
VELOCITY OI SOUND IN METALS

requires a field of 4.8&&10' G according to (9). Fields of
this strength are presently unavailable. Therefore, an
increase in accuracy of measurement is required to make
the effect observable. For transition metals with their
high paramagnetic susceptibilities we expect a much
larger eRect, however. Owing to their nonspherical

Fermi surfaces, the eBect will d.epend on crystal
orientation.

As opposed to the other effects calculated pre-
viously, ' Eq. (7) shows that the effect considered here
is independent of the direction of propagation of sound
wave.
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Previously available data on nonlinear optical phenomena, in potassium dihydrogen phosphate (KDP)
are interpreted together with new data on the linear electrooptic effect. It is shown that second harmonic
generation is dominated by energy levels in the ultraviolet ("electronic" levels) whereas the dc and linear
electrooptic eQ'ects may have contributions due to processes simultaneously dependent on ultraviolet and
infrared ("ionic") levels. The contribution of this "electronic —ionic" process to the dc and linear electrooptic
effects is less than 50% and may indeed be negligible. The close relationship between the dc and linear
electrooptic e6ects is reexamined and shown to be in better agreement with experiment than previously re-
ported. The limitations and implications of Kleinman s symmetry condition are discussed in the light of
recent experimental data.

I. INTRODUCTION
'
QOTASSIIJM dihydrogen phosphate (KDP) has been

carefully studied in recent experiments with optical
second harmonic generation' ' and optical rectification
(the dc effect). ' In this work laser sources were required
because of the relative minuteness of these nonlinear
phenomena. The linear electrooptic effect (or Pockels)
effect has also been measured in KDP, 4 by techniques
which utilize conventional light sources. The magni-
tudes of all of these phenomena in KDP are amongst
the largest observed with any crystal.

The purpose of the present paper is to interpret the
previously available data on nonlinear optical phe-
nomena in KDP together with new data on the wave-
length dependence of the linear electrooptic effect. It is
shown that the second harmonic effect is dominated by
energy levels in the ultraviolet ("electronic" levels)
whereas the dc and the linear electrooptic eRects may
have contributions due to processes simultaneously de-
pendent on ultraviolet and infrared ("ionic") levels. Un-
certainties in the experimental data make it possible to
say only that the contribution of this "electronic-ionic"
process to the dc and linear electrooptic eRects is less
than 50% and may indeed be negligible. The remainder
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is due to the "electronic-electronic" process which
dominates the second harmonic effect.

An important relationship between the dc and linear
electrooptic effects was recognized by Armstrong et ul. '
in one of the first detailed theoretical discussions of non-
linear optical phenomena. In the present paper we re-
examine this relationship and 6nd that there is even
better agreement between theory and experiment than
was previously reported. ' Finally, a synnnetry condition
6rst proposed by Kleinman' is discussed in terms of the
experimental data and the present analysis.

II. SUMMARY OF EXPERIMENTAL DATA

Three phenomena are examined in the present paper.

(1) The generation of optical second harmonic.
(2) The dc effect, which is the production of a steady

polarization in the crystal by the action of an intense
optical electric 6eld.

(3) The linear electrooptic effect, which is the modifi-
cation of the refractive indices by a low-frequency (or
dc) electric field.

Each of these eRects represents an extra polarization
produced in the crystal which is described by a third-
rank tensor operating on a bilinear function of the elec-
tric field amplitudes. The formulation is summarized in
Table I.

~ J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S.
Pershan, Phys. Rev. 127, 1918 (1962).

e D. A. Kleinman, Phys. Rev. 126, 1977 (1962).
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The most general (3X3X3) third-rank tensor has 27
elements. In the present case the KDP crystal symmetr'y

(Ve) reduces the number of independent, nonzero ele-
ments to three:

Tmr. E I. Equations descriptive of the e8ects discussed in this
paper. The X are third=rank tensors and the convention of summa-
tion over repeated indices is adopted. The subscripts refer to
Cartesian vector components and the superscripts serve to indicate
relevant frequencies.

