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Four corrections to the effective-mass approximation are considered with erst-order perturbation theory;
namely, the deviation of the total perturbing potential U from the potential Up = e'—/sr (s= static dielectric
constant) and the three relativistic corrections: (a) spin-orbit coupling, (b) s-shift correction, and (c) mass-
velocity correction. The number of independent matrix elements is determined for each perturbation by
means of the selection-rule theorem. There is no effect of spin-orbit coupling on the eRective-mass ground
state; the corresponding effect on the exact eigenstates of the nonrelativistic Hamiltonian appears to be
small for donors in Si, and does not cause a splitting of the sextet state (with spin) in Ge or Si. Both of the
other two relativistic corrections give rise to a shift and a splitting of the degenerate eA'ective-mass ground
state, as does the perturbation U —Uo. The magnitude of the relativistic corrections and their relative con-
tribution to the observed splitting of the effective-mass ground state are discussed briefly.

I. INTRODUCTION
'

N this paper, some of the corrections to the effectiv-
e - mass theory' of shallow donor states in Ge and Si
will be studied. The simple effective-mass equation for
the motion of a donor electron in the perturbed periodic-
potential field of a germanium or silicon crystal accounts
for a qualitatively correct picture of the stationary
eigenstates of donor electrons. The energy spectra of
different donor impurities (P, As, Sb) in silicon have
been determined experimentally from infrared-absorp-
tion measurements, and quantitative agreement has
been found between theory and experiment, with the
exception of the ground state. ' There are, however,
some discrepancies between theory and experiment
with respect to the ground-state energy and the ampli-
tude of its effective-mass wave function at a donor site.
Kohn and Luttinger' have shown that the effective-
mass wave function can be corrected for by a simple
semiempirical procedure, using the observed energy of
the lowest donor state. It has been recognized by the
same authors that the discrepancies are caused by the
breakdown of the effective-mass formalism in the
immediate neighborhood of the impurity ion where the
perturbing potential is large and varies strongly with
distance from the impurity nucleus. Therefore, several
corrections to the effective-mass theory are necessary.
These corrections are discussed in Sec. II where the
problem is also formulated so it can be treated by
first-order perturbation theory. In Sec. III, a group-
theoretical analysis is presented to determine the
number of independent constants for the matrixes of
the perturbation components with the help of the
selection-rule theorem. Section IV is concerned with a
brief qualitative discussion of the relative magnitudes
of the different perturbations considered in this paper.

' J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955);
W. Kohn, in Solid State Physics, edited by F. Seitz and D. Turn-
bull (Academic Press Inc. , New York, 1957), Vol. 5.

2 G. S. Picus, E. Burnstein, and B. Henvis, J. Phys. Chem.
Solids 1, 75 (1956); see also W. Kohn, Phys. Rev. 98, 1856 (1955).' W. Kohn and J. M. Luttinger, Phys. Rev. 97, 883 (1955).

II. CORRECTIONS —FORMULATION OF
THE PROBLEM

If one neglects the effects of lattice vibrations, there
are three corrections which affect the effective-mass
ground state:

(1) the deviation of the total perturbing potential
U(r) from Up(r)= e'/xr —due to the self-consistent
potential of the impurity ion in the central cell region—
being diferent from that of a Ge or Si atom —the effect
of local strain introduced by the impurity, and polar-
ization effects (see Ref. 7 below);

(2) the admixture of Bloch functions from higher
bands into the impurity wave function caused by the
strong potential U near the impurity ion; and

(3) relativistic corrections: (a) spin-orbit coupling;
(b) s-shift correction, and (c) mass-velocity correction.

It is a characteristic property of these corrections
that the major contribution of each of them comes from
the central cell; that is, the atomic cell containing the
impurity ion. Thus, in calculating their effect on the
effective-mass ground state, there are two technical
difhculties. First, one must know the correct form of
the perturbing potential U(r) within the central cell.
This potential is known for small r((ap(=5.29&(10 '
cm) and for large r))r, (4sm-r, '=srQ, where 0 is the unit
cell volume). ' The symmetry of U(r) is that of a
lattice site and is given by the tetrahedral point group.
Second, the Bloch functions admixed into the impurity
wave function must be known. However, at present
one knows only the approximate Bloch functions of
the lowest conduction band. In the case of Ge and Si,
these functions are suitable admixtures of 4s and 4p
atomic orbitals, and of 3s and 3p atomic orbitals,
respectively. Thus, we shall neglect the adrnixtures of
Bloch functions from higher bands into an impurity
wave function and shall consider only the effects of
corrections (1) and (3).

