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Quantum- Theoretical Comparison of Nonlinear Susceptibilities in
Parametric Media, Lasers, and Raman Lasersf
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The steady-state response of a nonlinear medium to several simultaneously applied monochromatic elec-
tromagnetic fields is described by the density matrix method. A Fourier series expansion in terms of ascend-
ing powers of the amplitudes of the applied fields is especially useful to describe the parametric response in
spectral regions, where the absorption is small. As the resonances of the material system are approached, the
general formalism exhibits the mixture and interference between parametric processes and single- and
multiple-photon absorption and emission processes. Previously discussed examples of the two-level and three-
level system are generalized. The reaction of the general nonlinear medium on the electromagnetic fields is
incorporated.

I. INTRODUCTION

' 'N an ideal lossless medium only parametric processes
-- occur, as transitions between energy levels of the
material system are con6ned to 8-function type singular-
ities as a function of the frequency of the photons. The
energy of the photons remains conserved. Nonlinear
scattering processes in which three or more photons
participate were considered by Blaton' and Guttinger. '
The corresponding nonlinear part of the dielectric
polarization, which results from the interference
between all such nonlinear scattering processes by all
atoms in the crystal lattice, was calculated by Arm-
strong et al.' for a lossless medium.

If one wishes to generalize this theory to include
damping, one is immediately confronted with the fact
that the parametric processes become interwoven with
processes in which one or more photons are absorbed or
emitted. Since the damping mechanism is statistical in
nature and results from the interaction with random
photon and phonon fields about which our information
is far from complete, the use of the density matrix
formalism is appropriate. Karplus and Schwinger4 used
it to describe the saturation of microwave resonances.
This may be considered as a kind of nonlinear e6ect
in which successive absorption and emission of quanta
at the same frequency takes place.

This formalism was extensively developed, especially
in the study of nuclear magnetic relaxation. ' " The
interest here will be limited to dilute systems, in which
the interaction between particles is very small compared

t This research is supported jointly by the Once of Naval
Research, Signal Corps of the U. S. Army, and U. S. Air I'orce
and the Advanced Research Projects Agency.' J. Blaton, Z. Physik. 69, 835 (1931).' P. Guttinger, Helv. Phys. Acta 5, 237 (1932).

3 J.Armstrong, N. Bloembergen, J.Ducuing, and P. S. Pershan,
Phys. Rev. 127, 1918 (1962). LThe factor —,'in the last two terms
of Eq. (2.9) of this paper should be omitted. j' R. Karplus and J. Schwinger, Phys. Rev. 73, 1020 (1948).' R. Kubo and K. Tomita, J. Phys. Soc. Japan 9, 888 (1954).

a R. K. Wangsness and F. Bloch, Phys. Rev. 89, 278 (1953).
F. Bloch, Phys. Rev. 102, 104 (1956).

8 A. G. Redfield, IBM Journal 1, 19 (1957).' See, for example, A. Abragam Principles of NucLear Magnetism
(Oxford University Press, Oxford, 1961).

M P. S. Hubbard, Rev. Mod. Phys. 33, 249 (1961).
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(Cfpsb/Ctt)random= +ababPab 1 abPab ~ (1.2)

The X diagonal elements relax in a combined fashion
leading to K—1 longitudinal relaxation times. Their
inverses are the eigenvalues of the determinant of the
m „„.Each off-diagonal element decays with a character-
istic transverse relaxation time I'

q which has, in
general, both adiabatic and nonadiabatic contributions.
The latter are caused by the finite lifetime related to the
transition probabilities m „, mq„. In the case of only
two energy levels one has F, ,d= (1/2T&) = (tttab+ wba).
The former corresponds to a random modulation of the
splitting hv~, due to diagonal elements of the random
perturbation Harniltonian as may e.g., be caused by
lattice vibrations. In the special case that the only
random perturbation is nonadiabatic and corresponds
to spontaneous emission of photons from levels u and
b to other lower levels, the relaxation terms may be

7

to the energy separation between levels, and also small
compared to differences in spacing between energy
levels of an individual particle. Equally spaced levels
are not considered here. These assumptions are usually
well met in the optical region of the spectrum, and may
on occasions also be valid in dilute paramagnetic
materials at microwave frequencies. Furthermore, the
random interaction Hamiltonian will usually have a
constant spectral density over a frequency range
larger than the linewidth of individual transitions. They
are physically caused by radiative and nonradiative
processes in which photons and/or phonons are absorbed
and emitted. The interaction with random or thermal
radiation Q.elds and the lattice vibrations includes the
eGects of spontaneous emission. In the parlance of
magnetic relaxation the case of interest corresponds to
the limit of "rapid motion in an isotropic medium. "
Under these circumstances the effect of the random
Hamiltonian on the motion of the density matrix is
given by phenomenological damping terms,

(r)Pas/r)t)random g +aannPnn P tOanPnn
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expressed by the anticommutator,

where F is a diagonal matrix.
In the field of magnetic resonance, relaxation theory

has been developed to an advanced stage' in which the
interaction between individual spins may have a large
influence on the relaxation behavior. When the interac-
tion between individual atoms or ions is ignored, the
relaxation terms retain the same form in the presence of
applied periodic fields. There is, strictly speaking, a
slight modification because the system tends to relax
to thermal equilibrium at the instantaneous value of the
applied fields in the limit of relaxation by rapid motion.
The assumption that the relaxation terms always retain
the form given by Eqs. (1.1) and (1.2) is, however, a
very good approximation for the physical situations
encountered in lasers and nonlinear optical devices.
Effects of inhomogeneous broadening, strain broadening
of optical lines, etc., can always be taken into account
by integrating the final results of this report over a
distribution of the resonant frequencies of the atomic
system.

The total Hamiltonian will consist of the part Kg
which determines the unperturbed energy levels of the
atomic system, the interaction K„&of this system with
one or more applied monochromatic fields, and a
random Hamiltonian K„„~. , which includes not only
the photon and phonon relaxation processes already
discussed, but also applied random pump fields. If a
laser crystal is e.g., surrounded by a Gash lamp, it is
subjected to random fields characterized by different
temperatures depending on whether the solid angle sub-
tends an element of the Gash lamp or not. In this case,
the transition probabilities due to random fields obey
the relationship

'Nab=@ g 5)ab0

~ba ~Q ~baQ

with
tcb.n=zg. bu exp( —hob./kl") .

The equation of motion for the density matrix can thus
be written,

ikp = (3Cz,pj+LK,.b,p1+i7i (imp f c)t) „„g„„, (1.4)

where the last term is given by Eqs. (1.1) and (1.2).
In this form various authors have discussed the response
of a material system subjected simultaneously to two
applied periodic fields. Particular attention has been
paid to two- and three-level maser systems. Javan, "
Winter, " and Yatsiv" emphasize the importance of
two-quantum Raman processes which may occur in

u A. Javan, Phys. Rev. 107, 1579 (1957).
» J. M. Winter, J. Phys. Radium 19, 802 (1958);and A. Javan,

ibid 19, 806 (1959). ."S. Yatsiv, Phys. Rev. 113, 1538 (1959).

such systems. Anderson" clearly describes a basic
parametric process for a three-level system. Clogston"
has given a formula which contains all these processes.
Although he emphasizes the operation of a three-level
maser, he did not omit the parametric term, as Fain"
has asserted. The latter'~ has also used the density ma-
trix formalism to discuss the operation of maser oscil-
lators. Kastler' and his co-workers"' have extensively
used this formalism to describe the simultaneous action
of radiofrequency and optical fields, as have Wilcox and
Lamb. ' For a two-level system the density matrix
formalism is identical with the classical Bloch equations
for magnetic resonance. "Harmonic generation in ferro-
magnetic resonance, a parametric process, was studied
theoretically and experimentally at an early date by
Ayres, Vartanian, and Melchor. '4

