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impurity effects; the above values of q and I' must
thus be considered as upper limits. A small "nuclear"
term found in the specific. heat of ytterbium' was at-
tributed to impurities since the crystal structure of this
metal is cubic and quadrupole interactions with the
crystalline held are thus identically zero.
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The high-temperature expansions of the partition function Z and susceptibility x of the Ising model
and the number of self-avoiding walks c„and polygons p„are obtained exactly up to the eleventh order
(in "bonds" or "steps") for the general d-dimensional simple hypercubical lattices. Exact expansions of
lnZ and x in powers of 1/q where q =2d, and 1/o. where o = 2d —1, for T)To are derived up to the fifth order.
The zero-order terms are the Bragg —Williams and Bethe approximations, respectively. The Ising critical
point is found to have the expansion
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while for self-avoiding walks

p= lim ~c„~""= [1a—a o —2a o —11a 4 —62o. & ~ ].—

Numerical extrapolation yields accurate estimates for 8, and p when d = 2 to 6 and indicates that y diverges
as (T T,) P+'&o&l wh—ere

3/b(d) 4, 12, 32+1,80+2, 188+12, . (d=2,3 . ),
and that c„=Aesop" (e ~ ~) with

1/o. (d) 3, 6, 14&0.3, 32&1.5, 72+7,

1. INTRODUCTION

N interesting conclusion that has emerged from
the study of phase transitions in lattice systems

is that the nature of the singularities characterizing the
transition point are chiefly dependent on the dimen-
sionality of the lattice. Thus, one-dimensional systems
(with finite ranged forces) show no transitions, while
all two-dimensional Ising models (at least those with
nearest-neighbor interactions) have logarithmically
divergent specific heats at T,.' ' More strikingly, it has
been shown that the ferromagnetic susceptibility of the
Ising model diverges at the critical point as

x(&)=c/(~ —~.)"',
where 5=43 in two dimensions4 and 5=4 in three

' L. Onsager, Phys. Rev. 65, 117 (1944).' R. M. F. Houtappel, Physica 16, 425 (1950); G. H. Wannier,
Phys. Rev. 79, 357 (1950); I. Syosi, Progr. Theoret. Phys.
(Kyoto) 6, 306 (1951).' C. Domb, Advan. Phys. 9, Xos. 34 and 35 (1960). This is an
important review of work on the Ising model.

4 M. E. Fisher, Physica 25, 321 (1959).

dimensions. ' ' Approximate theories of the mean-field

type always predict 8=0.' Intuitive considerations,
however, do suggest that 8(d) should decrease with
dimension and approach this mean-field value as
d ~ ~. This line of thought is supported by the recent
development' "of schemes for expanding the partition
functions of interacting systems in inverse powers of a
'coordination parameter' s which is probably best
regarded as a measure of the range of the interaction. ""

' C. Domb and M. F. Sykes, Proc, Roy. Soc, (London) A240,
214 (1957).' C. Domb and M. F. Sykes, J. Math. Phys. 2, 52 (1961).

r G. A. Baker, Jr., Phys. Rev. 124, 768 (1961).
For the Heisenberg model in three dimensions, the index 8 is

apparently ~3, see C. Domb and M. F. Sykes, Phys. Rev. 128,
168 (1962).

' R. Brout, Phys. Rev. 118, 1009 (1960); ibid 122, 469 (1961). '."G. Horwitz and H. B. Callen, Phys. Rev. 124, 1757 (1961).
"R.B. Stinchcombe, G. Horwitz, F. Fnglert, and R. Brout,

Phys. Rev. 130, 155 (1963)."G. A. Baker, Jr., Phys. Rev. 126, 2071 (1962); ibid. 130, 1406
(1963).

'3 A. F. J. Siegert (to be published) and in Statistical Physics,
1962 Brandeis Lectures (W. A. Benjamin, Inc. , New York, 1963).
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In these 'high-density' expansion methods the leading
term is the mean-6eld (Bragg-Williams) approximation.
Higher order terms, however, become increasingly
singular and it is fair to say that the validity and
significance of this approach are not yet quite clear.

A problem closely related to lattice statistics is that
of the number, c„, and other properties of self-avoiding
walks on lattices. " Such walks are also of interest in
their own right as a model of polymer molecules with
'excluded-volume' and as a simple non-Marko%an
process. "It has been proved" that the limit

p= limbic. )"" (1.2)

exists but its exact value is not known for any non-
trivial lattice. Numerical extrapolations, however, yield
estimates for zz (which is the analog of the critical point)
and indicate that

c„=Azz p" (zz —+ ~), (1 3)

"M. E. Fisher and M. F. Sykes, Phys. Rev. 114, 45 (1959).
» M. E. Fisher and B.J. Hiley, J. Chem. Phys. 34, 1253 (1961)."J.M. Hammersley, Proc. Cambridge Phil. Soc. 53, 642 (1957).
'7 M. F. Sykes, J. Chem. Phys. 39, 410 (1963).

where the index n Lwhich is analogous to 5 in (1.1))has
the value —, for all simple two-dimensional lattices and
the value 6 in three dimensions. ' '4 ""Heuristic
arguments again suggest that a(d) decreases to zero
(the Marko%an value) as d —+ ~.

To elucid. ate the general problem of dependence on
dimensionality and coordination number, it seemed
worthwhile to investigate the Ising model and self-
avoiding walks for lattices of dimensionality higher
than three. The results of such a study are presented.
in this paper. Of course the behavior of mode] physical
systems in four or more space-like dimensions is not
directly relevant to comparison with experiment! We
can hope, however, to gain theoretical insight into the
general mechanism and nature of phase transitions.
Indeed for the general d-dimensional simple hyper-
cubical lattices which we have studied (d= 2 corresponds
to the plane-square lattice, d=3 to the simple cubic
lattice) it proves possible to expand the Ising partition
function and susceptibility above T, in inverse powers
of d, the coefficients being closed expressions in T.
Similar expansions may also be derived, for the
generating functions for self-avoiding polygons and
walks. More surprisingly one may also obtain (1/d)
expansions for the critical temperature itself and for the
walk limit zz. (These are given explicitly in Eqs. (5.18)
and (5.28) to (5.30) below. ] The zeroth order terms
in these (1/d)-expansions are found to correspond to
the Bragg-Williams approximation. On the other hand,
if the expansions are made in the variable (1/o) where
o=2d —1, the leading terms correspond. to the Bethe
approximation.

To obtain these expansions ive have calculated. the

number of self-avoiding walks c„(d) for all d and for
m=1 to 11, and the 6rst eleven high-temperature
expansion coefficients of the Ising susceptibility for all
d (and corresponding terms for the partition function).
Extrapolation of the numerical values of these coeK-
cients in the now standard ways'»" ' yields accurate
values of p, and of the critical points for d up to six.
Corresponding estimates for the indices u(d) and 5(d)
may then also be obtained. These indices are found to
approach zero rapidly —apparently exponentially fast-
as d increases. (Unfortunately they do not seem to obey
any obvious simple formula!) The behavior of the
speci6c heats at the transition and the probability of a
self-avoiding return to the origin can also be estimated. .

The arrangement of the paper is as follows. In Sec.
2 the notation and formulation of the problems are
summarized. The way in which the number of dimen-
sions enter is described. in Sec. 3, while the detailed
enumeration problem is discussed in Sec. 4. Expressions
valid for all d are given and. numerical values are
tabulated for 8= 2 to 6. In Sec. 5 these results are used
to derive the expansions in (1/d) and (1/o). The
numerical extrapolations are described in Sec. 6 where
estimates of the critical points, indices etc. are tabulated.
Finally, the results are discussed briefly in Sec. 7.

0-= q
—1=2d —1. (2.2)

Self-Avoiding Walks

I.et c„=c„(d)denote the number of distinct zz-step
walks starting at the origin and consisting only of
nearest-neighbor steps which never visit the same
lattice point twice and let zz„=zz„(d) be the correspond-
ing number of returns to the origin, i.e., self-avoiding

'8 J. W. Essam and M. E. Fisher, J. Chem. Phys. 38, 802
(1963)."It would clearly be desirable to investigate a wider class of
d-dimensional lattices. A number of families of such lattices are
known, see: E. S. Barnes, Acta Arithmetica 5, 57 (1958), E.. S.
Barnes and G. E. Wall, J. Australian Math. Soc. 1, 47 (1959-60).
In the Grst instance, however, it seems reasonable to consider
only the simple hypercubical lattices which at least for low d are
probably not seriously atypical.