Xsyz=Xy. z j Xyga=Xszy j Xzsy=Xzys. Effect Descriptive equation

Table II shows the combinations of coefficients which
may be measured together with their equivalents when
Eq. (1) is used to exclude those having a noncyclic
arrangement of indices. A second harmonic or dc experi-
ment necessarily measures the sum of two coefficients
because the interchange of the indices j and k, referring
to fields at the same frequency, is not physically signi6-
cant. It is evident that there are only two independent
measurable quantities for each of these eGects. The same
arguments do not apply to the linear electrooptic eGect
and it might appear that, by suitable choice of geometry,
three independent measurements may be made. How-
ever, the quantum mechanical formulation of Sec.
III (or a thermodynamic argument) shows that
X~y,"=—X„„",and therefore there are only two inde-
pendent, measurable quantities.

1. Second Harmonic Data

Ashkin et al.' have recently measured one of the
second harmonic coefficients in KDP using a cw gas-
laser source at 11 526 A.

Second harmonic production
dc eBect
Linear electrooptic eGect

p.2ps —X..~2o1Ir' .cuE~ot

P;O =X;;7,OE;"EI,"
P .(e X . I7 QQ. OQI ce

(X/Vxgs) = (Svr/np)X„, .". (6)

The data are shown in Fig. 1, and the experimental de-
tails are given in Appendix B.

refractive indices, respectively. The relationship be-
tween the observed quantities r and the tensor elements
X" is treated in Appendix I. Whereas the sign of either
coefficient is a matter of convention, the sign of the ratio
is of physical significance and has been tentatively es-
tablished as positive in recent experiments by Billings
and Ploss. '

In the present paper we present new experimental
data on the linear electrooptic eGect in the form of the
variation with wavelength X of the voltage V&~2 required
to produce halfwave retardation in the crystal. The
relationship between these quantities and the tensor
elements X" is, as shown in Appendix A

sl~spl = IX *s'"I =(3+1)&&10 'esu. (2)

This determination is an order of magnitude more pre-
cise than previous measurements, ~ which have utilized
pulsed ruby laser sources. Since this coefficient is not
expected to vary more than a few percent between
12000 and 7000 A we adopt the Ashkin et at. value
throughout this region.

Miller' has measured the ratio of the two independent
elements of the second harmonic tensor (ruby laser as
fundamental) and finds them to be equal within 5%:
li4/d3g 1= L(X,„,'"+X„„'")/(2X„„'")j—1 & 0.05. (3)

2. dc Effect

Bass et a/. ' have measured the magnitude of one of the
dc coefficients in KDP, with an accuracy of a factor of
three

III. QUANTUM MECHANICAL EXPRESSIONS
FOR THE TENSOR ELEMENTS

The 6rst quantum mechanical treatment of these non-
linear optical processes was developed by Armstrong
et a/. s This work is reviewed in Ref. 7, where the ap-
proach of the present paper is developed. The assump-
tions of the theory are that long-range eGects, or correla-
tion phenomena between distant lattice cells, can be
ignored and that electric dipole approximation to the
electromagnetic interaction is valid. The subscript g is
used to denote the ground state of the particular lattice
cell under study, and the subscripts e and e' are reserved

Tmz, E II.Measurable combinations of coefBcients together with
their equivalents when Eq (1) is used . to exclude those having a
noncyclic arrangement of indices.

I
dspp

I
=

I
2X..„p

I
=5X 10 s esu.

3. Linear Electrooptic Effect

Carpenter4 has measured the magnitude of the linear
electrooptic effect coefficient at 5560 A:

rss ——(4s/ep')X„„"= (3.15W0.07) && 10-' esu,

r4i= (4s/ega ')X „,"=(2.58&0.05)X10 esu,
(5)

Measurable combinations of coeKcients

p ( g~y +Xgyg )
2 (X~yg +X~gy ) ol' p (Xygg +Xylol )
4(Xzzy +XNyx )
s (Xxsz +Xesy~) or s (Xyzx +Xmas )
(X„„"X„„")'Is
egg ol Xggy ol' Xgyg ol' Xgyg

Equivalent

X, „~"

s (Xxyz +Xssm )
Xggy

s (Xcys +Xvsz )
XItgg"