All these papers —and many others which cannot
be referred to here —emphasize one or more aspects of
the general steady-state response of an atomic system
subjected to a number of simultaneous periodic pertur-
bations. Usually the interest has been focused on
situations at or near resonances of the atomic system.
In this report special emphasis will be given to the
parametric case in which none of the frequencies is
near resonance. A systematic general procedure is
presented in Sec. II. All previous results may be
derived by it, if approximations suitable in each
particular situation are made. The nonlinear steady-
state response of a two-level system will be considered
in Sec. III. Both parametric and Raman-type processes
are exhibited. The well-known example of a three-level
system subjected to simultaneous fields at three fre-
quencies is reconsidered in Sec. IV, and generalizations
of the results of Clogston'b and Javan" are obtained.
A brief account of this work was presented at the Paris
conference on quantum electronics. "The reaction of
the nonlinear medium on the electromagnetic fields is
described in Sec. V. All maser, Raman maser, and
parametric effects are taken into account in this
formulation.

r~ P. W. Anderson, J. Appl. Phys. 28, 1049 (1957).
"A. M. Clogston, J. Chem. Phys. Solids 4, 271 (1958).
'6 V. M. Fain, Ya. I Khanin, and E.G. Yashchin, Zh. Eksperim.

i Teor. Fis. 41, 986 (1961) Ltranslation: Soviet Phys. —JETP
14, 700 (1962)).

"V. M. Fain and Ya. I. Khanin, Zh. Eksperim. i Teor. Fiz.
41, 1498 (1961) (translation: Soviet Phys. —JETP 14, 1069
(1962)j."A. Kastler, in Rendiconti S. I. F. XVII Corso (Academic
Press Inc. , New York, 1962), p. 167.

'9 J. P. Barret, J. Phys. Radium 20, 541, 633, 657 (1959).
C. Cohen-Tannoudji, in Eendiconti S. I. P., XVII Corso

(Academic Press Inc. , New York, 1962), p. 240.
s' L. R. Wilcox and W. E. Lamb, Phys. Rev. 119, 1915 (1960).
n W. E. Lamb and T. M. Sanders, Phys. Rev. 119, 1901 (1960).
2' R. P. Feynman, F.L. Vernon, and R. W. Hellwarth, J. Appl.

Phys. 28, 49 (1957).
~ W. P. Ayres, P. H. Vartanian, and J. L. Melchor, J. Appl.

Phys. 27, 188 (1956).
~'N. Bloembergen, in Proceedings o the Third International

Conference on Quantum Electronics Dunod Cie. , Paris, and
Columbia University Press, New York, 1963).
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II. GENERAL CALCULATION OF NONLINEAR
CONDUCTIVITIES AND SUSCEPTIBILITIES

The current density operator is given by'7

A steady-state solution for the density matrix in
e ( e ) t' e

ascending powers of the coherent periodic perturbations 2m 4 c ) E c
may be found from the following hierarchy of equations,

iIipt =)Ka,p '$+iI'i(8/t)t)ps ~p, ~si 1,

iIiPo~=LKg, P&'~)+i&(8/c)t)Pe, o;„s&'l+LK„t„PN~j,

iAp'"' = LBCg,p'"' j+i5(8/t)f)psgmpj~e'"'+LRaoh, p'"

(2.1)

e2e eA

(p A+A p)+ s VXA+
2mc ssc 2mc'

A A, (2.2)

with the vector potential of the electromagnetic waves
given by

A(r, l) = rs P [A (r) exP( —inc t)

The first equation gives the density matrix in thermo-
dynamic equilibrium. The linear response of the system
is determined by the second equations; p&" contains the
same frequencies as 3C„h. In second approximation the
steady response p(2) contains sum, diRerence, and
second harmonic frequencies, as well as dc terms. The
dc terms are a first approximation to incipient saturation
effects and arise as the beat between positive and
negative frequency terms in the 3C„h and p"), respec-
tively. Insertion of p"' into the equation for p(" gives
the Fourier components in the next approximation, etc.
Note that in the steady-state the di6'erentiation on the
left side is replaced simply by —iQ(+si,&c~), where the
(+cc,)-component has a time dependence exp( —inc,f),
the (—cp, )-component varies as exp(+i&p, t) and si; is an
integer. Each successive step corresponds, therefore, to a
very simple algebraic operation, relating the Fourier
components in each approximation to those of the pre-
ceding one. Price" has discussed the general nonlinear
response in the time domain as an iterated integration
over the unit impulse response function, but the steady-
state response to periodic forces is most easily calculated
in the frequency domain.

Although this formalism is not restricted to electro-
magnetic interactions and would apply equally well,
for example, to the response of a system to applied
periodic mechanical vibrations, the explicit form for
3C„h used in the following discussion will correspond to
the semiclassical, nonrelativistic interaction of a bound
electron with charge —e and a finite number of electro-
magnetic modes,

where

+2iL6(r —rp)(pXs) —(pXs)8(r —rp)j, (2.5)

b(r —rp)= ~rp) (rp~.

The Fourier components of the current density in wave
vector space are

j(k)= dr exp( —ik r)j(r). (2 6)

They have matrix elements

j„„=(si'
~ j (k)

~
si) = — (si'

~
exp (—ik r)

2m

f e f e
X~ p+-A +] p+-A

~
exp( —ik r)

c 4 c )

This expectation value can again be decomposed into
Fourier components of successive higher approxima-
tions. "The nth approximation can be written as

n nl

where jr(k) is that part of the current-density operator
linear in the Geld amplitude.

The linear conductivity tensor is de6ned by the ratio
of the 6rst-order approximation to the current density
expectation value at frequency tp with wave vector k
and the amplitude of the electric field with the same
frequency and wave vector

(j"&(k,&c))= o (tp,k) E(k,pp) . (2.10)

In a similar manner higher order conductivity tensors
are de6ned,

—2ihsXk exp( —ik r)
~
I). (2.7)

The expectation value of the current density as a
function of the time is given by

(j&"l(k= P k;, to= Q tc;))+A„*(r) exp(imp t)$, (2.3)

A (r)= (c/ice )E(k,cu )exp(ik r). (2.4) =e" (kr k~, ppr . .tp„)E(kr, ter). E(k„,co~). (2.11)
s7 See, for example, A. Messiah, QNassfgsa Mechalics (Inter-

~6 P. J. Price, Phys. Rev. 130, 1792 {1963);also P. L. Kelley, science Publishers, Inc. , New York, 1961).
J. Phys. Chem. Solids 24, 607 (1963). "Y.R. Shen, Phys. Rev. (to be published).
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Note that a particular applied frequency +~„may be
repeated several times. Therefore, the third-order
current density will contain e.g., a component at the fre-

quency ~i which is proportional to E(art) E*(—&or) E(art)
and which may be regarded as a saturation correction
to j&'&((ar).

The expectation value of both the linear and nonlinear

parts of the current density may be inserted as a source
term in Maxwell's equations,

equations in the usual way,

18H IBM
&XE=——

7

c Bt c Bt

1BE 4~OP
VXH= ——

cBt c

P(r, t) = )V Tr(p(r, t)),

M(r, t) =X Tr(&p(r, t)).