A primary motivation for this consideration is a group-
theoretical analysis of the four perturbations associated
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(Ep+"U)s 0 =E@, (1)
2fpsc

where Eo is the lowest energy eigenvalue of the non-
relativistic Hamiltonian Ho defined below. The second
term is the total potential energy of an impurity
electron,

'U(r) = V(r)+ U(r), (2)

where V(r) is an effective periodic potential. The three
last terms of Eq. (1) are peculiar to the relativistic
theory and correspond to the corrections (3a), (3b),
and (3c). We mention that the s-shift correction shifts
the s terms of a free atom (pure Coulomb potential),
but contributes nothing to p, d, and higher terms. ' The
stationary states of Eq. (1), its eigenvalues, and the
associated two-component wave functions, cannot be

4The results summarized in Fig. 1 have been obtained by
experimental investigations of a diRerent nature: (1) The change
of the electron spin resonance spectrum of donor electrons in Si
has been investigated by D. K. Wilson and F. Feher, Phys. Rev.
124, 1.068 (1961). (2) The low-temperature electrical resistivity
of antimony-doped Ge under uniaxial strain and compression
has been measured by F. Fritzsche, Phys. Rev. 125, 1560 (1961);
Twose shows in an appendix to Fritzsche's paper, that, even in
the eRective-mass approximation, there is a small splitting of the
degenerate ground state; this splitting is neglected here. (3) The
strain-induced shifts of the absorption lines of the Lyman series
for donor electrons in Ge have been observed by G. Weinreich,
W. S. Hoyle, H. A. White, and K. F. Rodgers, Phys. Rev. Letters
3, 244 (1959).

'This equation is derived from the four-component Dirac
equation under the assumption that at all points in the conGgu-
ration space, two components are small compared to the other
two. This assumption is justiaed (in zero magnetic Geld) if the
Grst two terms of Eq. (1) are small compared with the rest-
energy of an electron.

'E. U. Condon and A. H. Shorley, Theory of Atomso Spectra
(Cambridge University Press, Cambridge, England, 1958), p. 125.
In the present case the potential U(r) —and in particular U(r)—is
not a pure Coulomb potential and, therefore, the so-called
s-shift correction does contribute very slightly to Bloch states and
to impurity states which are not pure s states.

with corrections (1) and (3). It is of particular interest
to know how the eightfold and twelvefold degenerate
effective-mass ground states, including spin-degeneracy,
of donor electrons in Ge and Si, respectively, split under
the influence of these corrections. This question is of
interest because a number of experimental investiga-
tions have been carried out in an original manner to
determine the structure of the energy levels emerging
from the degenerate effective-mass ground state (see
Fig. 1).s The experimental information on the energy-
level scheme of those impurity states which emerge
from the degenerate effective-mass ground state gives
rise to two questions: (1) to what extent do the three
relativistic corrections account for the observed energy
levels; and (2) how large is the additional splitting to
be expected from spin-orbit coupling' This problem is
formulated with the two-component Pauli equation'
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FxG. 1. Energy-level scheme, neglecting the spin-degeneracy,
for singlet (s) and doublet (d) states of donors in silicon and for
singlet and triplet (t) states for donors in germanium after Wilson
and Feher, and Fritzsche. (See Ref 4.) Th. e splitting between
doublet and triplet states for donors in Si is assumed to be zero
(em=energy of eiiective-mass ground state).

calculated without an approximation. In the next
section the problem is treated by perturbation theory.

4 = 2 A-(k)f-(kr),
n, k

(4)

where n labels the conduction bands. In the effective-
mass approximation, a donor wave function is written
as an appropriate linear combination of wave functions

O'= Q Ap(k —k')1('p(k —k;, r),

where i = 1, 2, , ns correspond to the minima of the
lowest conduction band, v=0. Assuming that Ao has
appreciable magnitude only in the vicinity of k, , one
can. rewrite Eq. (5) to a lowest approximation, in the
form

where
y;= F;(r)P, (k;,r),

F;(r)=Q Ap(k —k;) exp(sk, 'r)

is the envelope function, i.e, an eigenfunction of the
effective mass equation. The wave function P; is
normalized as usual (see Ref. 3).

K. Miiller (dissertation, Braunschweig, 1960 (unpublished) j
has investigated in some detail the polarization Geld near a
point charge located at a lattice site of a cubic semiconductor.
He employs a technique similar to Ewald's method of long waves
to obtain the corrections to the continuum polarization. A
deformation of the potential Uo occurs for distances r&3u
(a=lattice constant) because of a dispersion of the polarizability
for short wavelengths and because of a local dielectric anisotropy
near the point change.