2. NOTATION AND FORMULATION

We consider a d-dimensional simple hypercubical
lattice whose sites are given by the points r= (rr, rs, .r&)

where the integer coordinates r; take all possible
combinations of positive or negative values. (For a
Qnite toroidal lattice of E=1." sites the r; are identified
modulo 1..) Each site has

(2.1)

nearest-neighbor sites corresponding to the d Cartesian
axes of the lattice. The parameter g is thus the co-
ordination number but, since we are consid, ering only
one class of lattices, it is tied to the dimensionality. "
It is convenient to define
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lnZ(T) = lim —lnZit (T)
Pf~ao P7p„=g„/2e. (2.3)

walks which close on the last step thus forming a The expansions are
polygon. The number of distinct polygons per site of a
large lattice" is then given by

In the present case, of course, p„=—si„—=0, if fv is odd. .
To the leading order c and I behave asymptotically
as p" where the limit and

=ln2+ —',q ln cosh(J/kT)+P g v" (2.11)
n=3

&=) (d)=»mlc. (2.4) 7f(T) = (m'/AT)L1+ Q a„v"],
n=l

(2 12)

is known. to exist" and be equal to" limlsis
(m —+ po) for d finite. It is sometimes convenient. to
regard c„(and similarly si„and p„) as the expansion
coeKcients of the generating function

C(s) =1++ c„s".
a=1

(2.5)

The asymptotic behavior of c„is then determined by the
singularities of C(s) nearest to the origin. By (2.4)
the dominant singularity is on the real positive axis at

s=s, =1/p. (2.6)

where s;= &1, m is the magnetic moment per spin and
H the magnetic field. The second sum runs over all 6»

lattice sites and the first sum runs over all nearest-
neighbor pairs. To effect a fair comparison between
diferent lattices the interaction energy per spin in the
lowest energy state should be constant. This condition
can be met by normalizing the 'exchange' energy J
according to

ising Model

Ke consider the Ising model. for spin 2 with nearest-
neighbor interactions only, specified by the Hamiltonian

(2.7)

where, as is well known, ' g„and a„are the number of
distinct graphs of e lines per site of the lattice" con-
structed according to the rules:

(a) the lines of the graph lie on the nearest-neighbor
bonds of the lattice and no more than one line may lie
on any bond;

(b) for the partition function each vertex of a graph
must be even, i.e., the join of an even number of lines;

(c) for the susceptibility there must be one odd
vertex at the origin and one at some (a,ny) other site.
All other vertices must be even.

~=~(d) = liml a„l'i" (2.13)

The graphs contributing to g„ thus consist of a polygon
or a number of separated polygons or polygons touching
at vertices but with no common bonds. Similarly, the
contributions to a come from a chain of bonds connect-
ing the origin to the second odd. vertex (this chain
forming a self-avoiding walk of e or less steps) together
with separated or touching polygons,

In zero field, ferromagnetic lattices (J)0) in two
or more dimensions undergo a phase transition at the
critical temperature T„.. (It might be remarked that
this has only been proved rigorously for certain two-
dimensional lattices. ) The transition point may be
defined (for a, ferromagnet) by the divergence of the
susceptibility to + po and hence by the divergence of
the series (2.12) i.e. s'

J=J(d) =Jp/q =Jp/2d, (2 g)

and holding Jo 6xed. The corresponding dimensionles~

temperature variable is then
so that

= 1/v, = 1/tanh (1/qe. ),

e,= 1/d lnl (tp+1)/(cp —1)]. (2.14)
8= kT/qJ =kT/J p. (2 9)

v = tanh (J/k T) = tanh (1/q8) . (2.10)

"Consider the total number of distinct n-sided polygons that
can be traced out on a toroidal lattice of X=L" sites when L& rs.

If this number is P (L) then p„=P (L)/L, which is independent
of L for L&e since no polygon can loop the torus. Each distinct
polygon can be traced in two directions starting from any one of
its I vertices and so corresponds to 2n of the u.„self-avoiding
returns to a 6xed point.

2r J.M. Hammersley, Proc. Cambridge Phil. Soc. 57, 516 (1961).

The partition function and susceptibility per spin in
zero field (H = 0) may be expand. ed at high temperatures
most conveniently in terms of the variable

Correspondingly, the asymptotic behavior of the
coefficients a„determines the nature of the singularity
in. 7f(T) at T,. In two dimensions it is known rigorously' '
that

cp (2) = 1+v2, 8,(2) = 0.567296 . (2.15)

~The phrase 'per site of the lattice' implies that the total
number of distinct graphs on a torus of E sites is expressed as a
polynomial in Ilr (which is always possible if the torus is suKciently
large that it cannot be looped by connected components of the
graph considered) and that only the coeKcient of E is retained.
If the graph is connected this is the only nonzero coeKcient but
disconnected graphs yield higher powers.

"Strictly we should have here 'lim sup' rather than 'lim' but
the expansion coeKcients are found to be sufFiciently regular that
the two limits agree.
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o-(d) =2 o-i (3.1)

The calculation of c„(d) for all d is thus reduced to the
evaluation of the e integral coefFicients c„~, c 2, - .c
Conversely, if the values of c„(d) are known for
d= 1, 2, . m, the Eqs. (3.1) can be solved successively
to yield the o ~ and. , hence, c„(d) for d) rt.

By setting d=st(o+1) or d= stq and. expanding the
binomial coefficients one may alternatively express
c„(d) as a polynomial in o- or q of degree is, namely,

3. ENUMERATION IN d DIMENSIONS

The general problem of enumerating the number of
self-avoiding walks and polygons and of calculating the
expansion coefFicients g„and a„has previously been
considered in detail for two- and three-dimensional
lattices. ' """It depends finally on the calculation of
the values of the lutose coestaets''4 of the necessary
nonreducible graphs of rt or fewer lines. (The lattice
constael, of a particular connected graph is the number
of distinct ways it can be embedded in the lattice per
site of the lattice "")

The new feature of the present problem is that the
dimensionality is larger than three and we wish to
obtain results valid for arbitrary d. Fortunately, in the
case of the simple hypercubical lattices this difficulty
can be overcome as follows. Consider a self-avoiding
walk of e steps. If d)n the walk can extend at most into
a subspace of n dimensions (each step being directed
into a new dimension i.e., parallel to a new lattice
axis). Some of the walks, however, will extend only into
1=n—1, n —2, 3, 2, or 1 dimensions. Suppose c„,~ is
the number of u step (self-avoiding) walks in l dimen-
sions which extend into the full /-dimensional space.
The number of distinct ways such a walk could be
embedded in a hypercubical lattice of higher dimension

(p
d is given by the binomial coeflicient

l l
since this is

&tr
just the number of ways of choosing a set of l dimensions
from the total number d. Thus, the number of walks
in d dimensions that extend into an /-dimensional sub-
space but not into one of the higher dimension is

c ~l
&

l. Summing over all the distinct possibilities(lj
t=1, 2, . d yields

us (d)=gus„, tl"'
&&)

' (3.3)

where 02, ~ is the number of closed walks of 2m steps
in / dimensions which extend into all / dimensions. The
lower limit is l=2 since there are clearly no closed
self-avoiding walks in one dimension. As before one
also has

us„(d)=g U s,&o''=P U's„, &q' (3 4)

and similar expressions for the number of polygons
Ps-(d)

As a simple example consider p4, the number of
squares per site of the lattice. To describe a square from
one of its corners we need (a) to choose the lattice site
on which the corner resides, (b) to choose two ortho-
gonal directions for the sides of the square which can

be done in
l l ways, and (c) select one of the 2X2
&d'

l
possible senses along the chosen axes. Since each square
has four identical corners from which it might be
described we conclude that

p =-.'X2X21
E2) E2)

(3.5)

This result could have been found directly on the basis
of the previous arguments, however, by observing that
the number of self-avoiding returns of. 4 steps on the
plane-square lattice is simply u4(2) =8 so that p4(2)
=p4, s=su4(2)=1 from which (3.5) follows by the
analog of (3.3).