(2.15)

(2.16)

(2.17)

(2.18)
V'Xe= ———

c Bt

1 Be kr
~Xb= ——+—(j(r, t)),

cBt c

(2.12)

X...'= —$ E—g H —Q:vEq . . (2.13)

All expectation values of physical quantities derived
from this equivalent Hamiltonian are the same as for
the original one, to which it is related by a canonical
transformation. The current density source term is now
determined from

where e and b are the vacuum fields.
A detailed discussion of the influence of the nonlinear

source terms on the propagation of electromagnetic
waves in nonlinear media has been given elsewhere. '
Here only the outline for the quantum-mechanicaL
calculation of these source terms is presented.

In many practical situations, e.g., in the case of a
host lattice containing a dilute concentration of transi-
tion metal ions, it is of interest to exhibit more explicitly
the various multipole moments that are present in a
matrix element as given by Eq. (2.7). Fiutak" has
shown in a general manner that the perturbation K„h
given by Eq. (2.2) can be transformed canonically into
the equivalent form,

Corrections for dense optical media have been discussed
elsewhere. '

The advantage of the transformed Hamiltonian
Eq. (2.13) is that noncommuting operators y and r do
not occur in the same calculation. Quite a bit of care
must be taken to calculate the linear electric suscep-
tibility from the Hamiltonian with the momentum
operators. " The complexity increases rapidly for the
higher order nonlinear terms. The expectation value
of the electric dipole moment Tr(gp) can readily be
evaluated from the Hamiltonian Eq. (2.13). In a
perturbation calculation a power series expansion in the
electric and magnetic field amplitudes results.

The lowest order nonlinear term in a system that
lacks inversion symmetry is the electric dipole moment
proportional to a quadratic function of the electric
field amplitudes. Consider explicitly the Fourier
component of the dipole moment at the sum frequency
cv=&ut+~s, induced by an electric field with components
at co~ and co2. The Hamiltonian for this problem is

@.r (E *e~tt+ E e
—katt)

'jp. r (F eetGI2t+E e 7latt)

It will be assumed that the electric dipole moment
operator has only off-diagonal elements. (A case where
diagonal elements are important will be discussed in
the next section. ) A typical off-diagonal element of
the density matrix obeys the equation

B
(j(r))=X +cVX($)——V.(Q)+

Bt Bt

ZAPnn'= (+COnn' ZF nn')Pnn'
7

+Z(xnn"Pn" n' pnn"~n"n') ~ (2 19)

where E is the number of atomic systems per unit
volume.

The expansions Eqs. (2.13) and (2.14) into multipole
moments are not unique and depend on the choice of
origin. Physical considerations often indicate a desirable
choice, e.g., the center of a paramagnetic ion in a host
lattice. If only dipole matrix elements are retained, the
dipole source terms may be incorporated into Maxwell's

"J. Fiutak, Can. J. Phys. 4l. , 12 (1963). The build-up ot
diamagnetic energy is not correctly represented by Eq. (2.j.3).
The terms of the 2'-type in Eq. (2.2) give the correct diamagnetic
energy. This discrepancy is of no importance for the nonlinearities
discussed in this paper.

The 6rst or linear approximation to these oR'-diagonal
elements is

(& „„,(t))(»)

sQn"n''El

~n" n'W&i n" n'

and similar expressions for frequency components at
—y and &2.

"P. A. M. Dirac, Proc. Roy. Soc. (London) A114, 143, 720
(1927). See also, H. A. Kramers, Qgamtgm Mechalec's (North-
Holland Publishing Company, Amsterdam, 1959),pp. 482 6',
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In second approximation one 6nds

, (&)}(ruZ+~k)

n"gn, n'

4@ '(0 ""Ek)('4 ~ -"Ei)

&i+(0k &na'+&I n~'

, (0)
&

„„(0)

-1 n" n'WW'n "n'

(0) ~ „„(0)—

2 nn" W tI'~ nn"—

n"Wn, n'

p, „,(o) p „„(o)
X

-Mk k)~"~'+ZF e"n'

p (o) p „„(o)—
(2.21)

Ml k)~~ +ZFna"—

The factor k is inserted so that for real p and real fields

E~ cosor~t and E2 cosco2t, the real polarization is given by
Q; cos~&t. The expression is symmetrical in the compo-
nent E,(a») and Ek(cu&). This follows immediately from
the detailed form of Eq. (2.21).

If the damping is negligible, the terms iT' „ in the
denominators of Eq. (2.21) can be omitted. This
situation is important in the harmonic generation of
light, when all optical resonances are far removed. When
the denominators are real and contain only frequency
differences, the terms in Eq. (2.21) can be rearranged
and relabeled. The ijk component of the third-rank
polarizability tensor can be written in the absence of
damping as,

e'", =E E((~;),-(»).,(~.)-&..+(~'),.(»)-.
g/n, n'

X ((Pk). ,~'..+ ((P,)„.,(»)..((Pk),„a„„
+(5';)-,(»),.(~.)..&'..
+(~;)..(»),.(~.)-,C.-

+((P')- -(»)"((P ).- C'- }p-") (2 23)
with

A„„=(25') 'L(a) —(O ) '(k) —k)„) 'j
A'.„=(25')-'$((uk —(u. ) '((Ok —M. ) ']
8 =(25') 'E(k)3+~;) '(k)2+~ 0)

8'.;=(2&') 't(M3+~ng) '(~i+~~g) '3,
C '= —(25') 'P(cvi+&o„',) '((d& (0~0) 'j, —
C'„„=—(2A')-'P(k)2+(0„0) '(oui —k),) 'j.

The expectation value of the dipole moment at A&3

proportional to the product of the 6eld amplitudes at
or~ and co2 may be calculated. A third-rank nonlinear
polarizability tensor may be defined. Its component
p,,k is given by the following relationship:

((Pi ((03 k)1+(02)) APijk j+j (~1)+k(~2)++k(~2)~j (k)1)}

=2 2 ((P')- ( - -"'}'"""" (2 22)
n n'

When the additional assumption is made that the
matrix elements (P„„are real, the expression Eq. (2.23)
is identical with Eqs. (2.13) and (2.14) of Armstrongk
et al.

In a similar manner, higher order nonlinear electric
and magnetic susceptibilities may be determined. Not
only parametric eRects, but also saturation, maser, and
Raman maser action are described by these nonlinear
complex susceptibilities. Far away from all resonance
transitions the parametric eRects dominate. In this case,
the hierarchy in terms of ascending powers of the field
amplitudes is especially useful. In case of resonance, one
often wishes to retain all powers of the 6elds for the
Fourier components of the density matrix at resonance
to take complete cognizance of saturation eRects.
One decides in this case, a priori, which Fourier compo-
nents in each of the matrix elements of p are to be
retained and which are to be truncated o8 as small
nonsecular terms. Sorting out the terms on the left and
right with the same frequency dependence in the
equations of motion (1.4) leads to a set of simultaneous
linear algebraic equations. In principle, the Fourier
components of the density matrix elements and, there-
fore, of expectation values of the dipole moments can be
determined in a straightforward algebraic manner. In
practice, the number of unknowns is large even in
relatively simple situations with only two or three
energy levels. Computer solutions are indicated, but
they tend to obscure the basic physical processes in the
high-order interference of parametric, maser, Raman
maser and other multiple-photon processes.

The general methods outlined in this section will be
applied and illustrated for a two-level and a three-level
system. In these cases, the basic nonlinear mechanisms
can be unraveled. The analysis will show when param-
etric and when maser eRects are dominant and how they
interfere.

If the applied electric or magnetic 6elds contain a dc
component, i.e., if one of the applied frequencies is zero,
this formalism contains, as special cases, the Pockels
and quadratic electro-optic eRect, as well as the
Faraday and quadratic magnetic eRects. In the case of
applied dc 6elds, some care must be taken to correct
the relaxation terms as well. The paramagnetic part of
the Faraday eRect" is, e.g., due to the change in

population of states by the application of the dc
magnetic field. The relaxation is towards thermal
equilibrium for the instantaneous values of the applied
6elds as mentioned earlier.

