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In two papers (of which this is the first) our central concern is to draw conclusions about the over-all
dynamical properties of a many-body system. This is done without trying to solve the equations of motion,
but rather, on the basis of our knowledge of oscillatory or collective variables (or more generally, from the
existence of conservation rules and of the uniform constants of the motion). Our main result is that, corre-
sponding to the collective coordinates (or the uniform constants of the motion) there exists a separation Gf

the motions into two parts, one of which is collective or oscillatory, and regular, and the other of which is
noncollective, nonoscillatory, and irregular. This separation is here obtained by a (canonically invariant)
method of projections in phase space, from the actual phase point x', p; along a certain line, which is the
direction of a "pure" de-excitation of an oscillation, down to a certain "projected point" X', P;, which is
the intersection of the line with an equilibrium subspace (or variety), the latter consisting of all the points
in the phase space for which the collective excitation is zero. We apply this separation to an illustrative
example consisting of a simple two-dimensional model, possessing all the essential features of the general
problem under discussion. We obtain the results corresponding to the Bohm-Pines theory, as applied to this
case, in a very simple way, without having to introduce supernumerary variables or subsidiary conditions'
(our results being generalized to the plasma case in the following paper). Instead of subsidiary conditions,
we have a corresponding number of identities among the "projected motions" X', P;, so that in effect,
X', P;, together with the collective oscillatory variables, span a space of 6iV dimensions (where S is the
number of particles). This definition of the X', P; replaces the two canonical transformations of Bohm-Pines,
and is equivalent to a certain noncanonical transformation, which removes the collective part of the motion.
Our method may also be regarded as a systematic generalization of that of Tomonaga; firstly, being an
extension of the latter's method from configuration space to phase space, and to collective variables that
are momentum dependent, and secondly, being the development of a general separation method for arbi-
trary variables, which contains Tomonaga s Taylor expansion of the Hamiltonian as a special case. The
projection method associates to each actual motion x'(t), p;(t) a unique equili. brium motion X'(t), P;(t),
about which it oscillates. This association is such that, from the very way in which it is defined, the possi-
bility of an indefinitely large increase of Bx'=x' —X', Bp;= p; —P; with time is avoided, so that the Bx', Bp;,
will oscillate stably in every order of approximation, without the need for special precautions to avoid
secular terms, as is necessary in the usual perturbation treatments (e.g. , in celestial mechanics).

1. INTRODUCTION

HE most general way of stating the central prob-
lem of many-body dynamics is that we have a

large number (10", say) of interacting particles, for
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which, in principle, we know the equations of motion,
but whose solution is, evidently, impossible in practice.
Moreover, even if we did know the solutions, they would
be of no use directly, because we would be lost in the
huge mass of data required to express them. The central
question is, therefore, to discover over-all properties,
which enable us to draw conclusions about the general
behavior of the system without our having to solve the
problem in all detail.
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A familiar example of such procedure is aGorded by
the thermodynamic properties of a large scale system,
which are treated by statistical methods. These prop-
erties are not sufhcient, however, for a discussion of the
dynamics of the system, because they refer only to
quasiequilibrium conditions. On the other hand, it is
well known that there are conservation rules and associ-
ated constants of the motion, which enable some con-
clusions about the dynamics of the system to be drawn,
without a detailed solution for the motion of all the
particles. In fact, if one had a sufhcient number of
constants of the motion one could in principle use these
to solve completely for the behavior of the particles,
provided that these constants of the motions were all
uniform. By a uniform constant of the motion, one
means a function f(x', p;) of the positions and the
momenta of all the particles, which determines a
"regular" hypersurface in phase space if f is given a
certain value. Generally, most constants of the motion
of the system are not uniform, being represented by
surfaces which fill a region of phase space quasiergodi-
cally, so that a small change of y and x can correspond
to a large change of f If a fun. ction represents a non-
uniform constant of the motion, it will not be of much
use for drawing conclusions about the system which are
independent of the details of the movements, because
the determination of f provides no real restrictions on
the location of the system in phase space.

The only known exact uniform constants of the mo-
tion valid for all isolated systems are the total energy,
momentum, and angular momentum. However, there is
a wide range of systems having a large number of uni-
form functions that are approximately constants of the
motion. In particular, systems with a collective behavior
(such as the electron-ion plasma) can quite easily be
seen to possess uniform constants of motion to the same
approximation in which the behavior is collective. For
example& if a system has a collective coordinate Qa and
a corresponding canonical momentum I'k which oscil-
late harmonically with frequency +&, then by means of
a canonical transformation, we obtain an action variable

stancy of J& expresses the conservation of the energy of
a single plasma mode (of course, only approximately,
because such modes are really damped, usually after a
fairly large number of oscillations). On the other hand,
the constant of the motion dao is multivalued, and has
an irregularity at Qa

——Pa=0, so that it is not a uniform
constant of the motion. Therefore, the only constant
that is relevant for the separation of the motion into
two dynamically independent parts is J&.

It is evidently desirable to obtain as many uniform
constants of the motion as possible, whether exact or
approximate. As we have already pointed out, however,
we can in general obtain only some fraction of the total
number of degrees of freedom in this form. ' If there
were a complete set of uniform constants of the motion,
then, as we have already indicated, the intersection of
the associated surfaces in phase space would determine
the phase orbit completely, so that the description in

terms of particle coordinates could be discarded alto-
gether. If (as is true in general) we do not have a com-

plete set of uniform constants of the motion, we cannot
discard the particle description altogether. It will be
the main object of these papers to develop a systematic
method of dividing the motion of the system into two

parts, one of which is associated in a natural way to the
constants of motion and the other which is the re-
mainder. In this way, as we shall see, one is able to
draw many conclusions concerning the dynamics of the
system, without actually solving the equations of
motion fully, and in a way that is independent of the
details of individual particle movements.

%e shall exemplify this separation by the elementary

case of conservation of total momentum ~=Zp, of a
system of E particles (which, in fact, has already been

treated in several ways by many authors). The canoni-

cally conjugate coordinate is the center of mass,
(= (I/1l)')P; x'. In this case, the separation suggested

above can be expressed by writing the coordinates and

momenta of each particle in the form'

x = X'(f)+((f)

and an angle variable

ya
——tan —

'(Pa/mcoaQa),

with

Qa=Pap+&uyt.

The action variable J& is everywhere a regular func-
tion of Qa and Pa, and, being a constant of the motion,
is therefore a uniform constant of this kind. ' The con-

' In all cases in literature when a system is said to possess col-
lective modes, these modes are implicitely supposed to be uniform
functions of x', p;.

If y=p y(xr —x~') =p V(X'—X~'), the equations of

' e.g. , in the electron plasma, the collective coordinates ceases
to be collective if the associated wavelength is smaller than the
Debye length, which is generally much larger than the inter-
particle spacing. See, for example, D. Pines and D. Bohm, Phys.
Rev. 85, 338 (1952).

