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Theory of Resonance Frequency Shift due to Radiation Field*
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A formalism is developed to calculate radiative processes, and applied to the shift of resonance frequency
due to the radiation field itself. The zeroth approximation gives the Bohr resonance condition, while the
next approximation gives a shift proportional to the photon density. The first-order shift is made of two
terms: electric and magnetic. They can be interpreted as second-order Stark effect and Zeeman effect due to
the oscillating field, respectively. A comparison with experimental data on the Cs atom is made. A good
agreement is obtained by choosing the value of parameters suitably. These values of parameters can be
checked by a future experiment.

INTRODUCTION
' 'N order to explain hydrogen spectral lines, Bohr'
~ ~ postulated that the absorption or emission of radia-
tion field energy by an atom can take place when the
frequency of the radiation Geld is equal to that of the
atom which is given by the energy difference between
atomic stationary states divided by the Plank constant
h. This postulate was so successful that this is one
of the few basic assumptions on which the entire quan-
tum mechanics has been developed.

Each spectral line, however, has a shape, or is charac-
terized by the width and the shift of the center fre-
quency. Such spectral line shape is often due to inter-
atomic interactions. When the interactions between
atoms are negligible, a width of a spectral line still exists
and is called its natural linewidth. A shift must also
exist even when interatomic interactions are negligible.
Such a shift of spectral line, which may be called the
natural line shift, was 6rst pointed out by Bloch and
Seigert' with respect to the nuclear magnetic resonance.
They showed theoretically that if one uses a linearly
polarized electromagnetic wave to observe a magnetic
resonance, a shift is expected compared to the case when
one uses a circular polarized wave. Bloch and Siegert
discussed the simplest case of spin one-half, while
Salwen3 discussed the same effect in more general cases
to explain the experimental result of Heberle, Reich,
and Kusch. 4

Recently, Beehler, Snider, and Mockler' observed the
center frequency of Cs 9-kMc/sec lines and found that
it shifts when the input power of the radiation is in-
creased. The present paper develops a general theory of
the natural line shift to explain Heeler, Snider, and
Mockler's result. The theory includes the Bloch-
Siegert effect as a contribution, but gives a completely
general formula.

—t4* exp(iieet)]Ge(r), (2)

where Ge(r) is the amplitude of the kth mode of the
6eld normalized with respect to the volume of the
cavity V as

I Ge(r) I'd V= V. (3)

Note that if the cavity is infinitely large, G&(r) can be
exp (ik r) as given in any text books of quantum electro-
dynamics, ' but for a finite cavity Gz(r) should be real
and different from such expression. e), is the polarization
unit vector, coI, is the frequency of the kth mode, and
aj„a~ are familiar annihilation and creation operators
defined as

(~~ I
~~

I
~e+ 1)= (~e+1I ~~*I~~)

=PIt (ne+1)/2coee pV $, (4)

where nI, is the photon number of the 4th mode and eo

is the capacitivity of the vacuum.
The eigenvalues of II„ the Hamiltonian of the atom

in vacuum, are very dificult to calculate but can be
measured in spectroscopic experiments using Bohr's
postulate.

The interaction between the field and the atom is

HAMILTONIAN

The Hamiltonian of our system is made of three parts,
namely, that of the radiation field, that of an atom in a
vacuum, and that of the interaction between them:

H=H„+H +H, .

The 6rst term H„, which is the Hamiltonian of the
radiation field, can be given by the vector potential

A(r, t) =P g eiLai exp( —i~p, t)

H, = —P, De;/ti;)P, A, (e, /'2p;)—A,e

+(;/;)," (vXA~)], (5)
*Supported by the National Bureau of Standards, Boulder

Laboratories, and by the U. S. Army Signal Corps.
' N. Bohr, Phil. Mag. 26, 1 (1913).
' F. Bloch and A. Siegert, Phys. Rev. 57, 522 (1940).
' H. Salwen, Phys. Rev. 101, 623 (1956).
' J.Heberle, H. Reich and P. Kusch, Phys. Rev. 101,612 (1956).
' R. E.Beehler, C. S.Snider, and R. C. Mockler {private comm

nication).

where e;, p;, s;, and P; are the charge, mass, spin, and
momentum of the ith particle of the atom, and A; is

u- 'For example, W. Heitler, The Quantum Theory of Radiation
(Oxford University Press, New York, 1954).
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the vector potential at the position of the ith particle.
Since we are interested in modes with wavelength very
much larger than the atomic dimension, we can ap-
proximate (5) as

II;= (p/p)P Ao—(Zp'/2lt)Aos
—j(p/2p)(L+2S) (VXA)o, (6)

where e and p are charge and mass of the electron, Z
is tlie total number of electrons, P, L, and S are total
linear momentum, total orbital angular momentum,
and total spin angular momentum of electrons, respec-
tively. Subscript 0 means to take values at the position
of the atom. It vras shown by Power and Zienau~ that
in our case the erst two terms in (6) can be replaced by