X,vg" or

where eo and e, are the ordinary and extraordinary

7 For a review of nonlinear optical phenomena and references
see P. A. Franken and J.F.Ward, Rev. Mod. Phys. 35, 23 (1963).

s B.H. Billings and R. Ploss (to be published). We are grateful
to these authors for their communication of this result prior to
publication.
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where the frequency dependent terms C„„,D„„,and
D'„„.are:

1 1 1
ae'

2- (ogog+og) (~~'g+ro) (toog —~) (~o'g —og&-

2000
i
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1 1
D„„=-

2 &og-(og~ig+og)
)

(O~g GO~rg —M

(10)

FIG. 1. Experimental wavelength dependence of (X/Vxfg)
normalized to 1 at X=5461 A.

for excited states. The second harmonic tensor elements
are:

-'(X"a'"+X a'"&

=e'/4A'S'" Q([(rr)og&ra) g(r;)„„
nnl

+(rg) g(r;)„.g(r;)g»A. »
+[(r;)„u(r;)„u(ra)» +(r;)„u(rl,)„u(r;)» ]B„„.
+[(rg)~u(» ) 'u(»1 )»'+(»u)~u(»') 'u(rr') 'JB

(7)

where, for example, (r;)„„ is the matrix element of x, y,
or s between the states e and e'. The S'" is included to
relate microscopic and macroscopic field quantities. This
factor and similar factors S and S", which serve the
same function in the dc and linear electrooptic eGect
expressions, will be discussed at the end of this section.
The frequency-dependent terms A „,B„„,and B'„„.
are:

1 1
A

2 (to„,+og) (to„,—to) (ot„,—ou) (to,+og)

r

2-(I u+2og)(to~'u+to) (to u
—»)(& 'u —to)-

1
g

2 (og„g+o)) (to„g+2og) (eg„,—co) (og,—2co&

(8)

where, for example, co, denotes the difference in energy
between the states e and g in units of angular frequency,
and cv is the angular frequency of the optical electric
Geld.

The dc tensor elements are:

k (X'g'& +X'gg'&

1 1
D an'

2-(tong+to)ton'g (&r g &)&n'g-

The linear electrooptic effect was studied in Ref. 7,
following the initial work of Armstrong et cl.' as a
limiting case of a diGerence frequency process. Un-
fortunately, this method is prone to numerical errors
owing to possible ambiguities in the appropriate fre-
quency limit. A more direct technique is to pursue a
second-order perturbation treatment in the style of
Sec. IV.1, Ref. 7, using a Hamiltonian that contains an
optical and dc Geld explicitly. This calculation yields
directly the linear electrooptic tensor elements:

Xjjjg z (Xej'u +Xujj )

= ( '/@')s" Z([( ~)-.( )-'( )-
nn'

+(")-,(')-,&;)-X-
+[(r;)„u(rq) ,(r;)„„+(r;)„u(r;)„u(rq) jD „
+[(r;)„,(r;)„,(rq)„„+(rI,)„u(r;)„u(r, &„„JD'„„),

where the frequency-dependent terms C„„,D„„,and
D'„„are deined in Eq. (10). One should note the sym-
metry between the Grst and last suKces in this linear
electrooptic tensor, in contrast to the synunetry between
the last two suKces of both the dc and second harmonic
tensors. This symmetry, together with the crystal sym-
metry conditions of Eq. (1) establishes the contention
of Sec. I that X „,—=X, „.

The factors S which interelate the microscopic and
macroscopic analyses are discussed by Armstrong
et al.s If the Lorentz factor' is used to relate applied to
local electric fields in a medium with dielectric constant
e (at frequencies indicated by superscripts) and number
density of microscopic systems E, the factors S are:

/4a )so Z([(» )-,(")-,(»;)-
(c"+2) z (e2"+2)

3 3
(12)

+(")-.(')-"(»')--X-
+[(r;)„,(r;)„,(rq) „„+(r;)„,(r I )„,(r;)„„jD„„
+[(rr)„u(r;)„u(rt)„„+(rlj)„g(r;)„u(r;)„„jD'„„),

(9)