'The collective parts of x*', p;—here g and (1/1V)sr, and in
general bx' and Bp;—do not have to be canonically conjugate to
each other; rather, they are quantities derived from the collective
canonical pair (here g and sr) in such a way as to give (X',()
= (P;,g) = (X',sr) = (P;,sr) =0. This insures the separation of the
equations of motion into independent sets.
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motion split correspondingly into two independent sets,

dt m

d X' P.

dt m

d~—=0
dt

dP;

What will be relevant to the subsequent discussion is
the (for this case trivial) fact that the two parts of the
motion have a physically different character, viz. , that
the g part increases linearly with time, while the remain-
ing part has complicated changes of momentum result-
ing from the interactions. In the general case (e.g. ,
collective coordinates), the validity of such a separation
will similarly depend on the fact that the two parts
di6'er physically in various ways, such as that their
characteristic frequencies will be very different; that
one will be ordered and the other disordered; that one
may be mainly collective and the other mainly indi-
vidual; that one may be stable, the other unstable, etc.
Altogether the limitation on the number of available
uniform constants of motion will be seen to be an
inherent physical limitation which splits the degree of
freedom into two groups of different physical character.

The example afforded by the center-of-mass motion is
so simple that not much is gained by the separation
described above. But in other cases (such as the electron
plasma) where there is a fairly large number of uniform
approximate constants of motion, the part associated
with these constants (the collective part) will separate
out as a self-determining group of components of the
motion which contain a significant amount of informa-
tion about the behavior of this system. A systematic
separation of the dynamics may, therefore, provide
considerable additional insight into the behavior of the
system.

The generalization of (1.1) will be seen to be (see 3.6)

x'= X'—P]c Jg +higher order terms in Jz,
~p;

Bgg
p, =P+Pq Jg +higher order terms in Jq,

Bx'

(1 2)

where the Jk are the uniform constants of the motion
and the Pz are their canonical conjugates. Generally,
for any dynamical variable F(x',p;), a similar split can
be made, the result being

F(x',p;) =F( X',P,)—Pg Jg[F,yg]
+higher order terms. (1.2a)

Here [F,p~] represents the Poisson bracket of F and
gq. 8x'—=x'—X' and 8p;=p; —P; are the parts of the
motion of each particle associated with the uniform
constants of motion, while X',P; represent the remainder

by means of similar equations which will be given in
Secs. 2 and 3 [the identities J~( X',P;)=0 being replaced
by Fg(X',P;)=0, Q~(X', P,)=0].

As in the case of center-of-mass coordinates [Eq. (1)],
the equations of motion for X',P; will be seen to separate
completely from those for bx', bp;; i.e., the two parts of
the motion will prove to be dynamically independent.
It is important, however, to express this separation in
terms of the canonical formalism. The problems that
arise in doing this can be illustrated in terms of the
example of center-of-mass coordinates. Let the original
Hamiltonian of the system be

N .2
H= P +P V(x' —x').

This can evidently be written as

S 1
+ —Q p, +Q V(x' —x&') . (1.3)2m' ~

By going over to the variables defined by the separa-
tion (1), we obtain

jP,2

H=P +V(X'—X&)+
2m 2mB

=Hr( X',P;)+H.(m) . (1.4)

We see that the Hamiltonian has in fact split into
two parts, corresponding to our split in the coordinates.
It is important to stress, however, that the variables
P; and X' satisfy the identities

pP;—=o, p X'=o. (1.5)

This means that there are in reality only 3X—3 inde-
pendent pairs of canonical variables. among the X', P;.
Indeed, the relevant Poisson brackets,

(1 6)

express the fact that the X', P; do not form an inde-
pendent set of canonical variables.

There are two ways in which one can now proceed.
The first is to ignore the noncanonical character of the
X', P;, i.e., one changes the formulation so as to have
[X',P,]=8,' (which is the form most easily cast into
quantum-theory). To achieve that, Eqs. (1.5) can no

for which the J&(X',P,) are zero. Alternatively, the same
separation can be expressed in terms of the oscillatory
variables

Q =(2J / )' ' cosp, Fq=(2' )"'sing,
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longer hold as identities but rather as subsidiary condi-
tions for singling certain solutions X'(t) out of the
totality of solutions x'(t) (the consistency of such a
subsidiary condition with the time-development of the
system is gauranteed ultimately by J& being a constant
of the motion and, therefore, Jk ——0 holding for all times
if it holds for t=0). Thus, the X', P; are nothing but
x', p s which obey certain initial conditions J&=0 and,
therefore, they are obviously canonical variables for
which [X',P,]=8,'. However, this means that the total
momentum variable ~ can no longer be identically equal
to P; p; (because if it were, the P,, for which we want
to keep the definition P,=p;—(1/N)~, would fulfill

P; P;=0 identically) Th.us, m (and, similarly, its
canonical conjugate g) must be additional, "redundant"
variables which span together with the X', P;, a
(6N+2)-dimensional phase space. The relations m= Pp;
must then be interpreted as subsidiary conditions in
this extended space, i.e., conditions which single out
certain motions in the extended domain of variables.
Again, the consistency of these conditions is guaranteed
by the constancy of ~ and the problem reduces to an
initial-values problem. g and ~ remain canonically con-
jugate to each other in this scheme, although they are
now variables independent of the original particle vari-
ables. To obtain the correct equations of motion for
these "redundant" variables, the original Hamiltonian
must be extended by a ~-dependent part and, when the
Poisson bracket relationships are applied, one obtains
"extended" equations of motions for all variables in-
volved. By applying the subsidiary conditions, how-
ever, one returns to the original "restricted problem, "
which is physically the correct one. The principal diS-
culty in this procedure (which is essentially the one
adopted by Bohm and Pines in their treatment of the
plasma oscillation variables') is that upon transition to
quantum theory, the subsidiary condition eliminates
the redundant degrees of freedom but not their zero-
quantum fluctuations. The latter give rise to divergencies
(see Ref. 5) which, although they can be shown to be
harmless (Ref. 6, Chap. IV), nevertheless make it
desirable also to consider another and more direct
approach.

The second approach is in regarding (1.5) as constraints
which are ideetit,"ally satisfied and, using the correspond-
ing Poisson bracket relation (1.6), X"', P, , ~, & are now
all explicit functions of x' and P; whose variation with
t will follow, of course, from the formula f=[f,H]
which holds for any function f(x,p). We then note, as
can easily be verified, that

[X',Hzz]= [P,Hzz]= [(Hz]= [mHz]= 0. (1.7)

4 D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953).' C. Kuper, Proc. Phys, Soc. (London) A69, 492 (1956); E.
Adams, Phys. Rev. 98, 1130 (1955).

6D. Bohm, The Many-Body Problem, edited by C. DeWitt
(John Wiley R Sons, Inc. , New York, 1959).

Therefore,

d X'/dt= [X',H]= [X',Hz]= —p [X',PJ]P;

j.
=—P;——P

m S
BV

dP'/dt=[P;, H]=[P;,Hz]=g [P;,X,]
aX;

zlV ( 1)
cj X'4 NJ aX'

d g/dt = [(,H] = [(,Hzz] =

d~/dt= (m,H) = (~,Hzz) =0.

~ S. Tomonaga, Progr. Theoret. Phys. (Kyoto) 1B, 464, 481
(1955).

The essential point is that the separated parts,
Hz(X', P;) and Hzz(m), of the Hamiltonian, serve as
eGective Hamiltonians in the derivation of the equations
of motions of X', P; and g, m, respectively, provided
that the correct (noncanonical) Poisson bracket rela-
tions are used. Thus, the separation in the behavior of
the dynamical variables is matched by the correspond-
ing separation in the Hamiltonian.