Z.~&el M. (as—aa*)G.o,

where M, is the dipole moment ot the atom.
In a representation in which both P„and H, are

diagonal) wc have

(nka ( 8, ( nsa) =n,h~s,

(n&ai e.in, a) = W. ,

vrhcrc F', is the energy of the atom in its ath state.
Nondiagonal matrix elements are:

(noa ( II;(no+ ib) =—i(p/2p) (clX VGg, o)
~ (a i L+28 j b)PA(n, +1)/2rog, eoV$'is, (9)

(no ) H;) no+1')
=iso,Goo(a~ e), M, (c)Lh(no+1)/2&oseoV)II'. (10)

Atomic states u and b can bc thc same, but state c is
difkrent from them.

=l I(+1PIII;t )I I p(-'E-l/~)
gazoo

—-pr —.E,~P) ) /(E„—E,) I

= (2tr/its) i (n+1PiH;inrr) I'8L(E —E.+I)/Aj, (21)

which gives the resonance condition

~n ~n+1 ~

SlQcc thc 6rst approximation to thc clgcnvRIucs glvcs

E„—n»+ W„

E~I= (n+1)»+Wp

according to (8); the resonance condition (22) is

(23)

which is the Bohr resonance condition.

pcltuIbRtloD method can be usc'd to ohjtaln clgcnfunc~
tions. Thus the 6rst approximation is obtained as

fn )=o„+(n+1PJII;in )
&&(E.+1—E ) '~.+1+2-4o (16)

~n+1P)=&„+I (—~)a;[n+IP)
X(E„„—E.)- &.+E &.w. , (»)

whcl'c

The Schrodinger equation

ls folIQRlly solved Rs

f(t) =exp( —iH//h}f(0), (12)

where exp( —iII//is) is called the time development
operator. The transition probability for i-+ f can be
de6ned as

S(i —+ f)=lim](ffexp( iIIt/5))i)[s/I. —(13)

FREQUENCY SHIFT

Thc dcvlRtloQ from thc Bohl' lcsonaQcc coQdltlon

(25) can be obtained by calculating the eigenvalues E„
RQd E~ 1 to a hlghcx' order of Rpproxlmatlon. For ouI'

case vrherc the degeneracy exists due to the condition
(22), we see the Van Vleck transformation'is most suit-
able to calculate such improvement. Thus we obtain

E„=no +W.+ P [(~[a,(n'~) ('/

E(n n')»+—W. W„j, —(26)

Wc al'c lrltcl'csted 111 tile CIlllssloll ot a Pllotoll wllcl'c E (n+1)»+W +.g ( (n+IP)@ ~ n +) (s/

(14)

(15)

in the same notation as in the previous section.
As a result of the interaction term H;, wave functions

(14) and (15) are not eigenfunctions of the Hamiltonian
H. If H; can be assumed to be small, however, the

' E. A. Power and S. Zienau, Phil. Trans. Roy. Soc. (London)
A251, 427 (1959).

L(n —1—n')»+Wp —W~), (27}

Fl'0111 (22) thc Icsonallce condltlon ls liow

»= W —Wp+D,

8 t. H. Van Vlcc', Phys. Rev. 83, 467 (&929)
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where the shift Q is, from (9), (10), and (27),

Q=~aLP, I ( IDI~) l~{(a +w.—w, )-i
+(—hsr+W —W~) '}
-Z, l(PIDI~) I {(~-+w.-w, )-

+(—5~+W —W ) '}]/2ueoV, (30)

where y does not include n nor p, and

D= (e/2p) (ei,XVG), (L+2S)+OiGoe), .M, . (31)

In (30) we neglected one compared to n
Because of the selection rule, the shift (30) can be

expressed as a simple sum of terms called electric shift
and magnetic shift, respectively:

Q=Q,+Q. , (32)

p, =e~Go'/2V (34)

is the time average of the electric 6eld energy density
at the position of the atom. On the other hand, the
average electric 6eld strength at the position of the
atom ho is given by

p.= &oho /2 (35)

so that (33) can be written as

Q.=(ho'/2)l:Z. I( I 'M. lv)l'{(~+w- —w.) '

+(—I yw. —w„)-i}—p, l(pie, M, I~) I'
X{(ku&+ Wp —W, ) '+ (—Aco+Wp —W~) '}] (36)

which shows that the electric shift 0, can be interpreted
as a second-order Stark effect due to the average elec-
tric Geld of the radiation. Note, however, that the matrix
element (n I ei, M, I p) does not contribute to the shift.