(b [xz i f))—(a i
sc~

i a) =)))(0k.. (3 1)

III. NONLINEAR SUSCEPTIBILITIES OF A
TWO-LEVEL SYSTEM

Consider a system with two energy levels
~
a) and

~
b)

with an energy separation,
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Paa+Pbb= 1 ~ (3.2d)

In 6rst order, one 6nds the well-known linear approx-
imation,

P baH».

pb (1) ((0 ) (p (0) pbb (0))

+001—00ba+2/T2

and a similar expression for pb, ("((02), p»("((01), and

p, b(')((02). Note that pba(+(01)=+p, b*(—(01) in the
case of damping. In second approximation the difI'erence

between the diagonal elements of the density matrix has
Fourier components at cu» —co2, co2—co» and dc terms,

(p (2) p (2)) («1 «2)

2)b2 2i p.bi 2H)H2*

001 (02+2/Tl {d2 (0 b+2/T2

+— —(p "'—p-"')
ct)1 0)bc+2/T2

((2)p(2))(«9—«l)['(p(2)p(2))(«l «2)]a(33)

From Eq. (3.2d) we have in general,

pbb((0)+p„((0) =0 for 0)/0.

These terms are responsible for a longitudinal compo-
nent of magnetization at this difference frequency.

A. Two Rotating Fields

Two periodic perturbations at frequencies oo» and or&

are assumed to have only o6-diagonal elements. In
the language of magnetic resonance, the system is
subjected to two rotating high-frequency fields. If
cv2= —or», the problem of a linear polarized high-fre-

quency field results. A notation suggestive of magnetic
dipole transitions will be used, although the results are
valid for any two-level system '0 "

With

coh —
Pb (H1& («1&+H—2g i«2&) ——

gQ coh@

the equations of motion are in this case, with I'~ = T2,

@pob Ib(0)b +2/T2)p b++cb (Pbb P ) (3'2a)

+Pba ~ ((dbs 2/ T2)pba +bs (Pbb Pcs) c (3 2h)

2Ib(Pbb Pas) =2 (Xba Pab Pba~ab )
(2I!T1)—(pbb pas —pbb'+pcs') c (3 2c)

Note that the phase of the magnetization at this
frequency depends on the difference of the phases of the
applied Gelds at co~ and cv2. Whether positive or negative
absorption will occur at cv2—a», depends on the presence
and relative phase of a longitudinal magnetic field at
this frequency.

The dc term in second approximation describes the
onset of saturation in the presence of two rotating fields,

(pbb(2) p (2)}dc—
—2T)T2A [ Pabi iHli'

((01 (db ) T2 +1
—2T,T2a-'i p.bi iH, i—

(pbb(0) p (0)} (3 5)
((02 (dba) T2 +1

It is clearly only a 6rst approximation to the saturation
eGect, obtainable if the usual saturation denominator is
expanded in a power series.

If pbb —p„ in Eq. (3.2a) is replaced by the expression
or pbb paa( ~& the third approximation p~ ' is

obtained. There are new frequency components at
2'» —co2 and 2co2—co». These are parametric terms.
For co»= —co2 they describe the generation of third
harmonics.

In addition, one 6nds that the magnetization at co~

has terms proportional to iH1i'H1 and iH2i'H1. The
6rst always decreases the 6rst-order absorption at ~».
It corresponds to an absorption and emission process at
Lr», and describes incipient saturation of the signal at
co». The second term corresponds to the absorption of a
quantum at ~&, and emission of a quantum at Aco2 or
vice versa. The energy balance &I)2((d2—(d1) is taken up
by the damping mechanism. This term corresponds to a
Raman process and may either increase or decrease the
absorption at co». The process could be continued
inde6nitely; pbb() —p„( ) may be found from pb

&'& and
p~(3&, etc. This gives successive approximations in
ascending powers of both H» and H2.

It is also possible to obtain a solution correct to all

powers of H», but ascending powers of H2 alone. This
solution was already discussed by Bloch' in terms of a
reference frame rotating at co», in which the large
perturbation H» is time-independent. With the present
method the density matrix is solved in the laboratory
coordinate system. The steady-state solution correct to
terms independent of H2, is of course nothing but the
well-known saturation solution of the Bloch equations,

gP $(«1—«2)e—c(«l—«2) t

(p (2) p (2) }(«l—«2)d &(«1—«2) l (3 4)
where

bdc p
dc (p (0) p (0))

1+( 0)1+(aba) T
X

1+(—~1+~b.)'T2+ip. bi i»i'T(T2
With or~= —co2, this term describes the source of second
harmonic generation, if a magnetic resonance is driven

by a linearly polarized high-frequency field.
The 'creation of a polarization at the diQerence

frequency &((02—(01) is clearly a parametric process.

—A»yb. H»
pb

(«I) —
(p

dc
p dc)

{dl 0)ha+2/T2
(3.6)

Next, the terms of the density matrix elements linear
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in Ha are sought. Equation (3.6) is still correct to this
order of approximation. The equations for

{pbb
—p )("a~'1 pb

("' and p~("t-' "
are considered simultaneously,

(&a tdb—a+a/Ta) pba

ttbaHa(Paa —
Pbb )

+A 'ttb.H1{p»-p-)'"' "", (3 't)

(~a—(ps+ i/Tt) {pbb
—pa.) ("~""

~+2A—tts~H opb (aa) 2A-tttb H&~(aa-aat) (3 g)

((pa 2(dl (dab+ a/Ta) pab

A—'ts.bH1*{pbb p .) '"~"". (3.9)

The explicit solution for this set of three simultaneous
equations may readily be given a physical interpretation
in the coordinate system rotating at the frequency cv&.

The analytic expression for pb, &"" is

p b
(tsam)

2A- )„.b] [H, [

~ ~IS baHa(paa Pbb)—' I
PPa &ba+—&/Ta (3.10)

~a—pp, +i/T, —2A-')ttab)')H1~ a/(~a 2~1—~.b+i/Ta)l

coh „Q' ~
—ieyt ~ cohk

ba I'ba 1 ab

X ooh Xbbooh s
ts p (H pe tat t+—Hate+(at t)

Assume that the two applied frequencies are suKciently the form
diferent so that they can indeed be distinguished
physically, ~&pa

—a»~&)T1 '. The expression may then
be recast in the form,

pb. ("»= —(1/D)A-'tjt. bHa[(cpa —tot)

X ((pa —2(p1—(pa+a/Ta)
—2A

—
aitt [aiH,

i a](p.,—p )" (3.11)
D= ((pa —(pt)[((pa —pp1)' —(ppba —(ps)'

—4A-a( p~(a(H, [a—T;aj
+i[2((pa tp, )a—4A a—[tt b—[a[H, [agT

Inspection of the denominator shows that the real part
vanishes when

boa —tot =~{(tds —toba)

+4A a) ts~ ] aHsa+ T—
a
—a)+»a (3.12)

This describes the resonance with respect to the eGective
Geld in the rotating coordinate system. The last term
in the numerator corresponds to Raman processes; the
Grst term gives the linear dispersion. Both effects are
modiGed by the denominator, which takes account of
the absorption and re-emission of an arbitrary number
of quanta A(dt, because

~
Hs~ a is retained to all powers

of the power series expansion. The parametric processes
occur in the corresponding expressions for pbb

—p „
which may be obtained by substitution of Eq. (3.10)
or (3.11) back into Eq. (3.8).