III. PERTURBATION THEORY

The nonrelativistic problem with the Hamiltonian

H p (y'/2m)+ V——(r)+ Up(r) (3)

has been treated by Kohn and Luttinger. ' The impurity
potential Up ———e jar, where z is the static dielectric
constant. ' An eigenfunction of IIO can be developed,
in terms of Bloch functions, for electrons moving in the
periodic potential V(r):
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TABLE I. Character table for the tetrahedal double group. '

+class
Character+ II7 1E 6C4' SC6 806 654

1@1
1@2
2r3
3F4
3r,

1
1

2 2
3 —1
3 —1

1
1—1
0
0

1
1 —1—1 0
0
0

684 12o.g

1 —1
0 0—1 1
1

2p
2Z

4p

2 —2
2 —2

0 1 —1 2 —2
0 1 —1 —2 —2
0 —1 1 0 0

Ge, "1s"state
with spin

Si, "1s"state
with spin

0 0 0

12 —12 0 0 0 0 0 0

a For the symmetry operations of the tetrahedral point group and the
associated double group, see G. F. Koster, in Solid State Physics, edited
by F. Seitz and D. Turnbull (Academic Press Inc. , New York, 1957),
Vol. 5. The direct products of the double group representations are given
by D. Schechter Technical Report No. 4 Carnegie Institute of Technology,
March, 1958 (unpublished). The decompositions of symmetric direct
products can be determined by a method found in F. D. Murnaghan,
The Theory of Group Representations (The Johns Hopkins Press, Baltimore,
1.938), p. 72.

As the perturbation to the Hamiltonian H 6 1 (1 is the
unit matrix), we take

H'=(U —Up) 1+ (v'UXy) o
4m2C2

+ (v&u)1—
4im2c2

1
(Ep+'U)' 1. (7)

2mc2

The first term of Eq. (7) is the deviation of the actual
impurity potential from the potential Up of the effective-
mass equation; the other terms represent the relativistic
corrections which depend on the total potential 'U.

Taking the eigenfunction of Ho given by the effective-
mass approximation and multiplied by an arbitrary
spin function we readily find the correct zeroth-order
wave function corresponding to H' from symmetry
considerations.

Germaeinm. The lowest effective-mass eigenstate is
eightfold degenerate when the spin degeneracy is in-
cluded. This state belongs to a reducible representation
of the tetrahedral double group Td, a perturbation can
split this state into three states associated with the
representations 'F6, 'I'7, and I'8 as seen from Table I.
The correct zeroth-order wave function, which forms
a basis for an irreducible representation F, of Td, is
written in the form

where the two-component wave functions P; and X;
are related by time reversal symmetry; i.e., Wigner's
operation E for spin one-half particles, '

e,= L(u++u-)/~5'*, x'=
t (u- —u+)/~54'* (9)

8 The time reversal operation E'=io-„E0, where E0 is the
complex conjugation operator,

The wave functions P, are given by Eq. (6), if not
explicitly noted otherwise. The two normalized spin
functions I+ and I, as well as the linear combinations
u++u and u —u+, form a basis for the representation
'F6.' The formal advantage for choosing the 2m spin
functions P; and X; as components of the zeroth-order
wave functions 4„„instead of spin-up and spin-down
functions, is suggested by the time reversal symmetry
between P, and X,. Hence, one immediately finds the
time-reversed wave function of 0 „„.it is

(10)

which, according to Kramer's theorem, also belongs to
the basis given by Eq. (8). There is no additional
degeneracy of an eigenstate associated with 'F6 I'7 ol
'I'8 because of time reversal symmetry; the above
representations fall under Wigner's case (c)," as does
the small representation of the Bloch state for the
conduction band minimum. The coeKcients n, "' and
P,"' are calculated in Appendix A; the results are:
for (2rp),

for ('I'7),

nip 1(1 1 1 ]) n26 p16

P,"=(0,0,0,0), P,26=n, ip. (11a)

n,"=(I/2&3)(1, 1, —1, —1),
P,"= (1/2v3) (1—i, i 1, 1 —i, i —1), —
~.27 — .17 4

P.27 ~.17 .—Ai

(11b)

and for ('I'8),

Silicon. The twelvefold-degenerate effective-mass
ground state, including the electron spin, can split under
a perturbation into four different states; the appropriate
decomposition, as found from Table I, is 'I'py r7
+2 41'8. The correct zeroth-order wave functions given
by Eq. (8) can be determined with the help of the table
of coefficients given in Ref. 1 LKohn, Eq. (5.46)5 by
proceeding as in Appendix A for the case of Ge.

'The complex conjugate spin functions u+* and u *, as well
as the two functions u+*+u ~ and u *—u+*, transform according
to r,* under the symmetry operations of Vd.' E. Wigner, Nachr. Acad. Wiss. Goettingen, Math. -physik.
Kl. 19/2, 546,

n,"=(1/2&2)(1+i, —1 i, 1 i, i —1), ——
P "=(0,0,0,0),
n"=$1/2(6)'"5( —2, —2, +2, +2),
P,28=

I 1/2(6)'~25(1+i, —1 i, 1 i—, i 1),— —
~,38 .28 4 (11c)

P,88 n 28

n 48 P.18

P,48 —(n 18)4C
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The 0'„, are the correct zero-order wave functions
for the perturbation H'. Thus, the inhuence of the
perturbation on the effective-mass energy levels of the
unperturbed Harniltonian is obtained by evaluating
the expectation value of H' in the wave functions 0'„,.
If one rewrites Eq. (7) in the form Se

co
Potential
correction

Spin-orbit
coupling

Mass-
s-shift velocity

correction correction

TABLE II. Number of independent constants obtained with the
effective-mass approximation Lip, is given by Eq. (6)7 for the
matrices given by Eqs. (15) and (16).

