-dipole system has been
separated. The problem is now completely analogous to
the Zeeman dipole-dipole relaxation already studied
before. One could also say that the collective coordinate,
S,(1)/ur+S, (2)/n2, should now be considered as being
part of the dipole-dipole heat bath. Let us show that the
condition of equal temperature for this coordinate and
the dipole-dipole system is equivalent to the condition
of chemical equilibrium. Noting that

p&S, (1)~&+P&S,(2)When the difference of the Larmor frequencies becomes
of the order of the linewidth, or more generally when
nrtor+tr2tom Ate (tr; being integers close to one) one of
the invariants is destroyed by the transition caused by
the V"&(1,2) terms of the Hamiltonian. In the situation
just considered, the two angular momenta are replaced
by the single invariant combination Mr/ct& —M2/ct&. The
usefulness of a thermodynamical approach to cross re-
laxation has recently been shown by Jeener. r This
process is analogous to a chemical reaction in which
chemical species are destroyed but where the total
quantity of matter remains constant. Let us introduce
as in chemical thermodynamics" the reaction coordi-
nate $ and write

e +tt~ s.tt) s.p))+
trlto1+cr2to2 trt mrs

+ i tt —e~)X(I+2 I Gigot —Q2to2

/S, (1) S,(2
xI +

I I, (»0)
4 nr ns ) 2

this condition is

Mr(&) =Mr(0)+ot, d&,

M, (f)=M, (0)+n,d~,

dM r/oti dM2/atm d)—— ——
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Using (A21), P;=M; Tri/Ate; Tr(MP), (831) becomes

(827) equivalent to (828).

At equilibrium the entropy is maximum and the amenity
of the reaction is equal to zero: A =triftr+ot2fss=0 The.
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