In the above case, we could evidently have foreseen
the separation in the Hamiltonian (as well as in the
variables themselves) without any special method. In
these papers we shall show that our general method for
effecting a separation for any dynamical variables, indi-
cated in the discussion leading up to Eq. (1.2), will also
lead to a separation of the Hamiltonian into parts which
will assume similar roles as in the example discussed.
This result will be valid for any system for which one
knows a certain number of uniform constants of motion
Iz and their canonical conjugates tt» (alternatively, the
oscillating variables Q~ and P~). Indeed, the essential
results are implicit in Eq. (1.2a). For if (1.2a) is applied
to the Hamiltonian function, one obtains just the desired
separation. Moreover, as a result of the way which X'
and P; are defined, their Poisson brackets with the Ji,
vanish, while the Poisson brackets of the X', P; within
themselves are not functions of the I~, p~. This, com-
bined with the separation of the Hamiltonian, will

guarantee the separation of the motion into two dy-
namically independent parts.

This method of separation constitutes a general way
of formulating the many-body problem canonically,
requiring no redundant variables or subsidiary condi-
tions (and may therefore be considered as an alternative
to the Bohm-Pines method).

On the other hand, our treatment can be regarded as
a consistent generalization of the method of Tomonaga, ~
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who discussed the part bx' of the motion associated with
a given collective oscillation and gave the collective part
of the Hamiltonian, corresponding to our separation
described above. However, he did not introduce the
X', P;, nor did he discuss any properties of the non-
collective part of the dynamics. The procedure used by
Tomonaga for the separation of the Hamiltonian was
formulated for this variable alone, as a rather special
application of Taylor's theorem; no attempt was made
to affect a separation in the x', p; themselves or in any
other dynamic variable. Furthermore, Tomonaga's
method is applicable only to the rather special case of
collective coordinates which are functions of the x' only
(and not of the p;), which means that, as we shall see,
his method amounts to a projection procedure in con-
figuration space rather than in phase space. It is only
in the latter that the full power of the method makes
itself available and that conceptual and intuitive clarity
is achieved.

A fundamental difference between the method de-
scribed above and the subsidiary condition method is
that (as we have already indicated), in the latter, the
Poisson brackets satisfy the relations [X',P;]= 5, ', while
in the former, [X',P;j/ 8,'. In the transition to quantum
mechanics, the problem is therefore quite straight-
forward for the subsidiary condition method, because it
is necessary merely to replace the dynamical variable
P, by the operator (A/i)(8/8 X'). In our method, how-
ever, this evidently cannot be done. Methods like those
of Dirac' for attacking dynamical problems with con-
straints would only lead back to the subsidiary condition
formulation. A way of treating this problem is being
investigated now and is expected to be a subject of a
later paper. At present we shall restrict ourselves to the
classical case, in which most of the essential character-
istics of the many-body problem emerge more clearly
and simply than in the quantum formulation anyway.

Conceptually, one obtains the separation by consider-
ing the relation between equilibrium and nonequilibrium
states. The hypersurfaces associated with the zero values
of the uniform constants of motion J~ can in general be
seen to be surfaces of "equilibrium" in a sense which
is the direct generalization of the usual definition
of this concept. The non collective part X'(t) of
any motion x'(t), may thus be considered as a kind
of zero motion "about" which the actual motion
oscillates in a stable way. This zero motion fulfills,
as we have seen, Jq( X',P,)=0, i.e., it is repre-
sented by a phase point moving on the equilibrium
surface J~——0 in phase space (or rather, on the inter-
section of all J& surfaces considered). One may, there-
fore, say that the X' motion is obtained from the
x' motion by extracting the collective part of the motion
from the latter; in other words, X' is obtained by
"de-exciting" the original x' motion into a state in which

8 P, A. M. Dirac, Can, J. Math. 2, 129 (1950),

the collective constants of motion Ji, are zero. Of the
infinitely many ways of relating an X' on the hyper-
surface to a given x' outside the surface, only the one
given by Eq. (1.2) will result in a complete separation of
the dynamics into independent parts; it is conceptually
important to note that only then will the x' motion be
stably related to the X' motion. We shall see that this
particular choice of X' for a given x' admits a geometri-
cal interpretation: X', P; is the perpendicular projection
of x', p; onto the hypersurface. For this to have a well-

defined meaning which is, furthermore, in'variant under
the canonical evolution of the motion, a canonically
invariant metric must first be defined in phase space
(the "symplectic" metric). The introduction of these
geometrical ideas provides a rather powerful tool for
intuitive thinking on the many-body problem and their
applications will be discussed elsewhere.

The idea of relating a motion to a nearby equilibrium
motion about which it oscillates is of course already
well known, and has indeed been applied very widely in
the study of many-body systems (i.e., celestial me-
chanics, plasma theory, collective motion in nuclei). The
simplest case of this kind is the one in which the forces
tend to restore the system to a certain fixed equilibrium
point. Small oscillations about such points will be stable,
in the sense that the system will never move far away
from it. As the kinetic energy is raised, the system may
of course eventually become unstable. However, it
frequently turns out (e.g. , in the case of collective
motion, as we shall see in Sec. 5) that the restoring
forces are much weaker in certain directions in phase
space than in others. As a result, the system will be
able to escape and to move relatively freely in the
direction of weak forces, while the components of the
motion in the other directions will still execute stable
oscillations. In this way, the system proceeds through
a set of neighborhoods in phase space which generally
all have the same character. Thus, instead of oscillating
around a fixed point, it will oscillate around an equi-
librium hypersurface (or variety), which is a continuous
set of points in phase space possessing strong restoring
forces in the directions "normal" to the corresponding
hypersurface, while in the direction of the hypersurface
itself the restoring force is weak enough so that it is
overcome by the kinetic energy. As the kinetic energy is
raised still further, and if (as is usually the case) the
hypersurface is curved, "centrifugal" and "Coriolis"
forces come into play, with the result that the equi-
librium hypersurface is in itself altered, so that the
surface depends on the general state of motion of the
system (in the case of collective coordinates this situa-
tion will be seen to arise when the eRects of random
thermal motions on the collective oscillations are taken
into account).

The fact that the motion is stable only in the direction
normal to the equilibrium variety and not in the direc-
tion tangential, means that a small perturbation can in
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general cause unstable transitions between the various
possible motions witkin this variety (i.e., transitions
between the various motions in the hypersurface),
which, however, will never lead the system far away
from the variety. In this way, one obtains a generahza-
tion of the concept of stable motions around an equi-
hbrium orbit (e.g., as in planetary motions). In the
latter case, the equilibrium variety is just simply an
orbit (an ellipse) which is a one dimensional set of
points. Such an orbit can be stable in the sense that lf
there is a small deviation (e.g., due to a, perturbation),
the system will still oscillate around the orbit in ques-
tion. Nevertheless, even if the orbit is stable, the motion
need not, in general, be so. For a small perturbation of the
linear momentum il the direction of the orbit may cause
a change of position along the orbit which accumulates
with time, so that the perturbed motion would no longer
remain close to the unperturbed one, although the orbits
of the two motions coincide. In the more general case
of a higher dimensional equilibrium variety (e.g., the
plasma, where this variety consists of a hypersurface
of 3X—s dlmenslons), tile possible lnstabihtles of this
kind are of course far more complex, because there can
be unstable transtions which change the "directions" of
the equilibrium orbit as well as its linear momentum,
while the motions in directions "normal" to this variety
remain stable.

