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Ground-State Energy of a High-Density Electron Gas
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The terms of O(r, Inr, ) and O(r,) in the expansion of the ground-state energy of the high-density electron
gas are studied in this paper. The value of the coefficient of r, lnr, is evaluated, and it is found to differ from
the value obtained by DuBois. The result of the present calculation for the energy per electron is

L~'=2.21r, ' —0.916r, r+0.0622 lnr, 0—096.+0 018.r, lnr, + (Es' —0.036)r,+O(r, ~ lnr, ),
where E3' is a sum of twelve dimensional integrals. Although I'3' has not been evaluated it is shown with
the aid of the virial theorem that no reasonable value of E& can make the series expansion rapidly convergent
beyond r, 1.Under the rather arbitrary assumption that E3'r, as well as higher order terms can be neglected
below r, = 1, an interpolation between the present result and the low-density expansion is carried out, and
values of the correlation energy in the region of metallic densities are estimated.

OR a large number of electrons moving in a fixed
uniform distribution of positive charge, expansions

exist for the exact ground-state energy in the limits of
both high and low density. The principal assumption
in these calculations is that the particular perturbation
series converge. A considerable importance is attached
to the question of whether these series contain physical
meaning at intermediate densities, and to the possi-
bility that the two expansions might cover the complete
range. There is particular interest in knowing if the
expansion for the high-density case, which resembles a
metal, holds in the range of actual metallic densities,
i.e., for r, between 2 and 5, where r, is, in Bohr units,
the radius of the equivalent sphere which each electron
occupies.

In low densities the electrons crystallize into a lattice'
and therefore have the electrical properties of an insu-
lator. Thus, an additional question arises, which was
investigated by Mott' in a qualitative way, concerning
the transition from metallic to nonmetallic behavior. 4

In a previous series of calculations' ' the problem of
the low-density electron gas has been treated in some
detail"; in particular, it appears that the expression ob-
tained may be valid down to the neighborhood of r,
equal to eight or nine, and an estimate of the next term
in the expansion gives a reasonable result down to an
r, of about six. Because of this result it seems pro6table
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to carry the high-density calculation one step further,
which means evaluating the r, and r, lnr, terms. The
r, lnr, term has in fact already been evaluated by
Du Bois. We obtain a considerably different result
however, and have uncovered a number of errors in the
original calculation (which may not seem too surprising
considering the length and tedious nature of the
problem).

We shall review the calculation along the lines origi-
nally developed by Gell-Mann and Brueckner. ' The
kinetic energy operator T is the unperturbed
Hamiltonian and V, the total Coulomb interaction, is
the perturbing part.

Up through second order in the Rayleigh-Schrodinger
perturbation series the energy terms are known, the
result in Rydberg units being

' E. Wigner, Trans. Faraday Soc. 34, 678 (1938).
2More precisely, they would have these properties if small

irregularities were placed in the positive charge to break up the
translational degeneracy.

3N. F. Mott, Phil. Mag. 6, 287 (1961).
4 Some authors have speculated that a transition occurs at low

density from a lattice to a "liquid" arrangement in analogy to the
melting of a solid. Since a solid melts largely because of entropy
considerations, and only the ground-state energy is involved here,
the analogy is not a close one, however. Nevertheless, the possi-
bility remains that other transitions might occur within the
metallic or nonmetallic range.

5 W. J. Carr, Jr., Phys. Rev. 122, 1437 (1961).
6 R. Coldwell-Horsfall and A. A. Maradudin, J. Math. Phys. 1,

395 (1960).
7W. J. Carr, Jr., Rosemary A. Coldwell-Horsfall, and A. E.

Fein, Phys. Rev. 124, 747 (1961).
"Eote addedin proof. Some recent work on the low-density gas

has been done by F.W. de Wette, Dept. of Physics, University of Ill-
inois and Argonne National Laboratories (private communication).