H'=Q H„, (12) Germanium

Silicon

0 (1)

.0 (3)

where H~ ——potential correction, H2= spin-orbit coupling
correction, H3= s-shift correction, H4= mass-velocity
correction, the matrix elements of the four pertur-
bations are given by

h defined by the equation"

Hs ——h o. (17)

4„,*H„%„,.d7. , (13)

where a.s. indicates integrations over all space. In order
to find the number of independent constants for each
perturbation, assuming that the 4'„, are given in terms
of the effective-mass wave functions It;, Eq. (6), we

proceed in the following way. The matrices in the 0'„,
representation can be written as a linear combination
of matrices in the p;, X, representation; the latter are
given by

$,*H,ctl,dr and rts;*H.x;dr (14)

Taking the case of germanium as an example, we know
that the wave functions P, , X, transform according to
the representation (31'6+sr,y4rs). The four pertur-
bations H„are scalar quantities and transform according
to 'I' t. Thus, in the P;, X, representation, the selection
rule theorem" gives at most three independent con-
stants for each perturbation H, . For the spin independ-
ent perturbations (x= 1, 3, 4) two of the three constants
must be equal to one another; that is, the energy
eigenvalues associated with the representations 'F6 and
'I'8 are not separated by these perturbations since the
matrices between P; and X; vanish (the spin functions
are orthogonal to one another) The sp.in independent-
perturbation (x=2), however, could lift the degeneracy.
To find out whether this is actually the case, the spin
functions are eliminated from the matrices (14). Then
we are left with the expressions

and

4P,*H„4P,dr, (x = 1, 3, 4), (15)

ip,*h,ifr,dr, 5E,, 3
—— 4P,*h,g,*dr, (16)

where h, is the x component of a pseudo-vector operator

u V. Heine, Group Theory in Quantum 3fechanics (Pergamon
Press, Ltd. , London, 1960),

The number of independent constants contained in
Eqs. (15) and (16) is determined with the selection
rule theorem. The results are found in Table II; they
apply also—as can be shown with a lengthy calculation—if the effective-mass wave functions are given by
1P —QQ Ap(' k) exp(ik r)[u&+,.(k—k„) ~ V'z ir„u&j, where

~

k—rr,
~
&&

~

k,
~ &

the derivatives of ui, are taken at k =k;.
If one goes beyond this effective-mass approximation
by assuming that the impurity wave functions contain
admixtures of Bloch functions from higher conduction
bands, the spin-orbit coupling matrices (16) give one
and three independent constants for Ge and Si, respec-
tively, as indicated in Table II." It is emphasized
that, in any case, the spin-orbit matrices 5R;; 2 resulting
from those matrices (14) which connect time reversal
wave functions, such as P, and X;, vanish. "

In order to discuss the inhuence of the perturbations
H„on the unperturbed energy levels, let us write down
the solutions of that secular problem obtained by
taking the scalar product of the two-component wave
equation

with X, and it, . The eigenvalues of the secular matrix
are found with the help of the eigenvectors cr,"', P,"'
(i= 1, 2, n3). For germanium we find

E6=EO+Q (Mll, g+Msl, g+M31,e+M41, K)

E7——EP+Q(Mtt, „+Mst,„—M31, ,—M41, „), (19)

jV8 —jVY

"Thus h,P; = —( /h4s'rn)c(s~'UXi@'g;), etc."For Ge the basis P; transforms according to the representation
r, +r4 of the single group Tz. The symmetric direct product
LP+I'4],„contains the trivial representation I'&, according to
which H1, H3, and H4 transform, twice. The three components
of the pseudovector operator h(h„h„,h,) transform according to
I'5. Since h is a vector operator, but not a vector, we must take
the direct product I'3X (Pi+F4) and see how often it contains
r, and 14 in order to determine the number of independent
constants for the matrices M;; 2 and M;;, 2. (If, however, h were
a vector, and not a vector operator, we should take the symmetric
direct product PI'&+F4].s ' and see how often i! contains r4.)