A common method of treating such problems has been
to begin with the actual orbit x'(t), p;(t) and compare
this with some equilibrium orbit xo'(t), po,.(t) such that
the diRerence x'(t) —xo'(t) is small. enough so that
perturbation theory may be applied (the "diRerence
method"). However, because the motion is unstable to
transitions within the equilibrium variety, there arises
the well-known problem of "secular" perturbations.
Basically this problem has its origin in the fact that,
unless the initial conditions of the comparison motion
xo'(t), po;(t) are very carefully chosen in relation to
those for the actual motion x'(t), p, (t), the diRerence
8x'(t), 8p;(t) will eventually increase "secularly" (i.e.,
unstably and without limit) thus invalidating the as-
sumptions on which the perturbation theory is based.
The proper choice of initial conditions for xo'(t), po;(t)
can be a fairly complicated problem, even in those cases
where one can actually solve for the unstable features of
the motion. For even if the initial conditions of xo'(t),

po,.(t) are adjusted properly for an unperturbed system,
any perturbation may cause transitions in the "un-
stable" directions, in which the change of the actual
motion x'(t), p;(t) is somewhat different from that in the
comparison motion xo'(t), p;,(t), this leading to diRer-

ences 8x'(t), 5p;(t), which grow secularly. This means
that at each stage of the calculation the initial conditions
of xo'(t), po,.(t) must be given a special adjustment which

is diferent for each case, so that no generally valid
expressions can be obtained,

A treatment of this kind is, therefore, practicable

only in simple problems in mechanics (such as in

planetary motion) where a detailed solution of the un-

stable part of the motion is possible and indeed. of
considerable interest in itself. However, in cases where
there are very many degrees of freedom (e.g., where
collective coordinates assume an important role), the
motion within the equilibrium variety is not only too
complicated to be calculated, but its detailed behavior
is of little interest in itself. It follows then, that for these
problems, the difhculties connected with the proper
definitions of the comparison motion xo'(t), po, (t) are
largely formal, and one could attempt to exploit this
additional freedom to relate to each actual motion a
comparison motion 1n R wRy which ls RutomRtlcRlly

free of secular instabilities for all stages of the
calculation.

It is evident that what is needed here is a systematic
and general way of associating to each actual motion
x'(t), p;(t) a purticllar equilibrium motion X'(t), P;(t),
so deined that the differences bx'=x' —X' bp-= p;—P;
eever become large. But as can be seen by an inspection
of Eq. (2), this is just what our projection method. does.
Thus, for each phase point x', p; another phase point
X', P; is associated, and (as will be shown in this paper)
if x'(t), p, (t) represent a solution of the equations of
motion, X'(t), P;(t) will be another solution of these
equations. Moreover, it is evident that by that very
mode of de6nition, x' and p; cannot become large; for,
as can be seen from Eq. (1.2), they are proportional
to Jk which latter will remain constantly small.

It follows then, that our projection method does, in

fact, solve our problem of giving a proper choice of the
comparison motion X'(t), P,(t) in such a way that
secular increases of x', p; are automatically obviated.
This is done through expressions which have general
validity and which are indifferent both to the physical
situation considered and to the type of perturbation
used. . Moreover, this choice requires no detaiied solution
for the unstable parts of the motion. Thus, the purely
formal problems associated with the proper definition

of the equilibrium motion are avoided.

2. SIMPLE MODEL OF A SYSTEM WITH AN
EQUILIBRIUM VARIETY

In order to make our discussion of oscillations about
equilibrium varietiks more concrete, we shall in this
section present a simple example of a system possessing
such a variety. This example has the advantage that
both the oscillatory and the nonoscillatory variables
can be solved for exactly within the approximation of
small oscillations. It can be, therefore, used for com-

parision with the results of our method which latter is,
however, designed to apply to cases for which no exact
solutions are possible for the nonoscillatory variables.

The model that we shall consider is that of a single

particle moving in a two-dimensional potential Geld

which is such as to possess a one-dimensional equi-
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librium variety. A simple case of such a variety is a
circle. Consider, for example, the potential given by

V= -',n(r —rp)', (2 &)

for which the equilibrium curve is the circle of radius
r = ro, and which implies a radial restoring force
P= —n(r —rp) towards the circle, r=rp. If the particle
is displaced a small distance away from r=ro, it will
tend to oscillate about this circle. To study these oscil-
lations, let us express the equations of motion in polar
coordinates. With the Hamiltonian

In the linear approximation the first term in br will

be adequate. Since Sr=A cos(&ut+ yp), we have

pg 2 A sin(ipt+ pp)
0=

mr, co

(2.9a)

pg 2pg
0= t+ p„.

mrs m r M

(2.9b)

Since p„=rlpr'= —gggppA sin(cot+&pp), the above can
be written

P~ Pg
H = + +—(r—rp)',

2m 2mr2 2

p pggi„=——n(r —rp),
mr3

the equations of motions are

(2.2)

(2.3)

The above equation shows that on top of a uniform
motion in 0, proportional to the angular momentum

pg, there is an oscillation of 0 which is 90' out of phase
with the oscillation in r.

Finally, let us expand the Hamiltonian (2.2) to the
second order in r, so that it will give the equation of
motions accurate to the first order:

je=0,
mr2

pp ggg pg G

+—(~.) + +-(r.—") (2 I0)
2m 2 2mr 2 2

which yield
ggtr' = n(r rp)+ pg—'/gggrg- ,

pg= const,

ggg8= (2pg/rg)r'. —

(2.4a)

(2.4b)

(2.4c)

The term pg'/gggrg is of course the centrifugal force,
while —(2pg/rg)r' is the Coriolis force.

To treat small oscillations, we first note that there is
an equilibrium radius r=r„which is determined by
the equation

e2

(2.5)=n(r, —rp),
mr. 3

3pg2
m8i = —n 8r. (2.6)

As was to be expected, br oscillates harmonically,
with a frequency given by

Q 3pg
(v'= —+ =~p'(pg),

m m' r,4
(2 &)

which is a function of the angular momentum only,
and, therefore, a constant in time.

The equation for 8 follows from 0= pg/mr'. Expanding
in br, we obtain

pg 8r /pr)'
I—2—+3l —

I

—"
gggr, ' r, I r,&

(2.8)

representing a balance of restoring and centrifugal
forces. We then define a small displacement 8r=r —r, .
The equation for pr is obtained by expanding (2.4a) up
to first-order terms in 8r:

The physical aspects of the motion that will be rele-
vant for us can easily be seen from the above equation.
Let us begin with the case of very small pg [case (A)].
The equilibrium orbit can then be approximated by the
circle r=ro, and the frequency of oscillation of br by
(n/gl)'I'. Although pg is small, pgt will eventually become
appreciable. However, the oscillatory part of 0 can be
neglected so that the only significant oscillatory part of
the motion is in the radial directions alone.

This approximation is evidently equivalent to the
neglect of centrifugal and Coriolis forces, as can be seen
from the equations of motion (2.4). Over a period of an
oscillation, the angle changes only slightly, so that the
motion along the direction of the circle may be con-
sidered as effectively rectilinear during that time. As a
result of the slow movement in the circle, however, the
particle experiences a slowly varying direction of the
restoring force, and this will turn the direction of oscil-
lation, so as to remain always normal to the surface.
Thus, the decoupling of normal and tangential motions
is not purely local, but continues in the large.