A3

Pt&l, Ps&» I»+~l» lps+al»
and where S is the number of electrons, e the unper-
turbed energy, q a momentum transfer between elec-
trons, and y a momentum within the Fermi sphere.
The subscript zero indicates the unperturbed ground-
state wave function and j indicates an unperturbed
excited state, each state being a Slater determinant of
plane waves. The value of the second, or exchange
term, in (3) is the result of the computation of Marcum
and Kahn, given by Gell-Mann and Brueckner. '

D. F. Du Bois, Ann. Phys. (N.Y.) 7, 174 (1959).
9M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364

(1957).
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TABLE I. Comparison of the correlation energy obtained by
various estimates. The energies are in Ry units.
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FIG. 1. Correlation energy plotted against r, .The curve marked
E3'=0 is a plot of Eq. (27) with E3' neglected. The straight line
is a plot of 0.0622 lnr, —0.096, the Gell-Mann and Brueckner ex-
pression for the correlation energy. The solid curve for large r,
was taken from Ref. 7, and the dashed curve is an interpolation.
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FIG. 2. The kinetic part of the correlation energy plotted against
r, . The meaning of the various curves is the same as in Fig. 1.

~' N. H. March, Phys. Rev. 110, 604 (1958).

where E'3 is the sum of the twelve-dimensional inte-
grals given in Kq. (9). The individual terms in E 3

diverge. However, when the first three and the last two
integrals are grouped together the result seems to be
finite.

From (26) the correlation energy E„defined as
E—2.21r, '+0.916r, ', is given in the first two orders
of approximation by

E,= (0.0622 lnr, —0.096)
+r, (0.018 lnr, +E'3—0.036) . (27)

In Fig. 1, E, is plotted against r„with E3 arbitrarily
taken to be zero. The first-order approximation for the
correlation energy, 0.0622 lnr, —0.096 is shown on the
same figure. By use of the virial theorem' '4 the kinetic
and potential correlation energies T, and V, have also
been plotted in Figs. 2 and 3.

If the series expansion is rapidl. y convergent and
Eq. (27) accurately represents the correlation energy
in the region of metallic densities, we would expect that
in this region, and especially at smaller densities, the
second-order term would be quite small compared with
the first. As observed in Eq. (27) and Fig. 1, however,
such is not the case unless E3' is positive. But according
to Fig. 2 even with Eg' set equal to zero, Eq. (27) gives

' W. J. Carr, Jr. , Rosemary A. Coldwell-Horsfall, and A. E. Fein, Phys.
Rev. 124, 747 (1961).

h E. Wigner (corrected) D. Pines, in Solid State Physics, edited by F.Seitz
and D. Turnbull (Academic Press Inc. , New York, 1955), Vol. 1, p. 367.

e J. Hubbard, Proc. Roy. Soc. (London) A243, 336 (1958).
d P. Nozieres and D. Pines, Phys. Rev. 111,442 (1958).

an absurd negative kinetic correlation energy over most
of the range of metallic densities. A positive E3' would
make T, go through zero at an even smaller value of r, .

The conclusion is that regardless of the value of E3',
Eq. (27) will not give an accurate account of the corre-
lation energy in the interesting region of r, between two
and five, since in binding energy calculations the result
is often desired to the order of 10 ' Ry or better. If the
series (26) converges at all in this region of interest it
does so rather slowly.
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FIG. 3.The potential part of the correlation energy plotted against
r, .The meaning of the various curves is the same as in Fig. 1.

If the metal to nonmetal transition introduces no
more than a small discontinuity in the slope of the
ground-state energy as a function of r„ then the high-
density and low-density expressions for the energy
might be expected to fit smoothly on to one another.
Since E3' has not been evaluated we have arbitrarily
taken a value (specifically Ea'=0) which allows a
smooth connection between the high- and low-density
results for the correlation energy and the kinetic and
potential correlation energies. With E3'r, neglected, a
reasonably smooth connection can be made in Figs. 1—3
if it is assumed that the high-density curve is accurate
only for r, less than unity. Such an interpolation is
shown by the dashed line of Fig. 1. The correlation
energies estimated in this way are given in Table I.
They are intermediate between the values of Ref. 7
and previous estimates. However, it is doubtful if any
of the estimates in Table I can be relied upon to 10 '
Ry and to this order there is agreement.