Similar arguments clearly apply to graphs like the
simple 'figure eight' /see Fig. 1(a)]

P„,,= (r,s),, r+s= e (3.6)

and to more closely connected graphs of e lines which

The above arguments may obviously be generalized
to the case of graphs with closed loops. Thus, a closed
walk of 2m steps can extend at most into m dimensions
since for each step along a given axis there must be a
complementary step parallel to the same axis but of
opposite sense. Consequently, we have

c.(d) = Q (."„,o'= g (."'.gq'.
t=o

(3.2)

The lower limit in the second sum is t= 1 (rather than
t = 0) since each binomial coefficient has a factor
d =

~ q so that C~ 0 must vanish. In general, however,
C .„o will not vanish.

~ C. Bomb and M. F. Sykes, Phil. Mag. 2) 733 (1957); C.
Domb and M. E. Fisher, . Proc. Cambridge Phil. Soc. 54, 4S
(&9s8)."M. F. Sykes, J. Math. Phys. 2, 52 (1961).

FtG. 1. Connected
graphs (a) simple figure
eight; (b) tadpole; (c)
dumbbell; (d) star figure
eight.

(a) (b)
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can fill out fewer than 2'e dimensions. For example, the
number of cubes (3-cubes) in d dimensions is simply

The recurrence relation

(p
piz, o b.=l (3.7)

rz-(d+1) =Z I II lrz~-i&(d)«) &2~i
(4.3)

On the other hand, the lattice constants for more open
graphs like the 'tadpole' Lsee Fig. 1(b)j

p„,= (r,s)r, r+s=n.
and the 'dumbbell' Lsee Fig. 1(c)$

p„,= (r,s, t) D r+s+t= n

(3.8)

(3 9)

can be expressed in the forms (3.1) or (3.3) but with
upper limits n ——',r and n —

2 (r+t), respectively,
(r, 3=4, 6, 8, ). For the important irreducible 'star
6gure eights' Lsee Fig. 1(d)]

p„,= (r,s,t)„r+s+t=n (3.10)

4. CONFIGURATIONAL CALCULATIONS

In this section we outline the way in which the
coefficients p„, c„, g„, and a have been calculated for
arbitrary d up to e= 11.The reader who is prepared to
take the results on trust Lsee Eqs. (6), (10), (14), (19),
(20), (23) to (25) and Tables I to VI] and who is
uninterested in the combinatorial details will lose little
by omitting this section.

The most dificult nonreducible lattice constant to
calculate is probably p„ the number of n-step polygons.
&Ve have used the method devised by Bomb and
Sykes. ' " First, we calculate r„(d) the number of
returns of a walk which is allowed to make all possible
self-intersections. Then

d

r„(d)=Coefficient: of 1 in IP (x~+g; ') ]" (4. 'I)

Qnd so

the corresponding upper limits are only zz (r+s+t 1)—
=-',n —i if all r, s, t are odd, or —', (r+s+t —2) = in —1 if
r, s, 3 are even. (These are the only possibilities on the
simple cubical lattices since r+s, s+t and t+r must.
clearly be even integers greater than 3.)

Since the high-temperature expansion (2.11) for the
Ising partition function involves only combinations of
polygons, the same arguments show that the general
coefficient gz (d) may also be written in the forms
(3.3) and (3.4), i.e., with upper limit m. Similarly, the
susceptibility expansion coeKcients a„(d), since they
involve the open chain (or walk) of n steps, as well as
closed configurations can be expressed as in (3.1) or as
in (3.2) i.e., as a polynomial in o. or q of degree n. The
possibility of expanding the partition function and the
susceptibility in powers of (1(o.) and (1/q) stem directly
from this conclusion.

qz„(d) —2 (d—1)

r& (d) —E I 10'Lqz(-- ) (d) —2(d—1)3 (4 4)
" &2m&,

i s

established by Bomb and Fisher. '4 The number of
polygons (or self-avoiding returns) can now be derived
by subtracting oB the relatively few possible types of
intersections included in the q„. The simplest of these
consist of chains of lower order polygons touching at
vertices and are reducible in terms of products of the

qi (t(n). There remain a few nonreducible possibilities
such as the star figure eights L(3.10) and Fig. 1(d)j.
The appropriate reduction formulas as far as pio oil a
general 'loose-packed' lattice have been given explicitly
by Sykes (see p. 311 of the review article by Domb. ')

Fortunately, many of the irreducible lattice con-
stants for the hypercubical lattices are zero because the
fundamental stars p4, = (2,2,2) s and ps„——(2,2,2,2) s
vanish (using the notation of Domb. ') These constants
are nonzero, for example, on the body-centered cubic
lattice. Thus, the only nonvanishing constant required
to calculate p4 to pio is the star (2,2,4)s. By the type of
argument used to calculate p4 in Eq. (3.5) it is not
dificult to see that

pz, ——(2,2,4) s= 24
3j

(4 5)

Alternatively, since from the results of the previous
section, the constant cannot extend into a space of more
than three dimensions, this formula could be written
down from the known results for the plane square (d = 2)
and simple cubic (d= 3) lattices. "

In this way the values of p4(d) to pio(d) have been
calculated numerically for d=2 to 8. The values for
d=2 to 5 sufBce to calculate the binomial expansion
coefficients in the analog of Eq. (3.3) and these may
t.hen be checked by the values for larger d. Ke obtain

and a similar one for rz~(d+2) in terms of rz (d)
follows easily from the generating function (4.1) and
provides the simplest method of computing the rz (d)
for higher d.

Second, we require q„(d) the numbers of n step
returns with no immediate reversals (but other self-
intersection allowed). These may be calculated recur-
sively from r& (d) by the relation

rz (1)=-l, r;,.(2)=l/2m ~2m
-'

(m ' '"
(m

(4.2) "Tables of lattice constants for many tvvo- and three-dimen-
sional lattices are tabulated by Bomb (Ref. 3), pp. 345—360.
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TanLE I. Number of self-avoiding returns, I (d). explicit results for the nonzero g„are found to be

2

6
8

10
12
14

8
24

112
560

2976
16 464

24
264

3 312
48 240

762 096
12 673 920

5 6

8 10 12
48 80 120

912 2160 4200
22 944 82 720 216 720

652 320 3 737 120 13 594320
&3j

'I+161

Lin addition to Zq. (3.5)&

g, =4-,'I I+1V4I +64S

2 3j 4 (5jg, = 12 +1944 I+22304 +476161
I (4 1o)

p.=~l ' I+1g6I
'

I+64gl
'

I,
&2j (3j

The configurational energy of the Ising lattice has the
high-temperature expansion

plo= 2& +232&l I+23136 +4&616I
I
. (4.6)

&3j 4 E5j

—U(T)/J= g Jr e",
n=l

(4.»)

The corresponding numerical values of the returns
u„=2'„are given in Table I for d=2 to 6. The
tabulated values Ns (d) = 2d are, of course, purely
conventional. The results for n=12 and 14 are taken
from the known results for d=2 and 3 which extend
to uts(2) =94 016, mrs(2) =549 648, and urs(3)
=218 904 768 "'7

To calculate the coeflicients g (d) for the partition
function expansion we need, in addition to the polygons
p„(d), the contributions from separated and touching
polygons. These may be reduced in terms of the p„
and. a few further stars. The general formulas up to
n= 10 have also been given by Sykes."In our case the
only further stars required are

TAsLz II. Coefficients h„(d) for the high-temperature expansion
of the energy Lsee Eq. (4.11)].

d=2

1
3
5
7
9

11
13

2 3
4 12
8 120

24 1368
84 18 300

328 268 728
1372 4 180 860

24
432

10 512
290 552

5
40

1040
39 120

1 746 760

6
60

2040
104 040

6 487 020

where the coefficients h„(d) may be derived by differ-
entiating the partition function (2.11) with respect to v

and multiplying by (1—v'). The numerical values of

pr. = (313)s=2l I+12l
&3j

(4 7)

r
p»= (»15)s= 12I I+»&I I+76gl I, (4 g)

E4j
'

prob= (3,1,3,3)s = 01 +12l I+321 I (4 9)
rd rd t rdl

(3j E4j

Although the last two of these have contributions from
configurations which can arise only in four dimensions
they are quite easy to calculate combinatorially since
essentially one merely has to 6nd the number of ways
of placing a square 'Qap' on the side of a hexagon
(for pss) or on. the 'hinge' joining two similar Qaps
(for p&sr) The consta. nt pr can be calculated by either
of the methods previously described for ps, . The

the nonvanishing h„(d) are presented in Table II for
d=2 to 6. The series i's „(2) could be continued in-
definitely by using Onsager's exact solution. ' The terms
h„(3) are, of course, already known. '