'4 Because h is imaginary and Hermitian, one has 5':;;,2

= —5K,;, 2. On the other hand, the symmetry requires 5It;;;, 2

=5';,; 2, that is, the solution of the secular problem given below
shows that the matrices 5Tt;;;, ~ must be real.
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xys x'+y'+ s' —3r'/5
U(r) = f(r)+g(r) +I (r) +", (20)

r3

where'

limf(r) =-
r~0

e'(Zs —Zp)
limf(r) = Up(r),

Z~ and Zo being the atomic numbers of a donor atom
and of a Ge or Si atom, respectively. The harmonic
functions of the tetrahedral group are linear combi-
nations of surface spherical harmonics Pg, with the
same subindex 1. Since spherical harmonics are solutions
of the Laplace equation, one 6nds

IV. DISCUSSION OF THE CORRECTIONS

A. Potential Correction

The total perturbing potential U can be written in
terms of those harmonic functions which are invariant
under the symlnetry operations of the tetrahedral
point group. The first few terms of an expansion of U
are given by

M;;,s ——— exp(s(k,—k;) r)
4nPc'

d7
XN~;*(V VXsV~s, ).—+

0
exp(s(k; —k;) r)

B. Spin-Orbit Coupling

The spin-orbit matrix elements (14) between wave
functions P; and X; vanish. Therefore, the degeneracy
of the sextet consisting of the two states 'I'7 and 'I'8
remains unlifted )see Eq. (19) for the case of Ge). This
result is not restricted to the effective-mass approxi-
mation and holds also if the wave functions P; and X,
are given in terms of the exact eigenfunctions of Bo
which can be written in the form P;=P„ i, 2 „(k—k,)
XP (k—k, , r). However, spin-orbit matrix elements
(14) between wave functions P, and P; can be different
from zero, according to the selection-rule theorem.
Whether this is actually the case, if the P; are given by
the effective-mass approximation Eq. (6) with Pp
=exp(sk. r)ui, (r), can be seen from the matrices"

limg(r) =mrs, limg(r) =Br ', (21)
XF;*F,~i;*(VUXs~ui, ,),dr . (23)

where 2 and 8 are constants.
The potential correction U —Uo causes a shift and a

splitting of the degenerate ground state. The shift
increases the binding energy and is proportional to the
diagonal elements

~ P, ~'(U —Up)dr

2A'
=l IF(0) I'~l IA(k'r) I'f(r), (22)

C.C. 0

where F(0)=F(r=0) (the index i is omitted) and
c.c.=central cell. The integral on the right side of
Eq. (22) is the average value of the potential energy
of a conduction electron; it is of the order of 10 eV.
The factor before the integral is given by

—', ~F(0) ~'Q=-s, (r,/ap*)s=0. 78X10—' for Ge(ap* ——45 A),
=0.77X10 ' for Si(ap* ——20 A).

Thus, the shift of the effective-mass ground state
amounts to 10 ' eV and 10 ' eV for donors in Ge and
Si, respectively. The shifts are larger by one order of
magnitude if one takes the amplitudes of the corrected
envelope functions (see Ref. 1, Kohn). The splitting
of the degenerate effective-mass ground state depends
on the oG-diagonal elements 3f;, ~ which contain the
anisotropic contribution U(r) —f(r) to the perturbing
potential. We are not able to estimate the off-diagonal
elements, since the anisotropic contributions to U given
by Eq. (20), which vanish with r" (is& 3), are not known.

It is assumed that the envelope functions F, and their
first derivatives are smooth functions of r. The first
integral (over a unit cell) accounts for the effect of
spin-orbit coupling on a Bloch state k, ; it is zero for
all i, j as can be shown with the help of the selection-
rule theorem. "Furthermore, the corresponding diagonal
matrix element for an arbitrary state of the lowest
("s-like") conduction band vanishes, as can be seen by
writing li, (r) and V(r) as a Fourier series and then
applying the relation Ni,

~——uu & (au~=1) which follows
from the inversion symmetry of V(r).'r The secon. d
integral of Eq. (23) describes the effect of spin-orbit
coupling on the effective-mass ground state; it can be
shown that this integral also vanishes for all i, j."

"The integral can diverge in its present form. This divergence
is a consequence of the approximation applied in reducing the
four-component Dirac equation to the two-component Pauli
equation. The difhculty is removed, as in the theory of atomic
spectra, by replacing ~u with (1—u/2mc') i~u.

"The Bloch state k(irma, ir)a, ir)a) (of the conduction band oi
Ge) transforms according to the small representation L~, the x,
y, and s components of a pseudo-vector transform according to
L3 and L2, respectively. The direct product (L3+L&)&(L& does
not containL 1. However, in the second-order approximation of
perturbation theory, the energy levels are determined by matrix
elements between an L1 state and corresponding states of higher
conduction bands which may not vanish."R.J. Elliott, Phys. Rev. 96, 266 (1954).