In higher approximation the terms in Haa and
~
Ha

~

'
could be calculated in an analogous manner. The
algebraic labor increases rapidly and basic physical
processes cannot be easily separated in higher approx-
imations, when many different quantum processes
interfere.

3. One Rotating Field and One Longitudinal
Oscillating FieM

In this example the negative absorption associated
with Raman processes will be exhibited very clearly.
The Hamiltonian of the coherent perturbations has

The equations of motion are now

= —ttHb, e 't'(P- —-pbb) —A(pp+ i/Ta) ps.

ptp(Hse —+"+Hs*e+~")pb (3.13)
Pbb Paa

2iA —'(pb.H-,e 'p. -b tt.bH—1'e+ "pb.)

Acpb, /kT—(pbb poa —pbb +—p«)Ta +
8lnh

(A(tabb

/kT)
ttp(Hse "+Hs*e+ ")

X (Pbb'-P ')T1-' (3 14)
Aa)b,

The assumption kT&tptpHs, always valid in practice,
has been made. The last term should be ignored within
the approximations on the damping mechanism set
forth at the beginning of this report. It takes account
of the fact that the system relaxes toward the thermal
equilibrium for the instantaneous Hamiltonian K&
+X"h(t) rather than X~ alone. It gives rise to a small
linear longitudinal susceptibility.

{p () p ())( as)

(A(pb, /kT)ttpHs* 1
(p

'—p-') (315)
sinh (A(pb./k T)A(ps. i(psT 1+1

This term is carried along into the next approximation
only to show explicitly that its contribution is negligibly
small.

The lowest order nonlinear response consists of the
usual saturation correction {pbb(a&—p„(@)e' propor-
tional to ~Ht~a, and a parametric beat for the trans-
verse components of magnetization at the frequencies
co&&cos. This may be derived from o6'-diagonal I'ourier
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components such as

{p (2)}(al—a3)

—A 'pppg, HgB'3

(Ml Mba+2/T2)(M1 M3 Mba+3/T2)

Arab, /kT
(p (o) —p (o))+

sinh(ha&b. /kT)

~5' ~bc

S+(~&) Sz(~q)

b

1+ "a "ba

b

1S2(eb)

S+(cu))

salg)J

b

Sz(~~~

Sz(~~)

p

ppp b&II]H3
X

(+~3Tl+1)AMba(M1 M3 Mba+3/T2)

x(pbb"' —p "') (3.16)

The last term arises from the first term on the right-
hand side of Eq. (3.13), when the expression Eq. (3.15)
is substituted. It is clearly smaller by a factor

A(vb /kT
I
ice 3T1+1I '(

I zM3T1+1I «1
sinh(AMb, /kT)

than the Grst term and will, henceforth, be ignored.
In the next higher nonlinear approximation the

components at the original frequencies ~~ and &co3

receive corrections proportional to the intensity of the
applied fields.

{pb (3)}(al)

& 'po'p .& I
&

I
(p-' p')—

(Ml Mba+2/T2)

X
Ml Mz Mba+2/T—2

—Ml+M3 Mba+2/T2

+ terms proportional to H)IHll2 (3.17)

{pbb(3) p (3)}(aa)

2@ 'I p'biz»&3l Jfll2(pbbo —p-')

(o)3+z/Tl) (Ml Mb, z/T2)—(Ml ——(oo—Mb, —z/T2)

@ 3I p.bI'po&3I KI'(pbbo p-')—
(M3+z/Tl)(Ml Mba+2/T2)(Ml+M3 Mba+2/T2)

(3.18)

Consider the case co&
—co3= or&,. A two-quantum Raman

transition is possible between levels l(z) and lb), as
indicated in Fig. 1(A). Exclude single quantum transi-
tions, I

—Ml+Mb l»T2 '. This implies M3»T2 '& Tl—'.
Under these circumstances the first terms on the right-
hand side of Eqs. (3.17) and (3.18) are dominant and
the nonlinear susceptibilities become pure imaginary

{pba(') }("»/H,=+2iT2k—
'M3 'zzo'zlb. I&ol2

)((p (0)—pbb(o))
'

(3 19)

{paa pbb
3 } /&3 — 2zT2k- Mo zbolzbabl

x la, l'(p, "'—pbb"'). (3.20)

G 0

FIG. i. Nonlinear processes in a two-level system. A Raman
process, in which a "transverse" quantum is emitted and a
"longitudinal" quantum absorbed. 8 Two-quanta absorption.
C Raman process, in which a "transverse" quantum is absorbed
and a "longitudinal" quantum emitted. D Illustration of a param-
etric process. It should not be interpreted literally as a three-
photon scattering process, as explained in the text.

For normal populations p (o) —p ~~("&0, the sign of
the susceptibility is such, that there is a positive absorp-
tion at Ml proportional to the intensity IH3 I', but there
is negative absorption at co3, proportional to the
intensity IHll'. This is just what could be expected for
the Raman eBect.

If one takes Ml+M3™b„the last terms in Eqs.
(3.17) and Eq. (3.18) dominate. In this case, Eq. (3.19)
keeps the same sign, but the sign in Eq. (3.20) is
reversed. There is now positive absorption at both
frequencies, corresponding to a two-quantum absorption
process shown in Fig. 1(B).

Figure 1(C) illustrates the case that Ml&0, Mo ——Mb,—~&. Although the sign of the imaginary susceptibility
in Eq. (3.19) remains formally unchanged, it now corre-
sponds to a negative absorption at IMll, because the
sign of Ml is negative. The transition from level

I a) to
I b) is accomplished by emission of AM1, and absorption
of a larger quantum Aco3. If the initial populations were
inverted, p~~")—p, (')&0, all signs would be inverted
and all processes would proceed in the opposite direction.

This problem could also be solved with all powers of
II~ taken into account. Again, basic physical processes,
such as parametric and Raman processes, can be
identified. In the semiclassical theory the Raman
processes are described by nonlinear complex suscep-
tibilities, which are clearly distinguishable from the
susceptibilities for parametric processes. The quantum
process associated with the parametric susceptibility of
Eq. (3.16) is shown in Fig. 1(D).The atomic system is
purely reactive, and makes no real transition to a state
with different energy. Although the parametric process
is illustrated as a three-photon scattering, yet it appears
in the perturbation calculation in lower order than the
Raman process. The reason is that it is a coherent
dispersive eGect, rather than an incoherent scattering
process with a transition probability proportional to
the square of the matrix element, in which all phase
information is lost. In a similar manner, the linear

dispersion. corresponds to a coherent scattering. Al-
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though it is often visualized as a scattering in which the
incoming and outgoing photon have the same frequency,
it appears in the same order of the density matrix
perturbation as the single-photon absorption process.
It is, strictly speaking, not correct to visualize the
linear dispersive and nonlinear parametric polarization
by photon scattering processes in which phase informa-
tion is not involved. The phase of the induced polariza-
tion at the frequencies ~&&or3 is determined by the
phases of the applied fields at ~~ and ~3, and the number
of quanta is not precisely known. One cannot decide
whether there is absorption at the combination fre-
quencies, until the phase of the Geld at these frequencies
is known. It is, of course, inconsistent to assume that
the field at co~&or 3 vanishes. Even if originally no Geld is
applied at these combination frequencies, such a Geld
will be generated by the parametric polarization. To
obtain a self-consistent description, the reaction of the
polarization on the electromagnetic modes must be
taken into account. This will be done in the Anal
section of this paper.