The same interpretation can be done about the mag-
netic shift 0 . If we dehnc the average magnetic Aux

density at the position of the atom 80 by

pm= Bo /2po,

where p is the time average of the magnetic Geld energy
density at the position of the atom, and p, o is the perme-
ability of the vacuum, we see that

Q-= (~0'/2)LZv I (~ I
e~'. M-I ~) I'

X{(Aa&+W —W~) '+(—Aa)+W —W,) '}
-Z. l (pie~' M-l~) I'

X{(r +W,—W,)-i+(—I +W,—W,)-'}], (38)

Q, = = (mfuoGO'/2epV)LP„I (o.
l
ei, M, I

y)'
X{(fuo+W W,) '+—( Ao)+W——W )

—'}
—&.I(pie'M lv) I'

X{(r +W, W—)-i+(—r +W,—W )-i}] (33)

and a similar expression for 0 which is obtained from
the first term of (31).

Now

is the magnetic dipole moment of the atom. Again the
summation over y should exclude both n and P.

AM=0 for 7{- case,

63II=+1 for 0' case.
(40)

Let us consider the electric shift 6rst. Since the micro-
wave frequency ls vcly low' compared to any lcsonancc
frequency of electric dipole transition, we can use
experimental data of the Stark effect with static field,
which are given by

hF =PQ„I (aleg M, ly)l'(W —W,) '

~&a= 6'Zvl (pie'M. lv) I'(wp wv)—' (41)

The Stark cGect depends on the angle between the
electric 6eM and the quantization axis, and in Seehler,
Snider, and Mockler's experiment the electric com-
ponent of the microwave is perpendicular to the static
magnetic 6eld. Haun and Zacharias' observed the Stark
effect of (F=3, M=O)+-+ (F=4, M=O) transition in
the same situation and obtained

—2.9&10 28' cps,

where h is in V/m. We thus expect

Q, (0~ 0)/Ii= —2.9X10 'p, /eo cps

= —3.3+ l0 p~ cps

(42)

(43)

for M =0~ 0 transition. p. is in J/m'.
Since each of (41) will be expressed as (AEo—AZiM') h'

we expect the electric shift for other transitions as

Q, (M ~M)/h= (—3.3X10'+DM')p, cps, (44)

Q, (F=3, M ~F=4, M+1)/h
= (—3.3X10'+C+2CM+DM')p, cps, (45)

where C and D are constants.
In calculating the magnetic shift, we can restri'ct

ourselves to the transitions among the electronic ground
state since magnetic excitations to any other electronic
states will have only a negligible contributions due to

APPLICATION TO Cs 9-KMC/SEC LINES

The ground state of the Cs atom is 28~~~ and the
nuclear spin of —,

' splits it into F=4 and Ii =3 states.
The Ii =4 state is higher in energy than the Ii =3 state
by about 9 kMc/sec. Beehler, Snider, and Mockler' ob-
served the change of the resonance frequency due to the
6eld in tensity. In their experiment a static magnetic
6eld 8 is applied to remove the degeneracy. The transi-
tion F=4 ~ 3 is the magnetic dipole transition.

The magnetic component of the microwave can be
either parallel or perpendicular to the static magnetic
6eld. They are called x and o- cases, respectively. The
selection rules for the magnetic dipole transition are

M„= (e/2p) (X+25)
9 R. D. Haun, Jr., and J. R. Zacharias, Phys. Rev. 107, 107

39) (195&j.
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the same way, the contribution of transition
(F=3, M+2) +-+ (F=4, M+1) is obtained as

—
(p po/64) (2—M) (3—M) (eh/p)'

XI:(4)/B )+(2 o) 'j (50)

Adding (49) and (50) together, and neglecting (2coo) '
terms, we have

Q /h=1100(p /B)(7 —2M) cps, (51)

where p and 8 are given in the mks unit.
The same consideration gives the following formula

for the magnetic shift of (F=3, M) ~ (F=4, M 1)—
transition:

Q /h= —1100(p /B)(7+2M) cps.

COMPARISON WITH EXPEMMENT

(52)

Theoretical shifts for all transitions are tabulated in
Table I.

TABLE I. Theoretical shifts in cps. p and 80 are in kms units.

M (F =3) M (F =4) Flectric Magnetic

F=3

--3
--- -2

—I

0
I

2
3

Fxo. 1. Magnetic dipole transitions perturbing frequency
of (F=3, 3f=0) —+ (J =4, 3E= —1).

high excitation energies. We see immediately that under
such approximation

Q„(M+-+ M) =0 (46)

for all m-type transitions.
In the 0-type transitions, on the other hand, the selec-

tion rule makes the magnetic shift important (Fig. 1).
If the microwave is linearly polarized, as in the present
case, the transition (F=3, M)+-+ (F=4, M+1), for
example, is perturbed by the transitions (F=3, M) +-+

(F=4, M 1) and (F=3, —M+2) +-+ (F=4, M+1) very
strongly, since denominators in (38) are quite small
for these terms. Other transitions (F=3, 3II) &-+

(F=3, M—1), (F=3, M) ~ (F=4, M+2) also con-
tribute to 0 to some, but to a much smaller extent.