(e"+2i ( +2'ls'=s"=IE3 )E3r
g H. A. Lorentz, Theory of Eleotrorgs (B. G. Teubner, Leipzig,

$909), pp. 138, 305.
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This analysis has two limitations. Firstly, it only applies
to media with isotropic dielectric constants. Secondly,
the local Geld so derived from the applied Geld is the
average over the unit cell whereas it is the local Geld at
the site of the rtortlirtear irtteractiort which is required.
This difference may be appreciable if the dielectric con-
stant is large. " Equation (12) should give a good ap-
proximation to S'" as e'" and e" are almost isotropic and
small. However, the limitations mentioned above make
Eq. (13) a crude estimate for S and S"as e is both very
anisotropic and large (e,'=42, e,'= 21). For the evalua-
tion of S" in subsequent sections, we use Eq. (13) with
an assumed effective value for e':

e'= (31+10) .

We think it unlikely that the correct effective value lies
outside these limits.

IV. RELATIONSHIP BETWEEN THE DC AND
LINEAR ELECTROOPTIC EFFECTS

Inspection of Eqs. (9) and (11) yields inunediately
the following important relationship between the dc and
linear electrooptic tensor elements:

s (Xtst'+At, ') = 4XItt"

This is a special case of the general permutation sym-
metries developed by Armstrong et at. s Equation (15)
permits a quantitative prediction of the magnitude of
the dc effect in KDP from the available numerical
data on the linear electrooptic eff'ect LEq. (5)j:
(2X,»')„.e;,t,.s = —(rts'/8sr)r„= —6.5 X 10—' esu. (16)

This is seen to be in excellent agreement with the experi-
mental magnitude of 5)&10 ' esu quoted by Bass et al.'
)The predicted value of the dc effect was incorrectly
given as 13X10 ' esu in both Ref. 3 and in Ref. 7,
Eq (v4) j
V. INTERRELATION OF THE NONLINEAR EFFECTS

In this section we wish to examine the available
experimental data with a view to eliciting the role
played by the ultraviolet and infrared bands in KDP.
Since the intimate relationship between the dc and
linear electrooptic effect shown in Eq. (15) appears to be
conhrmed by experiment, it remains to relate either
eGect to the second harmonic e8ect.

In order to facilitate the discussion we shall now con-
sider that the quantum mechanical expressions for the
tensor elements LEqs. (7), (9), and (11)) are each
dominated by a single term in the summation involving
a particular pair of energy levels e and n'. This assump-
tion provides considerable simplicity and, we believe,
still permits a meaningful examination of the possible

' For a general discussion see C. J. F. Bottcher, Theory of
E/ectric Eolarim, tion (Elsevier Publishing Company, Inc. , New
York, 1952), Sec. 33. For specific discussion of KDP see J. C.
Slater, J. Chem. Phys. 9, 16 (1941).

processes. For convenience we introduce the dimension-
less parameters p, p' and 0. which are dined by the
equations:

cong= pcop ~

&erg= p &p,

GO= OCOp

cop corresponds to a wavelength in the ultraviolet, and
or is the applied optical' frequency.

We wish to examine three distinct cases, characterized
by the energies of the levels e and e'

Case (i)
Case (ii)
Case (iii)

"electronic-electronic"
ionic-ionic

"electronic-ionic"

p~p' 1,

p 1; p'&g1.

By "electronic" and "ionic" we mean energy levels with
transition wavelengths shorter and longer, respectively,
than the limits of the region of optical transparency.
KDP exhibits greater than 50 jo transmission (2mm
plate) for the wavelength range 2100 to 13 000 A.