If pg is raised, the centrifugal and Coriolis forces will

begin to play a role [case (8)].First of all, there will be
a coupling between tangential and normal motions, with
the result that the oscillations cease to be normal to the
equilibrium variety [as implied by Eq. (2.9)].Secondly,
the centrifugal force will cause a shift of the equilibrium
orbit from r=ro to r=r„ the latter being determined by
the condition given earlier, viz. , that the restoring force
balances the centrifugal force. As a result, the equi-
librium variety will depend on pg=x'pp —x'pi, and is,
therefore, a function of the momenta as well as the
coordinates (i.e., it will be represented by a surface in

phase space rather than in configuration space). Finally,
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there is the shift of frequency of oscillation which de-
pends, as we have seen, on pg.

Since we wish to use this example to discuss the
separation of oscillatory and nonoscillatory partsof
motion within the framework of the canonical formalism,
we shall now proceed to give a canonical transformation
to a new set of variables, in terms of which this separa-
tion is accomplished. Denoting the new variables by
primed quantities, we write for the generating function
of this transformation

s= p '[ — (p ')]+p 'e

The transformation itself is given by

(2.11)

8S
pg= =pg ~

80

T g )

(2.12)

8r'= = r r.(pg') = r—r, (pg), —
8

BS Br, Br,
=B—p„' =8—p,

Bpg Bpg Bpg

P= +-'mcg'(p ')(Br')'
2m

pg cr

+ , , +-[ (p ')- o]' (2 1o )
2mr, '(pg') 2

The Hamiltonian separates into a sum of two terms,
one representing the energy of the oscillatory part of

In the above transformation, the angular momentum
and radial momentum are left unchanged. The new
radial coordinate br' is just r —r, (pg), the amplitude of
radial oscillation which has now been transformed into
one of the canonical variables. The new angle 0' differs
from 8 by p, (Br,/Bpg), wh—ich is equal to the second
term on the right-hand side of (2.9b). We conclude,
therefore, that 0 simply increases linearly with the time,
because it is obtained by removing the oscillatory part
from 8.

Thus, the oscillations are described by the variables
Br', p' or equivalently, by the uniform constant of
motion J„=p,"/2mcg+stmcg(8r')' and its canonical con-
jugate &=tan '(gmcdP, /fir'). These oscillatory vari-
ables are completely decoupled from the variables 9', pg'

which have no oscillatory behavior whatsoever. This
decoupling can be expressed in another way by rewriting
the approximate Hamiltonian (2.10) in terms of our
new set of variables;

the motion, and the other the nonoscillatory part. ' The
role of these terms as effective Hamiltonians for deter-
mining the equations of motion for the corresponding
groups of variables, will be discussed towards the end
of Sec. 4.

Qs(x', p~) =0, Pa(x', p,) =0 (3.2)

[or alternatively, by Jz(x',y;) =0].
If the system is in a state of no oscillation, then the

phase point x', p; will be moving in this intersection-
surface. On the other hand, if the system is in a state
of oscillation of some small amplitude, x', p, will be on
a nearby surface, given by the (stationary) intersection
of the 2s (moving) hypersurfaces

Q&(x', p;) =Qs& exp( —ice&t), P&(x',p;) =Ps& exp( —icgst),

' At first sight, the term cg'(pg') (br')'/2 seems to give a. eociphng
between the two parts. However, because ptt' is a constant of the
motion, the only effect is to make the frequency of oscillation pz'-
dependent, since the effect of Bco/Bp&'/0 on the equations of
motion, d =OH /Bpg, is of second order in Br' and therefore can be
neglected in our present linear treatment.

3. DISCUSSION OF THE BASIC DYNAMICAL
CONCEPTS INVOLVED IN THE SEPARATION

OF THE MOTION INTO DYNAMICAL
INDEPENDENT PARTS

In Sec. 2, we treated a simple example by means of
straightforward methods, showing the separation of the
motion into oscillatory and nonoscillatory parts by
solving explicitly for the variables associated with these
parts. In the many-body problem, however, it is usually
possible to obtain explicit expressions only for the oscil-
latory variables (e.g., the collective coordinates). Indeed,
as already indicated in Sec. I, an explicit solution for the
nonoscillatory part, even if it were possible (which it
generally is not) would be of little use, because the full
details of these complicated motions are hardly relevant
for any problem of interest.

The oscillatory variables can be thought as given in
the form of a certain number s of canonical pairs
Qs(x', y;), Pq(x', p,), which fulfill

[Qa,Ps]= &ss, [Qa,Qw]= [Pa,Ps ]=0
This leaves 3E—s degrees of freedom —the nonoscil-

latory or the noncollective degrees of freedom, of which
only general dynamical features but no detailed solution
will interest us.

In the example of Sec. 2 there is only a single pair of
oscillatory variables [see Eqs. (2.12)] which we shall
denote by

Q = br = r r„P=—p„=p„. (3.1)

In accordance with the program outlined in Sec. 1

[see Kqs. (1.2)],we first define Bx', Bp;, the purely oscilla-
tory part of the motion. We note that there is an
equilibrium hypersurface in phase space, given by the
intersection of the hypersurfaces
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(where Qog Epz are constants) or, equivalently, of the

X'= x'(0,0; gt, pt, ),
P'= y'(0, 0' G,ya),

which can be further expressed as

(3.4)

Bx' Bx'
X'=x' —g Qg

—P I'g
&Q~

—higher order terms in Q~, I'~

=.'-Z Q,L..',~,],..+Z ~.L ',Q.)..
k k

+higher order terms,

P;=y;+Z &.Ly;,Q.)p.s.—& Q~Ly', ~~]p.s.
k k

+higher order terms, (3.5a)

+higher order terms,
(3.6a)

8x'= x'—X'= —p Q~Lx'g ~)p.s.+Q ~~[x',Q~)p.s.
k

by;=y; —P;=2 ~~Ly', Qk]p.s.—2 Q~Ly' I'k)p. s
R

+higher order terms.

Ja(x,p;) = 2820RQko + =const.
2fPkdg

In attempting to separate the motion x (i) p (i) into
a part X'(i), P;(i) which contains no contribution to the
oscillation Pand hence fulfills Qq(X', P~) =Pq(X', P~) =0]
and a part 6x'{i), 8p;(i) which is responsible for the oscil-

latory character of the Qq(x', p~)=Qq(X'+5x', P~+8y;)
and Pk(X'+bx', P;+by;), care should be taken that no
nonoscillatory part enter 8x', 6y; {such a part would

correspond to the secular pa, rts mentioned in Sec. 1);
i.e., in the separation

x'= X'+ 8x',

p;= P;+8p;,

X', P; should be "purely nonoscillatory, " and 8x', 8y;
"purely oscillatory. " To do this without the explicit
knowledge of the residual degrees of freedom (which,
together with the Qa, Pq, span the full dimensionality

of phase space), we proceed in a manner which is a
generalization of that used by Tomonaga~ in the separa-
tion of the Hamiltonian. Let (t, yr, represent the 3X—s
residual nonoscillatory degrees of freedom, then x', p;
are in princip/e expressible as

'(Q.,~.; ~,p,),
p'(Q~ ~~' 4 ya). (3.3)

The nonoscillatory part of x', y; will now obviously be

In these definitions, only the explicit dependence of
Q&, I'a on x', p; need be known; it is not required to
know how the x', y; depend on Q~, I't„g~, yt, . Evidently,
X' P; fu1611 Qq(X'P~)=Eq(X'P;)=0, to the order in
which they are dehned, as a glance at the de6nition of
these entities in terms of the underlying variables
Qq, Ek, (&, yr, shows. The X', P; can therefore be repre-
sented as a point in phase space on the intersection
surface Qg=0, P~——0, i.e., on the subspace of no oscilla-
tion. To each point x', y,—which, in general, represents
some state containing a certain degree of oscillatory
(collective) excitation —thus corresponds, via (3.5a) a
"projected" point I', P;. Physically, X', P; is the
momentary state obtained from the momentary state
x', y;, if the latter is "collectively de-excited, " without
any change in the residual variables.