"Since the first integral of Eq. (23) vanishes, we have M;;r
= J'P;*h (U)g, dr, where h, (U) = —(h'/4m'ps) (PUXi~), Th'is.
expression for M;;, 2 leads to the second integral of Eq. (23), with
our assumptions on Ii; and on its erst derivatives. For the case
of germanium it is readily seen that 3f;;,2 vanishes. Using Elliott s
relation and denoting with P; the eGective-mass wave function
for —k; which contains F;(x)=J';(x), we And M;;, 2

———jul ~;,2.
The wave vectors k; and —k; differ by 2x times a vector of the
reciprocal lattice, thus M;;,2=&;;,2. Furthermore, since the
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Hence, for Ge, there is no effect of spin-orbit coupling
in 6rst-order perturbation theory if the zero-order wave
functions are taken from the effective-mass approxi-
mation Eq. (6). The same result holds for the effective-
mass ground state of donors in Si. An upper limit for
the second-order change of the energy of the effective-
mass ground state is estimated roughly in Appendix 8;
it is found to be SX10 ' eV for donor electrons in Ge.

The first-order effect on the exact eigenstates of Hp
cannot be calculated, since it is not known to what
extent Bloch functions of higher bands are admixed
into the impurity wave functions because of the strong
impurity potential in the central cell. An order of
magnitude estimate for the ratio of the coefficients
A„(n%0) and As, de6ned by Eq. (4), is given by
Kohn. ' From this estimate it is seen that the admixture
for donors in Ge is much larger than for donors in Si.
The different extent of admixture appears to be a
characteristic distinction between impurity wave func-
tions in Ge and Si. This distinction can be important
for the g factors of donor electrons. "

degenerate state 'Fy and 'F8. However, since both the
s-shift correction H3 and the mass-velocity correction
H4 have the full tetrahedral symmetry, they can partly
lift the 2m-fold degeneracy of the effective-mass ground
state, as does the potential correction H». Let us
compare the shift and the splitting caused by H3 and
H4 with the corresponding effect of H~. If one substi-
tutes the effective-mass wave function into Eq. (15),
the matrix elements of the s-shif t correction are given by

A2

M;;,,= — — p,*(k;r)~ V pl(, (k;,r)d
4m'c' 0

+ I ~(0) I' Po*(k';)v U vA(», r)dr (24)

Similarly, the matrix elements of the mass-velocity
correction are found as

C. s-Shift and Mass-Velocity Correction
~ o

4M0J
2nzc' 0

y,*(k,,r) (E,+V)y, (k;,r)dr

These corrections" do not contain the electron spin
and, therefore, they cannot cause a splitting of the + I~(0) I' lt s*(k;,r) U('0+ U+2Es)lt s(k;,r)dr . (25)

M;;, 2 are elements of a secular matrix and since these elements
are real according to Eq. (19),we have 3II;;,s =HE;;, s and, therefore„
the matrix elements vanish.

'9 A difference between the g factor of donor electrons and that
approximative g factor for donor electrons given by L. M. Roth
and B. Lax [Phys. Rev. Letters 3, 217 (1959), Eq. (5)7 in terms
of the tensor components gil and gq calculated for a single ellip-
soidal energy surface of conduction electrons, may be caused to
some extent by the admixture of Bloch functions from higher
bands into the impurity wave function. For antimony, phosphorus,
and arsenic impurities in Si, the g factors of donor electrons have
been measured by D. K. Wilson and F. Feher [Phys. Rev. 124,
1068 (1961)7.For conduction electrons in Si, experimental values
for the anisotropic g factor do not seem to be available. However,
L. M. Roth [Phys. Rev. 118, 1534 (1960)7, H. Hagesawa [Phys.
Rev. 118, 1523 (1960)7, and L. Liu [Phys. Rev. Letters 6, 683
(1961)7have calculated the g factor of conduction electrons in Si.
The experimental result for the isotropic g factor of donor electrons
and the theoretical result given in terms of gll and gq are in
quantitative agreement. Thus, it appears that the impurity wave
functions in Si are well described with the effective-mass approxi-
mation which neglects the admixture of Bloch functions from
higher conduction bands. On the other hand, the experimental
values of the g factors for donor electrons of phosphorus or
arsenic impurities in Ge measured by G. Feher, D. K. Wilson,
and E. A. Gere [Phys. Rev. Letters 3, 25 (1959)7 are not in
quantitative agreement with the theoretical value derived from
g«and gz for an ellipsoidal energy surface of conduction electrons.
The difference may be caused, as in the more subtle case of
antimony-doped Ge (see Feher ef al , Roth and La. x), to some
extent by the admixture of Bloch functions from higher conduction
bands into the impurity wave functions. An excellent review
article on g factors (and spin-lattice relaxation) has been presented
by Y. Yafet, in SoLid-State Physics, edited by F. Seitz and D.
Turnbull {Academic Press Inc. , New York, 1963), Vol. 14, p. 1.