Since the external field 8 gives additional energy
—B(eh/p)M/8 for F=3 states, (47)

B(eh/y)M/8 for F= 4 states, (48)

the frequency of (F=3, M) ~ (P=4, M+1) transition
is coo+B(e/8p) (2M+1) is the zeroth approximation.

The contribution of transition (F=3, M) ~ (P=4,
M —1) to the magnetic shift Q„of the above frequency
is, according to (38),

6.P'/64) (4-M) (5-M) ( h/")
XL(4&/Be) (2"o) 'j (49)

wh&re p~ is the magnetic fie].d energy density. In

0
+1
+2
&3
&3
&2
&1

0
~1
&2
+3

0
+1
&2
+3
&2
~1

0
&1
a2
a3
~4

—3.3 X10ope

( 3.3 X10o +D)pe

( —3.3 X10o+4D)pe
( —3.3 X10 +9D)pe

( —3.3 Xioo —SC+9D)pe

( —3.3 X10 —3C+4D)pe

( —3.3 X10o—C+D)p

( —3.3 X10 +C)pe
( —3.3 X10o+3C+D)pe

( —3.3 X10o+SC+4D)p

( —3.3 X10 +&C+9D)pe

0
0
0
0

&1.43 X104 (pm/Bo)
~1.21 X104(pm/Bo)
&0.99 X104 (pm/BO)
+0.» X104(pm/BO)
~0.55 X 104 (pm/Bo)
&0.33 X10 (pm/Bo)
~0.11 Xio (p /Bo)

TmLE II. Theoretical result with parameters given by
(54), l55), and l56).

M(P =3) M(F =4)

0
1
0
1
0—2
3

0
1
1
0
1—3

~ ~ ~

2.50X10 '
2.50X10 '
0.95X10-5
0.71X10 '
0.73X10 '

Shift/input
(cps/mW)

(&1/50)
+1 9
+1.5—1.0
+8.5—14.0—3.0

given in Fig. 2. Straight lines in Fig. 2 are theoretical
ones obtained by choosing the values of parameters as

Dp, /inp. = 1.9 cps/mW,

Cp,/inp. = —3.2 cps/mW,

p /inp. =1.2X10 ' J/m' mW

(53)

(54)

(55)

In Heeler, Snider, and Mockler's experiment' input
power was measured, but the energy densities p, and

p in the cavity were not. It is assumed here that these
energy densities are both proportional to the input
power.

Experimental data are tabulated in Table II and
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20—

I6
hv

(cps)
I2

F=3, M=O~F=4, M= I

Bp = 2.47 x IO

OO

6v
(cps)

20—

F=3, M=I =- F=4, M=l

lo

0 I I

0 2 4 6 8 IO I2
INPUT POWER (mW)

I I I

l4 l6 I8
0
0 4 6 8

INPUT POWER (mW)

IOO—

90—

80

70
hv

(cps) 60

50

'0
0

~F=4, M=l

x IO

-40

-30
6v

(cps)
-20

—lo

F= 3, M =-2= =F=4, M=-3
Bp=07I x lo

OOO

20

IO

I I I

0 2 4 6 8 IO l2 14 l6

INPUT POWER (mW)

(b)

+lo
0 2

I I I I I

4 6 8 IO l2

INPUT POWER (mW)

(e)

I I I

I 4 16 l8

-20—

—l6
6v

(cps) - I2

F=3, M= I~F =4, M=O

Bp = 2.47 x lo

-25

-20

-15

(cps)
—IO

M=3~F=4, M=4

0.73 x IO

0
0 2 4 6 8 IO l2

' INPUT POWER (mW)

(c)

I

I4 I6 I8

0
+5

0 2
! I I I I I I I

4 6 8 IO I 2 I4 I6 I8

INPUT POWER (mW)

FrG. 2. Comparison of theoretical and experimental shifts.

p,/inp. (10—"J/m' mW. (56)

Values for the energy densities are reasonable compared
to estimations given by characteristics of the apparatus.

In the higher input regions experiment shows large

where inp. means the input power in mW. Since they
found no shift for the M=0 ~ 0 transition within the
experimental accuracy we see

deviations from linear behavior. A large disagreement

is also seen in transition (F=4, M= —2) ~ (F=3,
M = —3).

The effect of the molecular velocity is neglected in

the present theory. The experiment by Heeler, Snider,

and Mockler was with an atomic beam from an oven

of about 150'C. The deviations of the experimental

data from the theoretical lines can be due to the
molecular velocity.