To calculate the number c„of open self-avoiding
walks we follow Sykes and Fisher'4" and use the
counting theorem which expresses c„ in terms of lower
order walks, polygons, simple and star figure eights
and dumbbells I see Eqs. (3.6) to (3.10)]. This is
derived by adding a step in o. ways to one end of an
e-step self-avoiding walk thus forming either an (I+1)-
step walk, a tadpole, or a closed walk (polygon). In a
similar way adding a step to the tail of a tadpole
yields either a tadpole of higher order, a dumbbell, or a
figure eight. Collecting terms yields the relations

"G. S. Rushbrooke and J. Eve, J. Math. Phys. 3, 185 (1962).
's Ref. 3 page 321. Our g„ is denoted P(n).

c„=2oc„r—o c„s+da r n=3, 4, 5,

cr ——o.+1, cs= o.(o+1), (4.12)
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where the 'correction coeScients' are

d„=8P(r, s, t)D+8 g(r, s)p Fr@. 2- pios and pg, .

+12 P (r,s, t) s+u„,—u„, (4.13)

in which the sums are over all graphs of specified type
with r+s+t=n.

For large n the most important lattice constants are
the dumbbells, in particular the leading dumbbells
(4, n —8, 4)D which extends at most into n —4 dimen-
sions, and (6, n —10, 4)D which extends into n —5
dimensions. For e)9 none of the other graphs extend
as far. Consequently, we may write

n-4 fPd. (d) = P d.P't!~ ~, (n&~7),
t) ' (4 14)

where the factor 2'I t has been included for convenience
in order to keep the coefficients relatively small.
When n=4, 5, or 6 the formula still applies but with
upper limits 2, 2, and 3, respectively. (For any loose-
packed lattice we have dp—=0.)

To illustrate the technique of calculating the dumb-
bells and to obtain a result needed in the following
section consider the dumbbell (4, n —8, 4)ii. It can be
described from either end and by (3.5) we have a factor
f'd)

~ 2 ~

for the number of ways of choosing the square.
&2i
Onto one of the four corners of this square we may at-
tach a self-avoiding walk of n —8 steps (and hence of
lower order) which, however, can only set out in 2d —2
directions. On the last point of the walk we may fix the
second square. If one side of this square is in the same
direction as the last step, there are 2(d —1) possibilities
for the plane of the square, but if the square is orthog-
onal to the last step there are p (d—1) (d—2) X2X2 dis-
tinct possibilities making 2(d—1)' in all. Collecting up
factors we obtain

(4, n 8,4)o—
i4X2(d —1) 2(d —1)'—Z* (4.15)

where Z* is the weighted suni of all those configurations
of e or fewer lines which can be formed by the possible
interactions or overlaps of the walk with either square,
or of the squares with each other, etc. Since such
configurations will have at least one extra closed loop
of at least four steps they can extend at most into
n —4—xp(4) dimensions and, hence, are of order d" ' or
less. To corresponding order we may similarly replace
o —p by 2d(2d —1)" '= qo." '. From (4.15) we thus
derive for general z

(4, n —8, 4)i)———'q " '{1—(4/ )+OL1/o'j}
(n ~& 9) . (4.16)

An entirely parallel ana, lysis yields

(6, n 1—0, 4)D ——qo." Pf1+0(1/o.)}, (n&&11). (4.17)

The factors q= 2d are left in front for later convenience.
For large m the complete enumeration of all the terms

in Z* and their weights is dificult but for n=11 (or
even 12) it is accomplished quite easily by careful
exhaustion of the possibilities. There are in fact rela-
tively few realizable cases and the task is eased by
first constructing the tadpole (4, n —8)r. For n= 10, for
example, we need only the constants

Pip, and pp, (see Fig. 2) (4.18)

TABLE III. Values of the coeKcients d g for calculating c„(d).
See Eqp. (4.14) end (4.20).

5

7
8
9

10
11

—1
1—3
6—12

40—33
263

7—52
167—605

3671

—26
64—941

4261
—219

915

6 7

1
40

which are easy to calculate directly.
The most troublesome configurations are the higher

order stars (r,s,t)s since these, being relatively more
open, are more iiumerous than configurations like
(4.18). At order n= 11 the star (3,117)s may be calcu-
lated by placing a square Rap on a polygon pp and.
subtracting off possible intersections. Along similar
lines (5,1,5)s is obtained by considering all possible
configurations of two hexagons hinged onto a common
bond. (There are three 'space types' of hexagon,
namely 'Rat', 'bent' and 'twisted'!) Finally, (3,3,5)s
can be calculated by careful drawing of all Ave-step
'bridges' across the main diagonals of all types of
hexagon.

In total the numbers of nonzero lattice constants
needed to order e= 11, in addition to the polygons, are
1 of order seven, 2 of order eight, 4 of order nine, 9 of
order ten, and 10 of order eleven. (These numbers
include a few lattice constants needed only for the
susceptibility; see below. )

Collecting the relevant terms, after expressing each
lattice constant in binomial form, yields the correction
coefficients d„,& and, thence, by (4.12) the number of
walks c„. To economize space only the coefficients
d„ i are tabulated (in Table III) while the numerica, l
values of the c„(d) for d = 2 to 6 are given in Table IV.
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TABLE IV. Number of self-avoiding walks, c (d).

2
3

5
6
7
8

10
11

12
36

100
284
780

2172
5916

16 268
44 100

120 292

6
30

150
726

3534
16 926
81 390

387 966
1 853 886
8 809 878

41 934 150

8
56

392
2696

18 584
127 160
871 256

5 946 200
40 613 816

276 750 536
1 886 784 200

10
90

810
7210

64 250
570 330

5 065 530
44 906 970

398 227 610
3 527 691 690

31 255 491 850

12
132

1452
15 852

173 172
1 887 492

20 578 452
224 138 292

2 441 606 532
26 583 605 772

289 455 960 492

b„=8 Q (r,s, t)D+ 16 g (r,s, f)D
d„(d) = qo" '+4qo. " '+0(qo r), (n& 11). (4.19)

+8 P (r,s,t)n+, (4.22)
By solving the recurrence relation (4.12) generally

the walks are given explicitly in terms of the d„by
where the higher order terms are more closely
connected. " By (4.16) and (4.1/) we then have, in

(4 20) analogy to (4.19),c (d)=qo"—'+Q ds(n+1 k)o"—
f -(d) = qo" '+6qo" '+o(qo" '), (n~&11) (4 23)

From (4.13), (4.16), and (4.17), it follows that the general,
leading contributions to the correction coeKcients are

The summation runs only from k =4 since d3 =—0.
To calculate the susceptibility expansion coefficients

a„(d) we need the n-step self-avoiding walks (or chains)
but, in addition, we need all dumbbells, single and
'double-tailed' tadpoles, star 6gure eights etc., of order
n, and combinations of similar connected graphs of
lower order with one or more separated polygons. In
analogy with the counting theorem (4.12) we may write

n 4(d-
b.(d)= Q 5 t2'I!~ (4.24)

The explicit detailed breakdown of the b„ for e= 1 to
9 have been published. "The formulas for b~o and b~~

follow from the rules given by Sykes."As before, we
may write

a~=2«n t o a~—s—+~-n, —

a, =o+1, as ——o (o+1),
g 3 4 5 e ~ ~ except that for m=4, 5, and 6 the upper limit should

be 2, 2, and 3. Further, since b3=—0, we also have
(4.21)

TAsLz V. Values of the coeKcients 5 ~ for calculating o„(d).
LSee Eqs. (4.24) and (4.25).g

n

a„(d)=qo" t+Q bI, (n+1 k)o"—
4

(4.25)

5
6
7
8
9

10
11

—1
0—2
2
0

26
59

242

4
2—42

971
—251—',
2979—,

'

—26
30-,'—837

3077-',

1—217
654

6 7

1
42

The coefficients b„~ are presented in Table V while the
numerical values of a„(d) for d= 2 to 6 will be found in
Table VI.