~ F. Herman (private communication) has solved the Hartree-
Fock-Slater wave equations for neutral germanium and silicon
atoms and then applied erst-order perturbation theory to account
for the relativistic corrections. It is a pleasure to thank Dr.
Herman for a number of interesting comments concerning the
relativistic corrections on Bloch states and for making available
to us his numerical results for the three relativistic corrections
on atomic orbitals of germanium and silicon atoms.

The second contribution to each matrix element has
been restricted to the central cell where the potential
U has a singularity. The first term of each of the two
diagonal elements LEqs. (24) and (25)j corresponds to
the shift of the Bloch state of the conduction band
minimum. For these terms there are no quantitative
values available at present. However, Herman" has
calculated the effect of all three relativistic corrections
on the 3s and 3p atomic orbital of a free Si atom and
on the 4s and 4p atomic orbital of a free Ge atom. His
result for the s-shift correction to the 3s and 4s atomic
states of Si and Ge is +0.16 and +0.93 eV, respectively,
and the corresponding numbers for the mass-velocity
correction are —0.62 and —1.62 eV. Hence, there is a
partial cancellation of the two corrections. Assuming
that the net shift of the conduction band minimum of
Ge is 2 eV, we estimate roughly that the second terms
of both diagonal elements, which describe the relative
shift of the ground state with respect to the conduction
band minimum, give a net shift of the order of magni-
tude —,

'
I
F(0) I

'0 eV, for As and Sb donors. Thus, with the
corrected envelope function, the shif t amounts to

5X10 'and 5X10 ' eV for As and Sb donor states
in germanium and silicon, respectively.

The nondiagonal elements of Eqs. (24) and (25)
contribute to the observed splitting of the degenerate
effective-mass ground state (see Fig. 1). In the case of
donor electrons in Ge, the relative contribution of the
two relativistic corrections to the splitting between the
'I's state and the si'7+'I's state is determined by the
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ratio

fo"(k ) &(U+ &+2I'-o)Po(k, )&r — Po (k,)y U p'P, (k,)dr
2fsc c.c. 4m'c'

(26)

Since it is the anisotropic part of the potential U(r)
which determines the integrals and since this part has
no singularity at r= 0, the contribution of the relativistic
corrections to the observed splitting is small compared
to the valley-orbit contribution, even in the case of Sb
donors in germanium where the splitting is an order of
magnitude smaller than for P and As donors.

V. CONCLUSION

The main purpose of this paper has been to discuss
the possible importance of spin-orbit coupling and
other relativistic corrections on the degenerate effective-
mass ground state of shallow impurities in Ge and Si.

With the help of perturbation theory and the relevant
selection-rule theorem, one finds that in first order,
spin-orbit coupling does not affect the impurity ground
states and, in particular, one finds that there is no
splitting of the sextet state in Ge or Si. In second order,
the effect of spin-orbit coupling is estimated to be of
the order 5)&10 ' eU or smaller. It is emphasized that
these results depend on an assumption of the effective-
mass theory; namely, the admixture of Bloch functions
from higher conduction bands into the impurity wave
function can be neglected. "If one could go beyond this
approximation, one should expect a first-order effect of
spin-orbit coupling on the impurity ground states in
Ge or Si, since the Bloch states of higher "non-s-like"
conduction bands are also affected by spin-orbit
coupling in erst order.

At present it is not known to what quantitative
extent Bloch functions from higher bands are admixed
into the impurity wave function. " Kohn's order of
magnitude estimate indicates, however, that the admix-
ture is considerably larger for impurity states in Ge
than it is for those in Si. The admixture will determine,
to some extent, the difference between the g factor of a
donor electron and the appropriate g factor of the
conduction electrons. For Si there is no such difference
(see Ref. 19). For Ge there is a small difference (to our
knowledge there are no available experimental g values
for the conduction electrons).

As for the two other relativistic corrections, namely
the s-shift correction and the mass-velocity correction,
they do not depend on the spin and they have the
symmetry of U(r). Their effect on the degenerate
effective-mass ground state consists of a binding energy
increase of the order of 10%%u~. The splitting caused by
these corrections is determined by the anisotropic part
of U which —due to the tetrahedral symmetry of U—
vanishes with r"(n) 3) for r —+ 0. Therefore, the
splitting is small compared with the valley-orbit
splitting.

Thus, it can be seen that, although spin-orbit coupling
and the other relativistic corrections are of some
importance for the binding energy of the impurity
states, and for the g factors of donor electrons, the
relativistic corrections cannot account for the observed
energy level structure of the impurity ground states.
Spin-orbit coupling will not result in an additional
splitting of degenerate energy levels large enough to be
observed with present experimental techniques. As for
the relative importance of corrections (1), (2), and (3),
it appears that the potential correction U —Uo, i.e.,
correction (1), which lowers the effective-mass binding
energy and causes the valley-orbit splitting, is the most
important one, at least for donor states in Si. Thus, an
accurate computation of the U's for different impurities
in Si would be of considerable interest. For Ge the
admixture of Bloch functions from higher bands may
also be of some importance (see Ref. 19 for g factors of
donor electrons). In such a case the small observed
valley-orbit splitting of antimony donors, which is by
an order of magnitude smaller than for phosphorus and
arsenic donors, can be caused by a partial compensation
of the non-relativistic corrections (1) and (2).
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"Since the Bloch states of a higher "non-s-like" conduction
band will be affected to a diGerent degree, depending on the
particular ir, by spin-orbit coupling (or by the other relativistic
corrections), the eBect of the admixture will certainly depend on
the composition of the impurity wave function in terms of higher
band Hloch states.