If f(x',p,) is any dynamical variable of the system
{the energy or the momentum, say) we can, in a similar
fashion, e6ect a separation into "purely nonoscillatory"
and "purely oscillatory" parts

f(x',p') = f(X',P;)+&f,
by again imagining f as a function f(Q&,P&, (,,y&,)
and defining the "purely nonoscillatory" part
UII=—f(0,0; g~,yr,); evidently

Itf II= f(X' P')

i.e., the same function f evaluated at the projected
point X', P;. In a fashion similar to that which led to
(3.6a) we obtain

bf= 2 Q~Lf, p~)p.s.—Z &~Lf,Q~)p.s.

+higher order terms (3.6b)

UIJ= f(X',P') =f(x',P,)
—& Q~Lf ~~)+Z ~~(f,Q~)

+higher order terms. (3.5b)

To the 6rst order, it does not make any difference
whether the coefficients such as BQa/Bp; and LF,Q] in
the above equations are evaluated at the actual point
(x',p;), or at the projected point (X',P;). We shall at
times And it convenient to adopt one procedure or the
other. It must be emphasized that Eqs. (3.5-3.6)
are not canonical transformations, because the coeK-
cients of the derivatives in (3.5), (3.6) are functions of
x', y; and not constants. "In fact, it may appropriately
be called a "Clebschian" transformation because the
coeKcients E(x',y;) and Q(x', p;) are here playing a part
analogous to that of Clebschian multipliers" $ in the
I It is clear for example that a transformation which changes

certain dynamical variables P and Q into zero must have a
vanishing Jacobian determinant; thus it cannot be a'canonical
transformation, which later has a Jacobian equal to unity."H. Lamb, Hydrodynamics (Dover Publications Inc. , ¹w
York), sixth ed. , p. 248.
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expression v=V++$Vrl, for the velocity in hydro-
dynamics. The meaning of the Clebschian transforma-
tion (3.5—3.6) can be brought out more clearly by going
over to the constants of the motion (the action variables)
and their canonical conjugates (the angle variables).
These are given by

"BQ" "Br Bpg"
I g g g~g

.V gaia

ring ra f Va Bpg Bx r

where we have used P=O on the equilibrium surface,
and

Qk= (2Jk/cgk)"' cospk, Pk= (2Jkigk)"' sinQk.

Since (pk, Jk )= Bkk, QkJk constitute an alternative set
of canonical variables, in terms of which the above
transformations can be carried out. Inserting these
expressions into (3.6a), one obtains (to first order)

.r BQi

hBpg

aV gr/
~ V /pC'ag '

aV gr i.
e

~ ~ 6g' g
' "Bpgr'

K 'p I[ (3 g)
s fr Bpgr g

Bx'=-P J„, Bp;=g J„
Bp & Bx

We also obtain

(3.6c) where g,' is a two by two matrix which is zero for g= j,
+1 for j=1,g=2 and —1 for j=2, g=1. We then calcu-
late bx', Bp; to first order in Q and P. According to
(3.5a) we have

and

Bf=—Z Jk[fAk], (3.6d)

Bpk B4 k
X'=x'+2 Jk, P;=p;—Q Jk, (3.5c)

QP r g ()X2

I[f)=f+2 JkLfk, ykj. (3.5d)

8g'=
aV gpaaa

Bpgr

a V g'Laa a

g

~ aa r V ~

BQi
Q- gp

Bp 'i

aa g

e

(Q g 'x'jj (3.9a)
Bpg ~

Applying (3.6d) to f=pk, we obtain p»ll=pk so
that pk is unchanged. With f= Jk, we obtain [[Jk jI

= Jk
—Jk ——0. Noting that Jk, Pk, are just the polar coordi-

nates of Qk, Pk space, we see that our displacement
takes an arbitrary point x', p; (having excitation vari-

ables Qk, Pk or, alternatively, Jk, pk) and moves it
on a "radius" in Qk, Pk space down to the "origin"

Qk
——0, Pk=0 (or alternatively Jk ——0). This displace-

ment is, therefore, nothing but a de-excitation of the
oscillation along a line of constant phase pk, and in

such a way that all other variables ($&,pg„or O', Pg' in

the example of Sec. 2) are left unchanged. That is to
say, it is a projection along the line P= constant, which

does nothing but to project out aQ the oscillatory part
of the motion in the most direct possible way.

Returning to the simple example introduced in Sec. 2,
we had LEq. (2.12)j

Q = r r(pg) = (—x"+x")"'—r (x'pg —x'p, )

x'pi+x'pg
1

fp, = I

.r BQ,
gp —g

gg Va

aV /pi,
iQ

Bg

argiwa

gp —,
~ g r

e gs
I[K P, I[P— —Q. (3.9b)

Bpgr ~ 4 f

aVgLRg

Bx'= —Q,
f

$p;= i —aP.
f V ~

(3.10)

These equations imply that Bx' and bp; are both directed
along a radius, or in other words, that the oscillatory
part of the motion is normal to the equilibrium variety
r= rg (a conclusion which is trivial in this approximation).

We now solve for the variables X', P;. These are

To see what these equations mean, let us first consider
case (A), for which, as we recall, pg is so small that
centrifugal and Coriolis forces could be neglected, so
that, in this approximation, r,=ra ——constant. In this
case, Q= r —rg is a function Q(x),only of x' and not of p;.
Thus, Br,/Bpg 0and the ab——ove equations simplify to

In the calculation of the variables bg' and X', we

shall need the following quantities (evaluated on the
equilibrium surface, r = r,):

a Vg,aaa

~ ~

ge gg'= g'—
~ IL f

(3.11)

I I —g

)
~ iBpg r ja

]

~ V gpaa a ~ ~ V gSaa ~ rBP ~ rp. p
I —I —g ——g~ I

&Ug v ' r'b

ark g» I a rg~la ~g

r gga

a V glar

~ aa f

It is easiest to see what this means by going to polar
coordinates. Thus, writing Q = r rg, x' = r cos8, —
x'=r sin8, and replacing [[x'/rj[ by x'/r (both being
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equivalent in the linear approximation) we obtain

X'= cos0[r—(r—rs)] = rp cos8,
(3.12)X'= sin[r —(r—rs)]=rs sing.

Thus, X' is a point on the equilibrium variety, r=ro,.
and it has the same value of 0 as x'.

Similarly we see that the vector P; is nothing but
the total momentum, less the radial part of the mo-
mentum, or in other words, just the part of the mo-
mentum mr8=Ps/trzr in the angular direction [and
since Ps is so small in case (A), we can replace r by rs to
approximate for this part of the momentum by Ps/rrzrs].
Thus, P; is on the surface P„=(x'pi+x'ps)/r=0 in
phase space.