5. EXPANSIONS IN I/tr AND 1jq

Partition Function

The Bethe approximation' for an Ising lattice of
coordination number q=o+1 yields a transition at a
critical point given by

where each new correction coefficient b„will be a
weighted sum of closed lattice constants (i.e., graphs
with 'tails' will not appear). General rules for the lattice
constants required and expressions for their weights
have been found by Sykes." The leading terms for
large d again come from dumbbells of order e but
dumbbells of two lower orders also occur. Thus, in

tanh(J jkT,)= o,=1/o. (5.1a)

"The coeKcients 8, 16, 8 in Eq. (4.22) find their origin in the
factor 8(1+a)' in Eq. (23) of Ref. 25. We are grateful to Dr. M. F.
Sykes for con6rming this point.

3' Ref. 3, pp. 323-4. Our 5 is denoted d„.
» We are indebted to Dr. M. F. Sykes for checking the detailed

symbolic expressions for bIO and b».
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TAsLE VI. Expansion coefficients a„(d) for the susceptibility (note: for tt(5 a (d) =c„(d), see Table V).

5
6
7
8
9

10
11

276
740

1972
5172

13 492
34 876
89 '?64

3510
16 710
79 494

375 174
1 769 686
8 306 862

38 975 286

18 536
126 536
863 720

5 873 768
39 942 184

271 009 112
1 838 725 896

64 170
568 970

5 044 810
44 649 930

395 180 650
3 494 051 130

30 893 156 970

173 052
1 884 972

20 532 252
223 437 852

2 431 526 492
26 447 593 812

287 669 976 492

ln terms of the rescaled variable

x= at) = a. tanh(J/kT),

m. Thus,

(5.1b)
lnZ= ln2+-', (tr+1) ln cosh(J/kT)

the Bethe critical equation is simply x,=1. General
considerations suggest that Bethe's approximation
might be more accurate the higher the coordination
number g and we may test this idea conveniently by
re-expressing the true partition function in terms of the
variable x.

Now by Eqs. (2.11) and (4.10) we may write down

the high-temperature expansion of the partition
function in powers of t) for general d. (Of course, we

are considering only the simple hypercubical lat-
tices. ) By the argument of Sec. 3 the coeKcient of

can be expanded as a polynomial in 0- of degree

00 m

t)sm Q Grr at (5 2)
m=2 t=o

where the coefficients G' t follow directly from (4.10).
On making the substitution t)=x/a, we thus obtain an
expansion in powers of x in which the coeKcient of
x2 is a polynomial in inverse powers of 0- of degree 2m,
the lowest order term, however, being of degree ns.

Regarding the series as a double series in x and (1/tr)
we may rearrange to obtain an expansion of the partition
function in powers of (1/o). (This rearrangement may,
of course, be invalid in a region where the double series
is not absolutely convergent. ) Performing these manipu-
lations we readily derive the result

lnZ=ln2+ —', (a.+1) ln cosh(J/kT)

1 1
+-x4 (1/a)'+-x'(1/a. )'

8 3

t' 1 3 11
+i —-x' —-x' +1—x' i(1/o)'

8 4 16 )

( 1 7
+) —-~'—9-x' +tt-x")(t/ )'

3 8 5

3 5 11
+13—xs —127—xI+120*x" l(1/a)'

M

f'7 5
y~ 9 xs +443 xo y. . . ~(1/tr)rls 6 j

r 5
+ i

—15x'—422-x" + ~
i (1/tr) s

l )
7

+I —456—xmas ~(1/ )'
3O )
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which is correct to order xio and to order (1/o)'. (The asterisk on the coefficient of x" in the (1/o)' term indicates
that this value is an approximate estimate. )

The first line of this formula, corresponding to (1/o.) ~ 0, is just the result of the Bethe approximation for
T& T, (x(1).In as far as the truncated series in (1/o) is a good representation of lnZ we are justified in concluding
that the Bethe approximation beconMs more accurate as 0.—+ ~. It is notable that the first correction term is of
order (1/o)' rather than of order (1/o). If one sets (1/o) =1 one discovers that the coeflicient of each power of x
vanishes identically. This corresponds to the fact that the Bethe approximation is exact for the one dimensional
linear chain (o =1, q=2, d=1).

Evidently the coefficient of (1/o) & is a polynomial in x-' the term of lowest degree being x& for p even or xi'+' for
p odd, and that of highest degree being x'". Although each coefficient is merely a finite polynomial in x and, hence,
is a Nolsilgular function of T, it is clear that the series in (1/o) can only represent the partition function above
the critical temperature T„ i.e., only for x(x,=x, (o). This suggests strongly that the series in (1/o) for fixed x
is divergent if x is large enough. However, we will postpone further discussion of the convergence of (5.3).

The mean-6eld or Bragg-Williams approximation is even less accurate than the Bethe approximation but is also
expected to improve as the coordination number q increases. The Bragg-Williams critical point is given by

kT,/q 7=8,= 1, (5 4)

which suggests expressing the partition function in the variable 8= (1/q tanh 'a) and considering an expansion in
inverse powers of 8 and q t rather than in powers of x and (1/o) j. From (5.3), or directly from (2.11) and (4.10),
we then find the '(1/q)-expansion'

1
InZ= In2+ t7 '(1/q)+~4(1/q)'

+~ —~'+-~') (&/v)'
24 5

11 11
+ j

—18-6+1 t7-' ~(1/q)'» &6 )

( 46 '7 2
+~ 2~' —17~' +12-8 " ~(1/q)'( 90 24 5 )

57 5]+ 56~8 194 8-10+12O@g—12 ~(1/q)G
80 12

(5.5)

which is correct to order (1/q). ' (As before the asterisk
indicates an approximate value. )

As expected the term independent of q is the constant
ln2 which is just the Bragg-Williams result above T,
(corresponding to a constant configurational energy and
zero specific heat). Note, however, that the leading
correction term is now of erst order.

The coefficient of (1/q)& is a polynomial in 8-' of
degree p but with leading term of order 8 '&+'&

for p odd or 8 '"+'& for p even. As a function of T the
coefficients are thus nonsingular to all orders (except
for poles at T=O). If we put 1/q= iz and regroup in
powers of (1/8), we recapture the expansion of
ln cosh(1/28), the exact result for the linear chain.
Similarly putting 1/q=4 and regrouping yields the
expansion for the plane-square lattice which is known
to converge up to 8-'= 8,—'= 1.762 747 ~ ~ but to
display a singularity of type (8—8,)'1n~8 —8,

~
at 8,.'

Self-Avoiding Walks

It is clear that we may perform parallel manipulations
on the generating function for self-avoiding polygons.
The resulting formulas, however, are not of special
interest. Instead we consider now the generating
function C(z) for self-avoiding walks PEq. (2.5)j. The
analog of the Bethe approximation for the excluded
volume problem is the neglect of all self-intersections
except those due to immediate reversals (or 'digons').
This yields the 6rst-order approximation c ~qo." ' and
hence, for the generating function, the approximation

C (z) 1+qz+ qaz'+qo'z'+

1+$qz/(1 —oz)j. (5.6)

This function has a simple pole at z,= 1/o, which
indicates that the 6rst-order approximation for the
walk limit is p 0-, corresponding to the Bethe critical
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point (5.1a). In analogy with (5.1b) we may introduce
the new variable

(5.7)y=os.

Since, by (3.2) the Nth coefFicient in the expansion of
C(z) in z is a polynomial in o of degree I, the coefficients
in the expansion in y will be polynomials in inverse
powers of 0., the leading terms being constant. On
regrouping we will obtain an expansion of C(z) in powers
of (1/o) in which we expect the zero order term to
correspond to (5.6).