Sensible estimates of cop and the values of the
parameters p and p' for the ionic levels may be based on
extrapolations of refractive index data that seek to
locate the positions of dominant optical levels. Fitting a
one-level Clausius-Mossotti equation to the refractive
index data for KDP" yields a value for orp correspond-
ing to 870 A. An extension of the formula to two levels
indicates an infrared absorption level on the long wave-
length side of 50000 A. It is possible that fitting the
data to a three-level formula would show that the one
level at 870 A is actually an average of two distinctly
spaced levels. In spite of the vagueness of these argu-
ments, useful progress may be made with the plausible
assumption that 2sc/coo ——900+200 A and that the
values of p and p' for the ionic levels are of order 10 2 or
less. Since ruby laser radiation was employed in obtain-
ing the experimental data under discussion we set
o=1/8. -

In Table III we list the approximate values, in units

Case (i)

1 0
70—1—70-2

Case (ii) Case (iii)

p'/o' —1
p'/0'+2
(4) (p'/ *)+s

—0.3
+2.7
+0.7

+1+3(T +f7 —p'/o' —1
+1+a' —(p'/p) o —p'/o'
+1+a (p/p )o * 1/p'

—1.7—0.7
+100

"The International Critical Tables (Maple Press, York, Pennsyl-
vania, 1930), Vol. 7, p. 27 gives refractive index data in the wave-
length range 4860—6560 A.. J.L. Dennis and R. H. Kingston (to be
published) have recently measured the extraordinary refractive
index in the ultraviolet to 2537' and we are grateful to these
authors for communicating their results prior to publication.

TABLE III. Relative magnitudes of frequency factors in units
of co0~ for the three cases (i) "electronic-electronic" (ii) "ionic-
ionic" (iii) "electronic-ionic. "o, p, p', are de6ned in Eq. (17).For
ruby laser experiments fT~0.015. The last column gives the mag-
nitudes of the frequency factors for Case (iii) and p'=10~.
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of 1/o&63, of the frequency dependent terms A„„,8„„,
B'„„,C„„,D„, and D'„„ for each of the three cases.
The A„„,B„,and B' terms are appropriate to the
second harmonic tensor LEqs. (7) and (8)) whereas theC,D, and D', characterize both the dc and linear
electrooptic effects LEqs. (9), (10), and (11)$.Approxi-
mate numerical values for Case (iii) are given in the last
column.

The experimental results are now described in this
simplified quantum mechanical formulation.

1. Wavelength Dependence of the Linear
Electrooptic Effect

Froin Eqs. (6) and (11) the wavelength dependence of
the linear electrooptic effect may be expressed as

()/)'I ) I:( '+2)'/ 3(&*) (y& ' ( )
+&z&-.(x&".&y)- D-

+&y&"& &-'&*)-D'-) (»)
Figure 2 shows the calculated wavelength dependence of
c„„., d„„, and d'„„, which are (n'+2)'/n times C
D„„, and D'„„, respectively, for each of the three
cases (i), (ii), and (iii) indicated by superscripts. The
figure includes the experimental wavelength dependence
of )t/Vx/3 taken from Fig. 1. It is clear that the experi-
mental data do not correspond to a Case (ii) process but
rather seem to be dominated by significant Case (i) and

(()

Exp't
d(l) dl(l) dt(flo &(i(i)

t ~ '3

(II ) d(ll) di(ll) d(ill)c,d,d,d

2000
l I

&000 4000
WAVELENGTH A

5000 6000

Fxo. 2. Calculated wavelength dependence of c, d, and d' which
are (r43+2)3/43 times Cnn, D„„,and D' ~ resPectively, for each
of the three cases (i), (ii), and (iii) indicated by superscripts. Any
combinations of these represents a possible wavelength dependence
for &&/Vi&3. Experimental data from Fig. 1 are included for com-
parison. All curves are normalized to 1 at && =5461 A. (Only c&"4& is
sensitive to the choice of value for p' and it is given here for p' =0.
For larger p', (,.("') is depressed and reached approximately halfway
between the two lower curves for p'=10~. This does not affect the
conclusions drawn in the text.)

Case (iii) contributions. It is not possible to draw useful
conclusions about the relative magnitudes of the Case
(i) and Case (iii) contributions as this assignment is
critically dependent on the particular choice of value
for coo.