C. Two Rotating Fields and One
Longitudinal Field

The two rotating Gelds have frequencies co& and ~2,
and the longitudinal field has the frequency +or3
= & (or i—orm). If the method of ascending powers in the
Geld amplitudes is used, a straightforward combination
of cases A and 8 results. This is the best systematic
approach to this problem. There is no satisfactory
truncation procedure if co~ and co2 are both close to
resonance and

~
ori —or2

~
is small. The following diagonal

Fourier components should be retained, (pbb —p„)e',
(pbb —p, )I+"»r (pbb —p„)&+'"», etC. The fOllOWing Off-

diagonal components are in the "near-resonance"
CategOry P b

(+&) P b
(+2) P b

(4'& +&) P b
(2+& +'&)

P b

p (eorI—2' 2) p 8co~2a)

If three fields at the frequencies ori, M& and orb=ori+or2
are applied to a three-level system, a Gnite number of
"near resonance" terms can be identiGed in an unambig-
uous fashion. This case is of considerable practical
interest and will be discussed next.

IVa NONLINEAR SUSCEPTIBILITY OF A
THREE-LEVEL SYSTEM

The steady-state response of a system with a lower
energy state

~
a), a middle state ) b), and an upper state

~ c) to three applied fields at the frequencies ori, o», and
orb=oui+orb can be calculated with the general Fourier
power series expansion method. If the thre'e applied
frequencies are close to the resonant frequencies, i.e.,

ori —orb, «orb. , ~
or&—or. b~ &&or,b, and, consequently,

co3—co„&&co„,the Fourier series can be truncated in
an unambiguous fashion. Only the following matrix
elements of the periodic perturbations are retained, so
that the truncated Hamiltonian becomes,

~uoI t

0
~
—seemt

~kept

Vb,e~" . (4.1)
0

c

For electric dipole transitions, one has, for example,
Va = —8 'g~ Ei, etc. Note that this truncated
Hamiltonian can be made time-independent by a
diagonal unitary transformation X'= UtGCU,

e~" 0 0
U=' 0 1 0

0
(4.2)

Ab =oui —orb +zIb =
icb or'R rcb+bI cb +bc

+ca=orb orca+bI ca= ~ac r

(4 3)

the equations of motion are expressed in matrix form

%ilcox and Lamb" have solved the three-level problem
with two applied Gelds in the transformed representa-
tion. The steady-state solution is, however, more
directly obtained in the laboratory frame. The fact that
the problem can be reduced to a time-independent
problem in which each matrix element in the steady
state is time-. independent, suggests that only one
Fourier component for each element of the density
matrix will occur in the laboratory frame. This is,
indeed, the case. Only dc components of the diagonal
elements of the density matrix are retained, together
with the following six oB-diagonal I'"ourier components:
pb

("') and p, b( "')
~ p ("') and pac(~') p, b("') and

pb, (». The equations of motion reduce to nine
algebraic linear equations with nine unknowns. One of
these equations. is the inhomogeneous normalization
condition p„e'+pbb~'+ p„~'= 1.With the abbreviations

~ca—Vb
~ V,.'

0
0

—V

g Vca

—'Nab —78cb

cb

—Vb—Vb
V.b
0
0

ac bc
0
0

Vb.
—Vb
V,.—V

0
Vb

0

0
0

Vca—Vb.
0

0

0
0

—V.
0
0

V.b-

0
—V,b

0
—V

~bc
0

V.b

0

0
Vb.—Vb

V.
0
0

~cb
0

—Vba

0
0

Vca

0
Vb,
0

0

0
0

—V
0
Vb,
0

0

cl 0paa

Pbb

p
80

p (—r»X)

Pb
(&1)

(—~s)

P b(~2)

pac ( &3)

(r»3)

1
0
0
0

~ 0 ~. (4.4)
0
0
0

,
0
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The solution for the density matrix elements from this
array of linear equations gives them as functions of all
powers of the amplitudes of the three applied fields.
The solution contains, therefore, all possible interference
e6ects between single and multiple quantum absorption
and emission processes and parametric scattering
processes, as well as all saturation eGects of successive
absorption and re-emission of quanta.

There are schemes to unravel the complexity of the
9)&10 matrix problem. It is helpful to eliminate first
p~, pb„and p, , and write the remaining six variables
as two vectors, y= (p«, pbb, p«) and p= (pb„p, b,p«)
The remaining six equations can then be expressed as
two-vector equations multiplied by 3&(3 matrices.
This procedure was used by Wilcox and Lamb", who
solved the case of two large applied fields, as did
Yatsiv. "It allows for the arrangement of the various
terms according to the powers of the Geld amplitudes.
The expressions are too complicated for reproduction
here, and are not particularly useful or illuminating.
If all three fields are very large

~
V/I'~&&1, a "heat

death" of the system results, p, =pbb= p„=g. In the
intermediate situation when several (V/I') and (u)/I')
are of the order of unity, peculiar inversions may occur,
and even the possibility that p„—p, &0 cannot be
excluded in a limited range of Geld values and relaxation
parameters. It appears, however, that the price for
generality of the system (4.4) is too high in terms of
algebraic complexity.

It is more useful to consider the more specialized case
in which all powers of one large Geld amplitude, say at
co3, are retained, but a power series expansion is used for
the two smaller Geld amplitudes at or~ and co2. This
approach was already used by Clogston, '~ whose
calculation we shall follow. YVe shall not make the
unnecessary assumption co3=co„, and shall arrange the
various terms so that a physical identification is possible.
First consider the zero-order solution independent of
the Geld amplitudes at co~ and co2. Consider the Grst,
second, third, and last row of the matrix equation (4.4)
together, with the terms in V b, Vb„Vb„and V, b

omitted. One thus obtains the terms which are in-
dependent of the GeMs at or~ and A&2. The solution
consists of the well-known populations for a pumped
three-level maser, p„&", pbb"', and p„( ), and the
response of the oG-diagonal elements at the pump
frequency,

{ (0)}(ac) {p (0)}( ac)a —Q )V (p (0) p (0))

Consider next the two simultaneous equations for pb,
and pb„ i.e., the fifth and sixth rows of the matrix (4.4),

V (p (0)
pM (0))gab pb

0)
—V, pb, "+Vb,p.o 0'=0 (4.4a)

Vb (P-"' Pbb"')+k.pb."'—
—Va.Pb."'+Vb.P.c"'=0 (4 4b)

The solution gives the first approximation to pb and

pb„correct to linear terms in the Geld amplitudes at
coy and co2.

{p (i)}(a()

Vb (
V

(
0(p (0) p (0))

1Vb (P (0) pbb(0))+
~ac~ ba~ bc

(p (0) p (0)) V b V (pbb(0) p (0))
+ +

Ab Ab,
X (4.5))

+bc+bc
~

Vac~

This expression contains the same terms as Eq. (25) of
Clogston's paper. '~ There is a similar equation for
p, b&'&= pb, o~*. The terms have been rearranged to
facilitate their identification.

The factor outside the square bracket is always of the
order unity, if the frequencies are adjusted to maximum
response for a given value of the pump amplitude. If
the pump field is small compared to linewidth

~
V„/I'~

&&1, it is obvious that the factor may be replaced by
unity. If, however,

~
V.,/I'~))1, the term has a dip at

the resonant frequencies coi=cob„a&2=cob,. It causes a
characteristic splitting of the response. This behavior
is well known from the resonance condition (3.12) in
the rotating coordinate system. If the frequency is
adjusted, outside the dip at the center, for maximum
response, the factor has again a magnitude of about
unity.