The fact that X', P; is on the equilibrium variety
[i.e., Q(X')=0 and P(X',P~)=0] is evidently a con-
sequence of the way in which it was defined. This
relation can, however, be verified for the general case
(to the first order) by substituting f=Q and f=P,
respectively into Eq. (3.5b). One obtains

Q(X',P') =Q( ',p')-Q( ',p') -=0,
(3.13)

P(X',P;)=P(x',p;) P(x', p;)=0—. —

If we go on to case (8), where ps is large enough so
that centrifugal and Coriolis forces cannot be neglected,
then, as Eqs. (3.9a) and (3.9b) show, the motion is no
longer normal to the equilibrium circle r =r, (which now
depends on ps). Indeed, as can be shown by a simple
calculation, the additional terms in these equations
correspond to the terms in (2.9) and (2.12) which imply
that radial oscillations and angular motion are coupled.
Nevertheless, as we shall see in the next paper, one can
obtain a systematic geometrical interpretation along
these lines, and show that if a certain "symplectic"
metric is introduced in phase space, then the projection
is "symplectically" normal to the equilibrium variety.
In this way we obtain a simple and instructive geometri-
cal interpretation of our method, which we shall de-
velop systematically in the following paper.

4. THE POISSON BRACKETS AND THE
EQUATIONS OF MOTION

As in the example of the center-of-mass variables in
Sec. 1, we now proceed to demonstrate the dynamical
independence of the oscillatory and nonoscillatory parts
defined by Eqs. (3.5) and (3.6). We first note that
bx' bp; X' P; were defined as functions of the x', p;,

12(and hence their equations of motion can be obtained,
as for any function f(x', iz,), from the equation

f=
I f II])

"At this point, one might be tempted to adopt the following
simple point of view: X', P;—and, in general, [f)=f(X',P;), for
any dynamical variable f(x',p;)—were obtained from x',p; and f
by setting the constants of motion Ja equal to zero (without chang-
ing the residual variables), and hence, all one did was to go over
from certain solutions of the Hamiltonian system under considera-
tion to other solutions (namely to the "nearest" collectively un-

In order to obtain the separation of the equations of
motion into two dynamically independent parts, we
shall show that (1) the Poisson brackets of the set
Qk, Pk with the set X', P; is zero to the necessary order,
(2) the Poisson brackets [X',X'], [X',P;], [P',P;] are
functions only of the X', P; and not of Q&, Pk to the
necessary order, (3) the Hamiltonian splits into a sum
of two terms

II= IIz+IIzz, (4 1)

such that, in a linear treatment, III& is a quadratic
function of the Qa, Pa (with coefizcients which may,
however, depend on the X' and P,), while IIz is a function
of the X', P; only.

As a result, the equations of motion will then separate
into

dQi, = [Qk,IIzz] (4.2) (4.3)
dt

dPg
= [Ps,IIzz],

dt

dX'
=[X' IIz] (4 4)

dt

dp;
=

f P;,IIz].
dt

(4 5)

The equations for Q~, Pa will contain the X', P; at
most through the coefficients of the

~ Q~) ' and (Pa
~

' in
H~z. In all relevant cases, these coeKcients are either
constants (as in the case of the example treated in
Sec. 2, and, as we shall see in Paper II, in the plasma
case), or slowly varying functions of the time (as such
to effect an adiabatic shift in the character of the oscilla-
tion). Thus, I'Izz will be the effective Hamiltonian for
the oscillatory variables, and II& for the nonoscillatory
variables.

excited ones). The question of writing down the equations of mo-
tion for X', P;, Uj would, therefore, seem to have reduced to a
triviality, as they just ful611 the original Hamiltonian equations.
Similarly, one could, by subtracting the two systems of equations,
quite easily write down the equations for 8x', bp;, 8f /the resulting
equations would be the well known "equations of variation" —see,
e.g., K. T. Whittaker, Analytical Dynamics, (Dover Publications,
Inc. , New York, 1944), third ed. , p. 269j.

However, one can immediately see that this point of view, if
carried consistently through, would just lead back to the subsidi-
ary-condition method of Bohm and Pines. The X'(t), I';(t), con-
sidered as possible motions of the system should, as any other
motion, have Poisson brackets (X', I',) =8,' associated with them,
and the fact that they fulfill J&=0 would then be a matter of
proper choice of the initial conditions; i.e., Jg=0 would have to
be considered as subsidiary conditions rather than identities;
dynamicall'y they must be considered as spanning a phase space of6' dimensions Las is implied by the rank of the 6EX6X matrix
(X',P;)g, and since they constitute only the noncoilective part oi
the actual motion x'(t}, p;(t), we would have to extend this phase
space by introducing 2s "redundant" variables, as explained in
Sec. 1. In our procedure, we consider the equations Jg=0 as
identities; as a result, (X',P,) /8, ', the latter being a matrix of
rank 6E-2s only. Hence, the restriction of X', I';, to represent the
noncollective part of x', p; is incorporated into the dynamics of
X', P; and will continue to hold even in more general cases when
the X', P; can no longer be interpreted as possible motions of the
system (e.g. , if the latter is subjected to random external
perturbations).

As the equations for the X', P; will have to be formulated in
terms of the Poisson brackets (X',P;)NB,', a statement that
X'(z), P;(t) is a possible motion of the original system would not
be sufhcient, and their equations of motion must be considered in
detail.
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With F=J),(x',p;) and F=(t)),(x',p;), we again obtain

J (X' P )=J2(x',p;) —J2(x',p,)—=0,
A(X', P') =4 ( ',p'),

and with Ii =x' or Ii =p;,

Jk ~Qk
X'=x'+2 ~) +Z A2

Bp; k 2 Bp'

Jk
P;=p;—P J),

k gx' k 2 Bx'

(4.6b)

This represents a displacement in phase space which

carries a point x', p;, with certain values of

COk

~.=—IQ~I'+
2 2Q)k

into a point X', P,, with Q2=0, P2 ——0. This "collective
de-excitation" is along the "radius" fIbk= const, which is

now no longer a straight line element but, in general,
curved (as indicated by the second-order terms).

In verifying (1), (2), and (3), we again consider x' and

p, everywhere as functions of the Q&, P& and of the
6'—2s complementary canonical variables g, pt (which

have vanishing Poisson brackets with the Q)„P2).Thus,
for an arbitrary F, F(x',p;) =G(Q&,P)„p,pt), with a suit-

able G. As long as G is analytic in Q2, P)„ the transforma-

tion (4.6) operating on this function, will reduce the

Q2 and P), to zero and leave us with G(0,0,),pt), up to
terms of third or higher order in Q2 and P2. Moreover,

G(0,0,),p2) is evidently equal to F(X',P;) to that order.

Thus, itis clear t'hat (taking F=x' or p;)

[X',Q2]=0, [X',P2]=0,
(4 7)

[P;,Q) ]=0, [P;,P2]=0,

to second order in Q2, P2.

To verify (1), (2), and (3), it must be noted that
although we are treating the dynamical variables and
the equations of motion only to the first order in Q), and

Pk, we must start with the expression of II and all other
variables to the second order in Q), and P)„ in order to
obtain the Poisson Brackets relations to the first order,
which latter are necessary to obtain the equations of
motion to the same order. This is only a formal require-
ment, however, resulting from our insistence on a
canonical formalism. After all differentiations have been
carried out so as to give the equations of motion,
everything need be expressed to the first order only.