It is convenient to start with the expression (4.20).
Multiplication by (o/q)z" followed by summation from
m=1 to ~ yields

Using the expression (4.14) and the coefficients d t

given in Table III we may expand each term (d&/qa" ')
in inverse powers of 0-. Thus,

d4/qg = o' +o

ds/qo'=

d,/qa'=
+a ' —o.—4

—4o ' +13a 4

dig/qg' =
dii/qa"=

a 4 244o 5+279—3o 6+

o '+4o —' +420o ' +. . (5.10)

and by (4.19) the first two terms in di/qa' ' remain
unchanged for k&~11. On collecting up terms in 1/o.
and performing the infinite sums for the terms in
(1/o)' and (1/o)', which yield extra factors (1—y)

'

(for ~y~ (1), we finally obtain

-LC(y/a) —1)
g

(1/a)'
(1—y)'

3y 2y
+y' 1+ — (1/a)'

30y2 jy3 y4—y' 1—11y——+ — (1/o.)4
(1-y) (1—y)' (1—y)'-

310y—y' 9+40y—111y'—
(1—y)

454 4'y y+ — (1/o.)'+ ~ . (5.11)
(1—y)' (1—y)'-

—(C(z) —1)= +—P P di(e —0+1)z"a"—". (5.8)
q 1—gg g

n=1 k=4

On writing z=y/o, interchanging the order of summa-
tion and summing on j=n k(ass—uming ~y~ (1) we
get

0 00

-LC(z) —1)= + Z(d~/qa' '), . (5 9)
1—y i=4 (1—y)'

p(2) (v= 2.712 (5.13)

for the plane-square lattice proves that C(y/o-) is
bounded and regular for y(a/v=1. 106 when o.=3.
Generally, by considering walks in which only im-
mediate reversals and square loops (4-step self-inter-
sections) are forbidden, one may show" that p(d) ~& v(d)
where v(d) is the real positive root of

v' —(a—1)v' —(a—1)v —1=0. (5.14)

It is easy to establish that o/v (d) &~ 1+e(d) with
e(d)) 0 (for d ~). This proves that C(y/o) is regular
at y= 1 for alt hnite 0.. The divergence of the expansion
in (1/o) at y= 1 is evidently a mere 'artifact' but it
apparently prevents us from locating, even approxi-
mately, the true singularity in C(y/o) and, thence,
estimating p(d).

This difficulty can, however, be circumvented in the
following manner. By re-expanding (5.11) in powers of
y, or directly from (4.20) and the polynomials (5.10),
we find that the number of walks for e&~11 can be
written

(1/q)c. (d) =a" 'I 1 (—m 3—)g ' (—2'——13—)g —'

+ (-,'n' —142iN+107)o 4

+ (2&'—83&+895)a '+O(o.—')), (5.15)

where for e& no ——Ng(nz) the coefficient of a™will be a
definite polynomial in n of degree pm). If, formally, we
take the logarithm of this expression we find

ln(c„/q) = (I—1) lno —(m —3)o—'
—(2vi —13)o '—(11-',e—102—,')o=4

—(64vi 856)a '+—O(o') . (5.1.6)

It is remarkable that the terms in rI2 have cancelled
identically. It seems probable, although we have as yet
no proof, that this cancellation will continue in the
general mth term Lfor m& lo(m)) so that the logarithm
will be formally linear in n to all orders. We may now
use the definition (2.4)

1np(d) =lim 1/n inc„(d) (5.17)

~ One must construct a recurrence relation for the number of
vralks divided into classes according to the least number of extra
steps needed to complete a square. See the Appendix to Ref. 14.

As anticipated the term independent of 0- corresponds
precisely to the first-order approximation (5.6) and
has a simple pole at y= 1. The erst correction term is of
second order but has a double pole at y=1. The
coefficient of (1/a)™has the form

y"+'(ko+k y+ +k y'") ( —y)
—'—"'', (5.1 )

(where Lw) denotes the integer part of. ig) and, hence,
diverges increasingly strongly at y=1 as m increases.

Of course the fact that the expansion in (1/o.)
diverges to all orders at y=1 does not imply that
C(y/o) has any singularity at y= l. Indeed the upper
bound"
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Susceptibility

Returning to the Ising model it is now clear how the
susceptibility may be expanded in powers of (1/0.).
We start with the expression (4.25) for the expansion
coeKcients, multiply by e" and sum. The correction
coefficients b„defi ned by (4.24) and Table V, are then
expanded in powers of o.. On making the substitution
e=x/0, rearranging and summing we finally obtain, in

analogy with (5.11),

-Lk—1j=- — —(1/~)'
q 1—x (1—x)'

3x22X+" 1+ — (1/.)'
1—x (1—x)'

30x' 10x' x4

+x' 14 + — + (1/ )'
(1—x) (1—x)' (1—x)'

340-', x'
+x' —10—26x+ 150x'+

(1—x)

513'x4 6x'
+ (1/-)'+

(1—x)' (1—x)'
(5.19)

where the reduced susceptibility is

&= (kT/nP)x(T) .

The term independent of o yields

(5.20)

m' qx
x(T)= 1+

kT o (1—x)

ts 1+p

kT 1—o'v
(5.21)

which is the well-known Bethe approximation for the
susceptibility' (Firgau formula). This exhibits a simple

pole at the Bethe critical point x,= 1 as is to be expected.
The leading correction term is again second order but
has a double pole. In general, the coefficient of (1/0)"
is of the form (5.12) (with x replacing y) and thus
diverges at x=1 as (1—x) ' & I". As previously the
divergence in all orders does not imply that the suscepti-

to derive an expansion in powers of (1/0) for the limit

p, namely

lnti(d)=lno —0—'—20 ' —11-,'0 4—640 '+0(0 ')
(5.18a)

or, taking exponentials,

ti=o'$1 —O' P —20' P —11a 4—62a P+0(&r P)j. (5.18b)

The leading terms in these expressions correspond,
as expected, to the 6rst-order approximation p=o-.
The erst correction term is again of second order and is
negative confirming that C(y/0) is regular at y= 1 for
1/0)0. The question of the convergence of (5.18) will

be discussed later.

bility diverges at x= 1. Indeed since generally"

co(d) = 1/i~, &ti(d), (5.22)

the argument based on Eq. (5.14) shows that $(x) or
X(T) is bounded and regular at x= 1 for all 1/0) 0.

To compare with the mean-Beld or Bragg-Williams
approximation we carry the expansion one stage further
as for the partition function. Writing for convenience,

t= 1/8= Jp/kT,
'

(5.23)

we obtain from (5.19) the (1/q) expansion of the
susceptibility in the forru

Vp j~')x(T) = — (1/q)
1 t (1——t)'

t4

2t 1-', —3t2 2-', t
+tP 1+ + +

(1—t) (1—t)' (1—t)'

m2 Tc
x(T) — (t,= Jp/kT, = 1) .

JO T Tc
(5.25)

In this case, however, the leading correction term is of
first order in (1/q). Furthermore, the divergence in each
term, which now occurs at t= 1, is sharper than in the
(1/0)-expansion. This arises merely from the expansion
of the Bethe result (5.21) in powers of (1/q) which
necessarily yields a pole of order (m+1) in the coeK-
cient of (1/q) .

To obtain expansions for the critical point we must
again abandon the complete expansions and examine
the expansion coefficients themselves. From (4.25),
(4.24), the coeKcients in Table V and the general
expression (4.23), or by expanding (5.19), we find for
e&~ 11

a (d) = qo"—'$1—(e—3)0—'—(3e—17)0-'
+ (pn2 —17i2rs+ 128)0 4

+ (3'—108ipe+1072Pp)0 '+0(0 ') (5.26)

Qn taking the logarithm, formally, the terms in e'
again cancel so that

in(a„/q) = (I—1) lno —(e—3)0—'
—(3'—17)0 '—(14i2e—1232)0 4

—(82-,'I—1021-',)o '+0(o ') . (5.27)

(1/q)'+, (5.24)
(1-t)'

where the exact terms to order (1/q)' follow from (5.19)
but are omitted to save space. The term independent
of q yields the mean-field result (Curie-Weiss law)
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34 14—21—q
—'—133—q

"'— (5 30)
45 j.5

The term independent of q is now the Bragg-Williams
or mean-6eld result but the leading correction term is
again of erst order.

e could alternatively have derived this last result
directly from the (1/q) expansion (5.24) by calculating
the coeKcients f„(q) in the expansion

(5.31)

It is clear that f„(q) can be expanded in powers of 1/q.
The coeflicient of (1/q)'" would now be a polynomial in
I of degree es (for e suKciently large) since the di-
vergence of the (1/q) ~ 'term in (5.24) is (1—i) ™1. On
forming lnf„(q) we would now find (at least to the
fifth order in 1/q) that the terms in I', n', n4, and I'
would all cancel leaving only linear terms. The critical
temperature expansion (5.30) would then be derived
formally from

lng, = lim —lnf„(q) . (5.32)

There seems no reason to suppose that the cancellation
of the higher powers of e in lnf„(q) will not continue
indefinitely so that the form of the expansion (5.32)
would remain the same to all orders.