The first term inside the square bracket of Eq. (4.5)
has the appearance of a linear response term. The
population difference p„&"—pbb") does not have the
thermal equilibrium value, but is a function of the
pump power

~
V„~'. This term represents the maser

action, when pbb&'& —p, & )&0.
The second term has the appearance of a Raman

maser effect. A transition from level ~b) to ~c), while a
quantum Puo3 is absorbed and a quantum ken& is emitted,
would be proportional to pbb —p„. The second term
includes also the process proportional to p,—pbb which
has to be added to the Raman transition. It represents
the single-quantum absorption associated with a transi-
tion from ~(b) to ~b) modified by the simultaneous
scattering of one or more quanta Aco3.

The third and fourth terms between the square
bracket look like parametric terms. A polarization at
co& is created by Gelds applied at frequencies co3 and co2.

These terms, however, do not only represent scattering
processes in which three quanta take part. They also
describe interference terms between single-photon and
Raman processes in the transition probability between
levels ~a) and ~b) which are connected by a matrix
element of the form cv,b+b'V, v, b. This gives rise to
an absorption proportional to V bVb. V. .

This interpretation in terms of elementary quantum.
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processes is already quite complex in this approxima-
tion. The illustrations in Fig. 2 should not be taken too
literally. The macroscopic behavior is, however,
described by complex susceptibilities of the parametric
or the Raman type. The former describe a polarization
induced at a combination frequency by 6elds applied
at other frequencies. The complex value of the suscep-
tibility determines the phase of the polarization with
respect to these applied fields. One cannot decide
whether or not absorption occurs, until the phase of a
Geld at the combination frequency is known. The
Raman-type susceptibility describes a complex change
in the linear index of refraction proportional to the
intensity of a field at another frequency. Its imaginary
part corresponds to positive or negative absorption.

The solutions (4.5) for p~b") =ps~")* and )00,(')

=p.q('~* can be substituted back into the equations for
the populations and p, =p, *. One finds in second
approximation terms quadratic in the small 6elds,

l
V 0 l', l Vs~l'& V 0V0., and V,0V0,. In third approxima-

tion one may use the equations (4.4a) and (4.4b) to
obtain a relationship between pp, ( ) and ppp~ ~ —p
etc. The labor involved is large, and one might as well
solve the complete matrix (4.4), if the «lds at 0)t and
co2 become comparable to the damping parameters,

The relative importance of the various terms in
Eq. (4.5) will now be discussed in some detail. If the
pumping 6eld is small compared to the linewidth and
all frequencies are near resonance, the Grst term is
dominant. The well-known case of the solid state three-
level maser results.

The second or Raman-type term will not necessarily
be larger than the 6rst term, if

l V,
l

is chosen very
large, because the population difference p ()—p„()
itself approaches zero. It should be remembered that
the superscript (0) refers to zero power in the small
fields only. In fact, the optimum response, i.e., the
largest value of )00,(') is obtained for

l
V,,s/LVl ~1, as

explained previously. In that case, the Raman term
has the same order of magnitude as the maser term, and
precise values for lV„/6„l and

l
V,./As, l

must be
known for a detailed comparison in this case.

There is, however, a situation in which the Raman
term will always dominate. This occurs when only the
frequency co2=co, & is at resonance and the applied field
at this frequency is very small, V&,=0. Because of this
last condition, the parametric terms vanish. Since the
frequency o)t is off resonance, l(0)—o)0 l &I's„and so is
t"e pump «id at » l~t —~s.l=l» —(0-l&lv-I
&1'„,the imaginary part of the Grst term, correspond-
ing to linear absorption, is I' s, l hs, l

'Vs, (p. "'—psb"').
The ratio of the Raman-type term to the linear absorp-
tion can easily be made larger than unity,

l
V

l
2(p (0) p (0)))1.

I'0.1'00(P.0(0) Pbs(0))—

+5 +1 +cb "S=4')+&2
~s ~ca
"2 +cb

~bo

vcb~~~~ Vcb ~~9

Vba~~ij Vim& I&

FIG. 2. Nonlinear processes in a three-level system. The text
should be consulted for a correct interpretation of these illustra-
tions. A Illustration of a Raman process. 3 Illustration of a
parametric process. C Combination of saturation, maser, Raman
maser, and parametric processes.

' Vba~ba~bc

This can be achieved, even if the pump amplitude is
smaller than the linewidth. If the amplitude Vb is
initially very small, a polarization at the frequency ~&

will be created by the larger applied fields at co3 and co2.

This "pure parametric" case is illustrated as a three-
photon scattering process in Fig. 2 (8), although
important reservations about this pictorial representa-
tion must be made, as discussed previously. If the
applied frequencies are far removed from resonance, the
truncation procedure which led to Eq. (4.5) becomes
invalid. Eventually, one should return to the general
Fourier expansion method of Sec. II.

Thus far, the Geld amplitudes are assumed to be
applied externally as given Gxed quantities. This is the
proper procedure in calculating macroscopic suscept-
tibilities. If the applied field at or~ vanishes, V~=0, the
parametric terms in Eq. (4.5) are the only ones left.
They create a polarization at co~, which, in turn, will

generate a Geld at co~. The assumption V ~=0 is not
self-consistent. This extreme example clearly shows
that the question should be considered, how the magni-
tude of the 6elds is in turn determined by the reaction
of the material system on the fields.

"G. Eckard, R. W. Hellwarth, F. J. McClung, J. E. Schwarz,
D. Weiner, and E.J.Woodbury, Phys. Rev. Letters 9, 455 (1962).

Since the pump field is oG resonance, the populations
have essentially their thermal equilibrium value. If the
applied pump Geld is larger than the natural widths F~,
and F~„ the Raman process is dominant. This situation
is shown schematically in Fig. 2(A). The conditions set
forth are, of course, precisely those under which optical
Raman laser action has been observed. "

The parametric terms in Eq. (4.5) can always be
made dominant, if all three frequencies are well re-
moved from resonance. The ratios of the parametric
term to the linear absorption is, in that case, larger
than unity, if

Vg, V„hy, .
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V. COUPLING BETWEEN THE NONLINEAR MEDIUM
AND THE ELECTROMAGNETIC MODES

The question of the reaction of the material system
back on the electromagnetic modes was treated very
ea,rly by Bloembergen and Pound. " They considered
the precessing magnetization in a magnetic resonance
experiment in turn as a source for the electromagnetic
mode. This scheme has been further developed by many
authors. """" Mathematically, the equations of
motion for the classical harmonic oscillator(s), rep-
resenting the electromagnetic mode(s) is (are) added
to the equations of motion for density matrix elements.
We restrict ourselves to the .electric dipole case and
expand the electric 6eld in terms of normal modes with
dynamical variables p&, (t),

cedure, which rapidly becomes very cumbersome, will

be illustrated vrith a few examples.
The case of a microwave or optical maser pumped by

an incoherent process consists of a two-level atomic
system and one electromagnetic mode which produces
an oscillating field at the position of the active particles
with a density E cm '. There are four simultaneous
equations to be considered: equations for the dc
component of the population diRerence pbb~' —p„~',
two oR-diagonal Fourier compoents of the density,

pb ("'=p b( ")* and p, b'")=pb, ( "'*, and the Fourier
component at o& of the dynamical variable p&,

&"&, belong-

ing to the one mode with resonant frequency coy close
to o&. The equation (53) for this steady-state component
can be written explicitly as

E(r, t) = —(4~)"' E pi(t)E~(r), (5.1)
p&,

'"& =p~' "'*= (4tr) "'1Vo&'

str ( o& +o&& &tt&o&x/Q& )—
(%. E(r))

where the real mode functions constitute a normalized
orthogonal set,

&&p,si"&(r)dr+ Q, s Er(r)ps, &"&(r)dr . (5.5)

E&,(r) E„(r)dr=i&&,„. (5.2)

Jaynes" has given an elegant discussion how the semi-
classical approach is related to the exact theory with
quantized harmonic oscillators. The classical equation
of motion for the Xth harmonic oscillator may be
written in the form

(4rr)'" c&'(P(r, t))
Ei(r)dr

att2

+ r (p s tttt+ Jt tts+tttt) —
(5 3)

The damping of the mode due to eddy current losses
and coupling losses is described by the phenomenological
term with the quality factor Q&„s and tt are the linear
electric and magnetic susceptibility of the medium,
exclusive of the terms considered explicitly in the
expectation value of the polarization

(p( t))=» + 4- - -( t)
nn'

(5.4)

"N. Bloembergen and R. V. Pound, Phys. Rev. 95, g (193&).
tt E.T. Jaynes and F. W. Cummings, Proc. IREE Sl, 89 (1963).
~ L. W. Davis, Proc. IEEE t&1, 76 (1963).