~The admixture of a higher band Bloch state Ir into the
impurity wave function will depend on the strength of the im-
purity potential in the central cell and on the energy gap between
(he energy of the state k and the conduction band minimum.

APPENDIX A: THE COEFFICIENTS
a;«PND g;~* (Ge)

The correct zero-order wave functions given by Eq.
(8) can be determined by symmetry considerations.
To this end, let us write the wave functions of the
Kohn-Luttinger Hamiltonian Ho which are obtained
in the effective-mass approximation and which trans-
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form according to the representations 1'~ and Ts of the
tetrahedral point group Tq, in the form

e ' =g a; P;, e; =Q a;; P;, (q =1, 2, 3), (Ai)

fol (Ti)

and for (Tp),
a &"=-,'(1,1,1,1),

where f; is given by Eq. (6). If we number the minima
of the conduction band in the (1, —1, —1), (—1, 1, —1),
(1,1,1), (—1, —1, 1) directions by 1, 2, 3, 4, the coeS-
cients az&'& and az;&"& (i= 1, 2, 3, 4) are given by:

where AE 1 eV. Let us assume that in the vicinity of
an impurity nucleus the effective-mass wave function
can be written in the form

P;(Ge) =F(r) (0/2)'l'[a(k;)P4, +b(k;)$4oj, (B2)

where P4, and $4o are normalized atomic orbitals of a
free Ge atom. The dominant contribution to the matrix
element of Eq. (B1) comes from inside the central cell.
In the limit where r —+ 0, the potential has the form

U(r) = —[e (Zg —Zp)/rj+constxys. (83)

a,i, &'&=-,'(1, —1, —1, 1),
a;z, &zi=-,'(1, —1, 1, —1),
a,z, &'&=-', (1, 1, —1, —1).

(A2) Clearly, it is the Coulombic term of the potential
which, together with the 4p orbital in P;, determines
the value of E2, one finds

With the help of Eqs. (A1) and (A2) the two-component
wave functions transforming according to the repre-
sentations 'I'6, 'F7, and 'I'8 can be determined irnmedi-
ately. The first case (zi'p) is trivial. In order to deter-
mine the wave functions associated with 'Fy and 4I'8,

let us write

X=/ a;i&'&p;, Y=Q a;&&'&p;, Z=g a;p&"P;, (A3)

where $; is given by Eq. (9). In terms of these functions
and their time reversal conjugates (indicated by a bar),
the correct zero-order wave functions are given by:
for ('I'z)

Viz= (1/~3(X—z Y+Z), @pr E@tr——

and for ('I'p)

Vip ——(1/v2) (X+zY), @pa——E@za, (A4)
+zp ——(1/6' ') (X+zY—2Z), 44p E+ia. ——

APPENDIX B: SPIN-ORBIT COUPLING
IN SECOND ORDER (Ge)

An upper limit for the second order change of the
energy of the effective-mass ground state is given by

E~,= ((F (0) ~'Qb'/2) [(Z~—Zp)/Zp]'h (4P), (B4)

where Sz(4p) is an upper limit for the second order
change of the atomic 4p orbital given by

( $2 z 1 Zez 2

Sz(4P) =
i(4m'c' Bsa.,' a, )

4zr (R4„)'dr
x—,(»)3, , r'(1+Zzrp/2r)4

where ao is the Bohr radius. This quantity can be
calculated without difficulty if one substitutes for the
radial eigenfunction E4„, the approximative formula
which applies for r /ap ((z'z/Z. " The resulting upper
limit Sz(4p) gives an unrealistic large value for the
actual second-order change of the atomic 4p orbital.
Therefore, E2 is estimated roughly by substituting for
Sz(4p) the value found by Herman" for the first-order
correction of the 4p orbital, 0.071 eV. Taking b'= 1/10
and assuming that the corrected value for ~F(0) ~' is
larger by a factor of ten than the corresponding value
for the effective-mass envelope function, one finds
E2&5X10 ' eV.

(P,zz )*H,.'P;zz.dr AE, (Bi) z'H. A. Bethe and F.. E. Salpeter, in Encyclopedia of Physics,
edited by S. Fliigge (Springer-Verlag, Berlin, j.957), Vol. 35, p. 1.