Convergence

Ke cannot state any de6nite conclusions regarding
the nature of the convergence of the (1/o) and (1/q)
expansions derived above. The coe%cients in the series

Dividing by e and taking the limit e —+ ~ then yield~
by (2.13)

in'& (d) = —ln tanh (J/k T,)
= ln —-'—3 -'—14-,'&-

—82-', o '+0(o—'), (5.28a)

and, on taking exponentials,

re=o-$1 —o. ' —3o. ' —14' ' 7—9-'o. ' — $. (5.28b)

We have thus obtained an expansion for the critical
point of the Ising problem, the zero order term being
the result of the Bethe approximation. Comparison
with the expansion (5.18) for the walk limit shows that

(li—re)/o=o '+3o '+17-'sa '+. )0 (5.29)

in agreement with (5.22). It is interesting that the
fractional difference is only of third order in (1/o).

Ily writing o '=q '(1—
q ') ' and inverting the

relation tanh(J/kT, )= 1/cv we can obtain a direct
expansion for the critical temperature in powers of 1/q,

e, =AT,/Js=l —
q

' —1sq '—4sq '

3, 4, 5, 6,
derived from the well-known asymptotic series Q e!x".'4

If the series are asymptotic, truncation at the smallest
term for given q should yield the optimum approxi-
mation. This rule does indeed seem to apply. Thus,
with q=4 (d=2), the first three terms of (5.30) yield

8,(2)~0.59896, (m= 3)

which is 5.6% larger than the exact result'

(5.33a)

8,(2)=0.56730 (exact). (5.33b)

This error is about 8 of the fourth-order term which
yields

0,(2) 0.51398, (no=4) . (5.33c)

In three dimensions (q=6) we similarly obtain the
approximation

().(3)—0.75945, (m =4) (5.34a)

which is only 1.03%%uo higher than the best estjinate

e.(3)—0.75172, ('exact'), (5.34b)

which is probably accurate to 1 part in 104 or better.
The error is just under one half the fifth-order term
which yields

0.(3) 0.74222, (~= 5) . (5.34c)

The mean of (5.34a) and (5.34c) is accurate to 0.1%.
In four dimensions the fifth-order term is probably

the smallest (although we do not know the next term).
The corresponding estimate is

8.(4)~0.8363, (no=5) (5.35a)

the last term being about 0.5% of this value. In analogy
with two and three dimensions, one would expect
(5.35a) to be about 0.3%%uo high which is confirmed by
the estimate

8,(4)~0.8340, ('exact') (5.35b)

obtained from the series in the next section. For
optimum accuracy in higher dimensions more terms are

"Thus, the expansions (5.15) and (5.26) should be accurate
when ga 2 is small or 1/a&&1/I ~ As I -+ ce in. (5.17) and (5.28),
however, the range of convergence would seem to shrink to zero
as would be expected if the limiting series where only asymptotic.

3'The constant sign of the terms suggests, in any case, that
there is a singularity on the real positive axis. If the series were
asymptotic this would be at 1/0 =0+.

(5.18), (5.28), and (5.30) for li, a&, and 0. increase
rapidly with e and at 6rst sight the series appear
unsuitable for numerical evaluation unless q is rather
large. On general grounds one might expect the series
to be only asymptotic. "This is supported by the ratios
of successive terms in (5.30) which are

1, 1.3333, 3.2500, 5.0205, 6.1563,

These increase roughly linearly with m in a fashion
reminiscent of the ratios
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required. The approximations for e,(5) and e, (6) must
thus be expected to be some 0.1 to 0.2% high as is
conlrmed by the direct series estimates (see Table VII
below).

The (1/o) expansions for ce(d) and for p, (d) behave in
a very similar fashion. In all cases the error appears to
be roughly one half the smallest term (see Table VII).

The convergence of the (1/o.) and (1/g) expansions
for the susceptibility and partition function (and for
the corresponding walk generating functions) is a
rather different problem. For small enough x or t, i.e.,
high-enough temperatures, it seems likely that the
series have a finite radius of convergence in 1/o. and
1/g. However, as (1/o) and (1/q) approach zero, we
have found that the positions of the singularities in y
and the partition function approach x= 1 and t = 1
(from above) which suggests that the series will have a
zero radius of convergence if x&~ 1 or t&~ 1, respectively.
This heuristic conclusion is supported by the divergence
of each term in the susceptibility expansions at @=1
or t=1. The individual coeflicients in the partition-
function expansion are well behaved at @=1 or t=1
but we expect the free energy to have some singularity
for all q (even if the speci6c heat is finite, see below) so
that the argument still applies.

pn ~n/rn 1—(6.1)

as a function of 1/I and the behavior of the related
Pade approximants. ~ "

At the same time, and more importantly, we will
estlllla'te tile lndlces 8(d) and cr(8) 111 tile asymptotic
relations

and
c„=An. p", (n —+ ~)

(6.2b)

(6.3)

which are observed to hold. ' "In two and three dimen-
sions we have' "' 5(2)= 4, rr(2) = —', and 8(3)= 4,
n(3) = s (to quite high accuracy). Furthermore, these
results have been found to be itsdepetsdent of the lattice
structure for fixed dimension. We are confident that
the same will be true in four and more dimensions so
that it is sufhcient to consider only the simple hyper-
cubical lattices. "The only danger is that these lattices
are not "typical" when d is large. Thus, for example,
lattices are known for d=s, 12, and 16, with coordina-
tion numbers 240, 756, and 2160, respectively, compared

6. NUMERICAL EXTRAPOLATIONS

In this section we use the first eleven explicit coeffi-
cients of the series expansions (Tables I, II, IV, and
VI) to estimate the Ising critical points co(d) and e, (d)
and the self-avoiding walk limit tr(d) for the hyper-
cubical lattices. Following the analyses of the two- and
three-dimensional cases we study the ratios' ""

with merely 16, 24, and 32 for the hypercubical lattices. "
Furthermore, the previous a,rguments suggest that
until e&d the configurations counted by the coefBcients
do not "sample" the lattice fully in all its dimensions.
For these reasons we have restricted our extrapolations
to d=4, 5, and 6 this being sufhcient, in any case, to
exhibit the trend with increasing dimension.

Since the extrapolation procedures are now standard
and have been discussed in detail elsewhere" """we
will give only an outline account. Examination of the
ratios to (d) and ti„(d) on a plot versus 1/I shows that,
allowing for the odd-even alternation, they quite
rapidly approach linearity as e —+ ~. One observes,
however, a slight curvature which increases with
dimensionality. This is almost totally removed by
regarding the ratios as a function of 1/I'=1/(ts —k)
where k= rs(d —3). The asymptotic forms for large
n~~z' are, of course, not altered. Linear extrapolation
of odd and even pairs of ratios to the 1/e'=0 axis then
yields first estimates for or and p, . For example, for self-
avoiding walks in four dimensions the last few intercepts
are 6.7810, 6.7582, 6.7765, 6.7605, 6.7742, 6.7642, while
successive means are 6.7696, 6.7674, 6.7685, 6.7674,
and 6.7692. These indicate that the limit ti(4) is close
to 6.768 and the corresponding slopes suggest that
o, (4)~0.071. This value is close to 1/14= 0.07143 which
index may be used to obtain from the modified ratios
p„*=ts'y /(n'+et) the refined estimate ti(4)~6.7680
&0.0015. This, in turn, leads to a refined estimate for
the index based on the sequence n„=e'(ti„—ti)/p which
yields cr (4) =0.0715+0.0010.

The poles of the successive Pade approximants to
(d/ds) lnC(s) indicate a value of 6.7677+0.0010 for
ti(4). The corresponding residues are in the region
1+et(4) 1.073 in agreement with the analysis of the
ratios. Removing the critical factor from the series for
(d/ds) lnC(s) using ti(4)~6.7680 and estimating a by
direct evaluation of the approximants yields cr (4)
~0.0722~0.0010 again in satisfactory agreement.