The last term in Eq. (5.3) represents an external
driving source, which consists, for example, of coherent
signal input or power supplied by an external pump
oscillator.

The equations (5.3), after the substitution of Eq.
(5.4), have to be solved simultaneously with the
equations of motion (2.1) for the elements of the
density matrix. Note that K„h is a linear function of
the dynamical variable p&, (t). It is still possible to find a
steady-state solution by expanding all elements p„~ (t)
and all variables p&, (t) into Fourier series. The pro-

The orthonormal properties of the real mode functions
have been used. The solution of Eq. (5.5) coupled with

equations for the density matrix elements has been
described in detail by Fain' and Davis. ' The oscillation
condition for a maser is obtained.

As the next example, we consider the lowest order
parametric case, treated in Sec. II. We shall assume
that there are three electromagnetic cavity modes with
resonant frequencies co)„close to ~», co), close to co2, and
o»„close to o&s=o&i+o&s, respectively. When the density
matrix element equations are solved and expressed in
terms of the dynamical field variables p&,„p&,„and p&„,

one obtains from Eqs. (2.22) and (5.1) the expectation
value of polarization as a function of these 6eld var-
iables. They may be expressed in terms of the linear
and nonlinear susceptibilities,

(P&" &(r))
= —x( )(4 )"'E ()p '""

+ (4&r)'7C; '(o& =o& —~s): &, ( ) &, ( )p~ ' "p '""

(P (ttsi (r))
=-x( )(4 )"'E ()p '""

+(4&r)'y. (o& =o& —
o& ).E&, (r)E&, (r)pg '—""p&, '""

(p'""( ))

+ (4~)"-g"'(~s=~,+~s):E&„(r)E&„(r)pi, &"t&p&„&"s&.

(5.6)

These expressions are substituted into Eqs. (5.3) for
Pourier components of the dynamical variables, p&„&

'&

(—oui)* .~ (M2) —~ (—~2)+ ~& (o&3) —~& (—o&3)* which
are retained. All other Fourier components are con-
sidered oB resonance and are truncated oR. One thus
obtains a set of equations tthat describe the lowest order
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nonlinear coupling between the electromagnetic modes,

( o)r +o)z —2o))M),/Q) )p),

(4~) s/2

+ 2p„( )p (— ) E„()

~ g '(~)=~2—~2): E),,(r) 42(r)dr+-2, &..2. (5.7)

and two similar equations for P),2("» and P)„("".The
integral in the first term on the right-hand side is
extended over the volume of the cavity mode. It is equal
to the product of a "filling factor" times the linear part
of the susceptibility which is not included in e. The
second term represents the lowest order nonlinear
coupling. Lamb" has considered nonlinear coupling
between modes in a gaseous optical maser using similar
methods.

The equations (5.7) are, of course, quite similar to the
coupled amplitude equations in the paper of Armstrong'
et (IL Lcompare in particular their Eq. (4.9)j.They are
algebraic, rather than di6erential equations, because
they describe the steady-state response of the system
to periodic driving forces, and are adapted to nonlinear
effects in resonator modes, rather than traveling waves.
They are more general than the corresponding expres-
sions of Arlnstrong et a/. , in the sense that they include
damping mechanisms, both in the nonlinear medium
and in the cavity walls. The integrals over the volume
of the sample in the nonlinear term corresponds to the
condition of momentum conservation or matching
of the phase velocities for the case of an infinite homo-
geneous lossless medium with homogeneous plane
waves. If one chooses (0&=(02, Eqs. (5.7) are well

adapted to describe the microwave second harmonic
generation in ferrites, or the harmonic generation in
laser resonators.

The procedure is, of course, readily generalized to
include higher order nonlinear eBects, including Raman-
type terms. If the driving terms I' are put equal to
zero, the resulting set of nonlinear homogeneous equa-
tions may have a nonvanishing solution, provided a
random pump field maintains some inversion of the
populations. If a large input is present at one frequency,
say co3, one may have oscillation at both smaller
frequencies simultaneously, due to parametric terms,
mixed with maser and Raman maser terms. To show
how all nonlinearities are, in principle, incorporated in
this formalism, the example of the three-level system

3'W. E. Lamb, Paper presented at the Third International
Conference on Quantum Electronics, Paris, 1963 (unpublished).
See Phys. Rev. (to be published). See also, H. Haken and H.
Sauerman, Z. Physik 173, 261 (1963).

(&2)—

~
(o)3)—

I 3

(4)r)'~2(ep) 'o)22iV

o)2 +o)h2 so)2o)X2/QX2

y p, &(~2) (r)dr+ F(~2)

(42r) "2(e)u)
—'o) 22iV

o)2 +o)X2 2(dso)X2/QX2

}('p, (~2) (r)dr+ p(~2) (5 7)

The off-diagonal matrix elements, solved from Eqs.
(4.4) as a function of all powers of pq, (+"",p),2(+"», and
p)„(+ ", may be substituted into Eq. (5.7). This type
of description is appropriate for Kellingtons experi-
ment. " The algebraic equations that result can, in
principle, be solved for the components p), (+"). Because
of the formidable nonlinearities on the right-hand side,
approximate procedures have to be invoked. Ke do not
believe, however, that Clogston's procedure, "in which
only linear terms in p2, (» and p&2("» are retained in
the reaction field, can be a satisfactory description of
maser oscillators.

VI. CONCLUSION

General expressions for complex nonlinear susceptibil-
ities in the presence of damping have been derived
which describe simultaneously parametric, maser, and
Raman maser effects. If the applied fields are near
resonances of the atomic system and have a magnitude
equal to or larger than the linewidths, the diferent
effects become inextricably mixed. It is still possible to
consider the total polarization, which is a mixture of
all linear and nonlinear efFects, as a source term reacting
with the electromagnetic fI(elds. Joint equations of the
dynamical variables of the modes and the density
matrix elements of the general nonlinear medium can
be written down, although explicit steady-state solu-
tions require the retention of only a few terms in a
Fourier series expansion, truncation of nonresonant
terms, and other approximations.

"C.M. Kellington, Phys. Rev. Letters 9, 37 (1962).

in Sec. IV is re-examined. The three fields at co~, co2,

and or3 are assumed to arise from the excitation of three
different electromagnetic modes with resonant fre-
quencies cv&, close to co&, co&, close to co2, and ~&, close to
~3. Only near-resonant Fourier components of the mode
dynamical variables are retained. The reaction of the
material system on the fields is, therefore, taken into
account, if the following three mode equations are added
to the nine density matrix element equations (4.4).

(42r) "2(et2)
—'o) )2(V

—o) r +o)),) —so)(0»/Q) )

Xps. ("') (r)n)r+ P("')