It is readily verified that to second order, (3.6d)
would read

F(X',P;) =F(x',p;)

J2
+r ~ Lj',(1+ LL~,s js, j) (4:«)

2

H=H(X' P )+biH+b2H, (4.7a)

where 8'H and ~'II are of hrst and second order, re-
spectively. Such an expansion will be carried out ex-
plicitly in Paper II. For the present we shall only draw
some conclusions concerning the general properties of
this expansion, by supposing that the Hamiltonian
H(x', p,) has been expressed in terms of Q, P, g, pr, viz.
H(x, p)=K(Q, P),p )2. For the simple example given in
Sec. 2, it was, in fact, possible to obtain such an expres-
sion from Eq. (2.10a)

=p' Q2 p2
+m& (P()) + +—(r —r()) 2 (2.10b)

2tn 2 2mr, (P())2 2

where we have set p,=P, r r,(p())=Q. As w—e have
indicated earlier, it is not possible in practice to obtain
such an expression for the general problem. Neverthe-
less, we may imagine the function E to be expanded to
second order in Q2 and Pk

&(Q) P2 & pr)=&(0,0,k,pt)

P),2)
+p a2(&,p&) +b, ($,p,) I

(4.7b)2)

(We know that the terms linear in Q2 and p, must
vanish because by hypothesis, we are considering func-
tions Q) and P) that oscillate harmonically

Q),=0, P),=0.)
When (4.7b) is expressed in terms of xt, p; and X', P;,

we are able to translate it into terms which do not

Thus, in this approximation, X' and P; do not depend
on Q2, P2, and therefore their Poisson bracket (X',P,)
does not depend on Q2, Pk either, up to terms of third
and higher order. This means that it makes no difference
whether the (X',P,) are calculated on or off the equi-
librium surface Q2=0, P),=0 (a fact of which we shall
make use presently).

After the equations of motion have been obtained
there is no longer any need to express X', I'; or their
Poisson brackets to second order. They cue be el,tlated
to first order o2tly W.e shall never, in fact, encounter the
need to use the second-order expansion for X', P, (not
even in order to obtain their Poisson brackets). The
introduction of the higher order expansion for X', I';
was only a formal step, needed to show the canonical
independence of the X', P, and Q2, P2.

Kith regard to the Hamiltonian, however, it will, of
course, be important to express it correctly to the second
order in Q), and P)., in order to obtain the correct first-
order equations for Q), and P),. To expand the Hamil-
tonian, we can use Eq. (4.6) writing
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require us to know $, p&. We obtain

To evaluate this Poisson bracket we consider the
relevant quantities

.rg Xci ~

Bx'

.rg XC .

rg gpS»r

.rgp i
C

~ ~ BK'» ~

r»QP 5 ~

C

r~ ()pS»r
(4.8a)

In the differentiations involved here, second-order
terms in Q), and Pz will, evidently, make no contribution
(even after differentiation, such contributions will

vanish, as everything is evaluated on the equilibrium
surface). Therefore, the first-order expansion (3.5a) will

(as we have already indicated before) be suKcient to
calculate the Poisson brackets (4.8). When (3.5a) is
substituted in (4.8a), one obtains

"8X' "8Q " "8P "
i= 8 r+pi ibi I

r% QX»r k ~ r)) gpC» ~

vier

()X» ~

.8 X"

ri gp»~

i8Q i .i8P~i ~

g g

k ~ g ()Pc» ~ r rr ()P&»r

"8P " "8Q "
g g

k r ~ gpC» r ~ )))

(4 9)

~ ~8P ~ i8Q
g I g

()p»ri ra ()p&»r
, etc.

Although the rest of the calculations are straight-
forward, they would prove to be very unwieldy if the
present notation is used (not only because the expres-
sions for the Poisson brackets are lengthy, but also be-
cause the second-order expansions for II are quite
complicated). In Paper II, however, we shall develop
a more condensed notation, with the aid of which the

k
H(x', y,) =H(X', P,)+A (X',P~) yB(X',P;)

2
'

2

(where A(x', P~) —=LA(x', p;)jo, ,g „=p

= L~(Q~,P~, k,pg) jo..~.=p) (4 7c)

The coeKcients A(X', P~) and B(X',P;) will, in all
relevant cases, either be constants or slowly varying
functions of the time, in which latter case the oscillations
can be treated by the adiabatic approximation.

To obtain the equations of motion from an expression
such as (4.7) for the Hamiltonian, we would need an
explicit expression for the Poisson brackets of the X' and
P;. Let us recall that these can be evaluated on the
equilibrium surface, P&=0, Q&

——0 (which is indicated

by brackets "( i" around the expressions). As a
typical case, consider

" BX BP) 8X'()IP) "
L(x»bE=Z' . —,' (4 8)

Bx' Bp; Bp, Bx'

results can be obtained more easily. The advantage of
being able to write down these equations of motion with
the aid of the noncanonical Poisson brackets LX',P;j
will, it is hoped, become evident in subsequent papers.
In the present paper, however, we want to stress only
one property of the X'(t), P,(t) motion, a property which
is indifferent to whether its equations of motion are
derived in the way indicated above or through the argu-
ment of footnote 13; namely, that dx'/dt= (BH/y, ),
8P,/dt= —t'l8H/8x'i Thi.s will become evident through
the condensed notation of Paper II, and can also be
understood directly as indicated in footnote 13, since it
just means that X'(l), P,(l) is a possible solution of the
original equations of motion. In other words, to each
actual solution, x'(l), p, (t) of the equations of motion,
the transformation (3.6) and (4.6) associates a special
comparison solution X'(t), P,(l) in the equilibrium
variety. This comparison solution is special in the sense
that as a result of the way in which it is defined, the
differences bx'=x' —X', 8p;=p; —P; will evidently not
increase without limit in a secular way, because they are
proportional to Qz and P),) which oscillate ha, rmonically
and remain small.

To illustrate the meaning of this property of the X',
P;, let us return to the example given in Sec. 2. We shall
consider case (A), in which pg is small enough so that
the equilibrium variety can be approximated by the
circle r = ro. In the description of small oscillations about
the equilibrium circle, we introduced a set of canonical
variables (2.12). With their aid, we associated to each
point r(t) =rp+8r(t), P,(l)) 8'=8 P„(8r,/8Pg)) Pg' —Pg,

——
a corresponding equilibrium point of the variety
Q=r —rp ——0, P=p, =0 with coordinates 8p'=8' and
pg'= pg. In other words, the values of the nonoscillatory
variables 8' and pg', in the comparison orbit have, in
this way, been chosen to be the same as in the actual
orbit. If such a choice had not been made, then there
would have been an increase of 8'—8p' ——(pg' pg p')l/gggr p'—
without limit, with the passage of time.

Of course, in the above simple example it was possible
to choose conditions on the comparison orbit in the
equilibrium variety so as to avoid a secular increase of
50 with time because there was available an explicit
expression for the nonoscillatory variables 8' and pg',

by means of the canonical transformation (2.12). More
generally, however, such an explicit expression cannot,
as we have already pointed out, be found. Thus, if an
arbitrary motion in the equilibrium variety is taken as
a comparison motion, then the difference bx', ()p; will,

in general, undergo a secular increase with time. The
special way of defining the comparison motion by means
of the transformation (3.6) and (4.6) leading to the
"projected" point X', P, is therefore, in eA'ect, a means
of choosing initial conditions of the comparison orbit,
such that secular increases of bx', bp; are certain not to
occur. As a result, the conditions needed for application
of perturbation theory will always be satisfied.