A similar procedure has been applied to the terms c
and a„ for the other dimensions. Generally we have
found that with regular series such as these the ratio
method is more sensitive, displays steadier trends and
thus yields more accurate estimates. In a number of
cases, notably the susceptibility series for d=4 many
of the Pade approximants suffer from the defect of a
"split singularity, " i.e., an expected simple pole with
residue R is represented as a pair of close but displaced
poles with residues Ri and Rs such that Rt+Rs R.
This behavior may be an indication of more complex
analytic behavior in the true function but is also quite
typical of the "noiseness" of the sequence of Pade
approximants. Usually the estimates for n and
obtained from the approximants are some 0.001 to
0.002 higher than the series estimates. In absolute terms

3~ See H. S. M. Coxeter and J. A. Todd, Can. J. Math. 5, 384
(1951) and the references quoted in footnote 19.
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TABLE VII. Estimates for critical parameters.

u(d)
p(~) (d)
u/~
n(d)
1/a(d)

~(d)
~.(&)
g,'(a) (d)

~(&)
3/h(d)

2.6390
2.5556
0.8797
0.333

3

2.414 214
0.567 296
0.598 96
0.750

4.6826
4.6760
0.9365
0.166

6

4.5840
0.751 72
0.75945
0.250

12

6.7680+0.0015
6.7714
0.9669

0.0715+0.0010
14~0.3

6.7220+0.0015
0.834 01
0.836 30

0.094~ 0.0025
32&1

5

8.8313~0.0020
8.8397
0.9813

0.0310~0.0015
32+1.5

8.8072+0.0010
0.876 94
0.878 82

0.0375~ 0.0010
80~2

10.8720+0.0015
10.8800
0.9884

0.0138m 0.0015
72+7

10.8580+0.0015
0.902 27
0.903 31

0.016~0.001
188~ 12

this is a rather small discrepancy but since n(d) and
8(d) fall sharply as d increases the percentage un-
certainties naturally increase.

Our final best estimates for 1i(d), n(d), co(d), 0, (d),
and B(d) are presented in Table VII. In all cases the
values of p, are consistent with the upper bounds
derived from Eq. (5.14) and with the lower bounds
which can be found by extending previous methods. ""
It must be stressed, however, that the indicated un-
certainties are not rigorous bounds but correspond to
reasonable fitting limits. I The two- and three-dimen-
sional results, which are not new, are given for complete-
ness without any indication of uncertainty. $

The row labelled p" (d) represents approximations
to p(d) computed from the (1/o) expansion (5.18b)
by retaining terms up to order (1/o)" plus one-half
the term in (1/o)'"+'i Lexcept for d=5 and 6 where all
available terms are utilized). Similarly, the row labelled
e,«i (d) is calculated from the (1/q) expansion truncated
after the term in (1/g) &"+'i except for d=5 and 6 where
all terms are retained. As mentioned before, the
asymptotic series estimates are quite close to the more
accurate numerical estimates.

In two and three dimensions the reciprocal indices
1/n(d) and 3/8(d) appear to be exact integers. From
Table VII it is plausible that this is true also for self-
avoiding walks in four dimensions where 1/n(4)~14
but, unfortunately, the accuracy of the extrapolations
is not sufBciently great to confirm such a conjecture
in the other cases. It is clear, however, that the indices
are rapidly approaching zero as d increases. Indeed
the sequences of ratios (for d= 2, 3 )

n(d)/n(d+1) ~ 2.000, 2.333, 2.286, 2.25,

8(d)/8(d+1) 3.00, 2.67, 2.50, 2.35,

suggest that, for large d, the indices n(d) and 6(d)
behave as 1/X" with 4~2.0. In conformity with the
inequality" 1i(d))&o(d) we also observe that n(d)(8(d)
appears to hold generally.

"B.C. Rennie, Magy. Tud. Akad. Mat. Kuk. Inetz 6A, 263
(1961)—generalizes the technique of Ref. 14 and obtains the lower
hounds p(4) ~&5.718, p(d) &~2d —1nd+O(1) (d ~ ~).

|(d) (4d+11)/13. (6.6)

The probability 5'„of an e-step self-avoiding walk
returning to the vicinity of the origin will vary as
1/n+r. The formula (6.6) thus suggests roughly that

1/is&'~" & "+' when d is large compared with
(P„1/I&" for unrestricted random walks. Firm
conclusions on the value of f (d) for d~&4, however,
require further data.

We may in similar fashion investigate the behavior
of the speci6c heat of the Ising model in higher dimen-
sions. In two dimensions we know that the specific heat
diverges as'

(d=2) C(T) =D, l»(T—T) I, (T~ T.+) (6.7)

while in three dimensions extrapolation of the results
for the three cubic lattices'"" suggests a sharper
infinity, namely,

(d= 3) C(T) =Ds/(T —T,)" (T -+ T,+) . (6.8)

Examination of the ratios (h„/h s)'~s/ro formed from
the expansion of the energy (see Table II) suggests,

' M. F. Sykes and 8. J. Hiley, J. Chem. Phys. 34, 1531 (1961)."C. Domb and M. F. Sykes, Phys. Rev. 108, 143 5 (1957).
3' M. E. Fisher, I. Math. Phys. 4, 278 (1963).

Since we have obtained accurate estimates for the
limit p(d), we may endeavor to determine the asymp-
totic behavior of the number of self-avoiding returns, '4 '~

i.e., the index f (d) in the expression"

u.„(d)=Uts ry" (n —+ ~)
The ratios (u„/N„s)t '/p will approach unity as e —+ oo

and are observed to do so almost linearly in 1/ts. As
before the slope yields an estimate for f Unfor. tunately
there are only four or five significant nonzero terms in
higher dimensions and these are not very large numeri-
cally. Consequently only limited accuracy is possible.
We estimate tentatively that in d =2, 3, 4,
dimensions

f(d)~1.46, 1.75, 2.07, 2.38, 2.70, . (6.5)

To within the uncertainties of 0.01 to 0.03 these results
are consistent with the formula
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however, that in four and more dimensions the speci6c
heat will approach a 6nite value as T approaches T,
from above. We expect

where the parameters C„Eand g depend ond. Tentative
extrapolations indicate, for 0=4, 5, and 6,

q(d)~0. 17, 0.40, and 0.75, (6.10)

but these values may well be too large. Appreciably
more data is needed if more certain estimates are to be
made.

'7. CONCLUSIONS

By considering a sequence of lattices of dimension-
ality d and coordination q=2d we have been able to
obtain expansions in powers of (1/q)=-', (1/d) for the
critical points and other properties of the nearest-
neighbor Ising model of spin —,

' and for corresponding
self-avoiding walks. It should be noted that the same
principles can be used to obtain (1/d)-expansions for
the Ising model of general spin and also for the Heisen-
berg model of general spin. In these cases detailed
calculations are somewhat more involved since the
weight associated with a given lattice constant is no
longer so simple but the general nature of the results
should be similar. (We hope to discuss these extensions
in a future report. )

The zeroth order terms in our expansions are the
Bragg-Williams or mean-field results (or their analogs).
This is also the case for Brout's 'high-density' or
(1/s)-expansion. ' "However, the specific heat remains
analytic as T~ T,+ to all orders in our expansions
whereas in the (1/s) type expansions the first-order
terms yield speci6c heat singularities at T,."From our
susceptibility expansions we were able to derive (1/d)-

expansions for the critical points: corresponding (1/s)-
expansions have not been derived.

We feel that the present expansions should be viewed
essentially as expansions for short-range forces in
inverse dimensionality rather than in inverse coordina-
tion number. Indeed similar results should be obtainable
with other sequences of lattices in which the co-
ordination numbers q have different dependences on d.
The (1/s)-expansions, on the other hand, are probably
best regarded as expansions in the inverse range of
long-range forces for lattices of fixed dimension. ""
It is then a matter of interest that the zeroth order
terms of both expansions agree but not surprising
that higher terms differ.

For short-range forces the dependence on dimension-
ality seems to be of primary importance, coordination
number and detailed lattice structure having only a
secondary effect. This can be seen from the similarity
of the 8„&u/0, and p/0 results for different lattices of
fixed dimension and from the corresponding invariance
of the indices 5 and 0,. The numerical extrapolations
indicate that the 'classical' Bragg-Williams limit is
approached quite rapidly as d increases although the
singularities in the susceptibility and speci6c heat
apparently remain 'nonclassical' for all finite d.
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