2. Ratio of Second Harmonic CoeRcients

From Eqs. (3) and (7) the ratio of second harmonic
coefficients may be expressed as

I(d /d ) 1I =V= II:&x&-g—&y&- —g&z)- (38-+38'- —A-)
+&@)ng&X)n'g&y&nn'(3Aan'+ 38 nn' Bnn')+&y&ng&Z)n'g&X&nn'(3A nn'+ 38nn' 8 aa')$/

L&x&-.&y&-.&z&- A-+(z)"(*)-.&y)-8-+&y&-.&z&-'&x&-8'- 3 I (»)
The experimental upper limit for I7 LEq. 37 is 0.05. The approximate equality of the coefficients is seen to be satisfied
by Case (i) (A„„~B ~B'„,see Table III) for arbitrary values of the matrix elements. For Cases (ii) and (iii)
the approxiinate equality still holds for suitable magnitudes of the matrix element products. However for Case (ii)
(A „= 28„„=—28'„„),th—is requires that ((z)„g&x&„g&y)„+&y) g&z&„g&x)„„—2&x)„g(y&„g&z)„„)=0 which in
turn, makes both coefficients zero in this approximation. As the coefficients in KDP are among the largest found in
any crystal, it seems unlikely that they should arise from intrinsically enormous coefficients fortuitously reduced
by this situation. We therefore exclude Case (ii) as a dominant process for the second harmonic egect Case (iii).is
not similarly excluded.

3. Ratio of the Linear Electrooptic CoeRcients

From Eqs. (5) and (11) the ratio of the linear electrooptic coefficients may be expressed as

(r4i/r63) (5'63 /5'41 )
—=&

= L&x)ng(y) n' g&z)nn' 3 (D tin'+D tltl')+ &z) tlg(x) n' g&y) tltl' 3 (Can'+ D na')+ &y) tlg(z) tl' g(x) aa' 3 (Caa'+Dan') $/

2.6X10 ~ S63"
L&x)ng&y)n, 'g(z)nn'Cna'+(z)ng(x)n. 'g&y)nn'Dnn'+&y)ag(z)n'g&x)nn, 'D )ntnt (20)

3.2X10 7 S4i"

The factors S" are not necessarily identical in the anisotropic crystal but must be approximately so and therefore
k must be approximately +1.Reference to Table III shows that for Case (i) all six frequency factors appearing in
Eq. (20) are approximately equal and therefore the predicted ratio must be +1 for this case. Dominance of Case
(iii) could predict essentially any ratio including &1.Therefore the importance of the recent experimental determi-
nation of the sign of the ratio as positive (see Sec. IIc) is that it fails to preclude Case (i). The situation is still that
the linear electrooPtic effect is dominated by an as yet unsPecified mixture of Case (i) und Case (iii) Processes.



A188 J. F. WARD AND P. A. FRANKEN

4. Ratio of the Linear Electrooptic and Second Harmonic CoefBcients

From Eqs. (2), (S), (7), and (11) the ratio of the linear electrooptic and second harmonic coefficients may be
expressed as

reyS04$'"

d3632+$"

(X)ng(y)n' g(Z) nn'&nn'+ (Z)ng(X) n' g(y&nn'Dnn'+ (y&ng(Z)n' g(X)nn'D nn'
m= 1.4&0.6. (21)

(X)ng(y)n'g(Z) nn'~nn'+(Z)ng(X)n'g(y)nn'+nn'+(y)ng(Z)n'g(X)nn'~ nn'

The range includes the experimental errors in measuring 836 and the uncertainty in the factor 5".The range of un-
certainty precludes any very definite prediction from this datum alone. We note that Case (i) requires the ratio
to be approximately +1.For Case (iii), however, D „ is large compared with all other frequency factors. This
would result in a larger Case (iii) contribution to the linear electrooptic effect than to the second harmonic effect
unless there is a "conspiracy" among the matrix elements Le.g. , Case (iii) (y)„,(z)„g(x)„„«(x)„,(y)„,(z) „or
(z)„,(x)„,(y)„„).The analysis of the next section circumvents the necessity for assumptions about the magnitudes
of matrix elements.

S. Relative Magnitudes of Case (i) and Case (iii) Contributions to the Linear
Electrooptic and Second. Harmonic EBects

The present conclusion is that the linear electrooptic and second harmonic eGects may have significant contribu-
tions from Case (i) and Case (iii) processes but not from Case (ii) processes. We now investigate the relative con-
tributions of Case (i) and Case (iii) processes to each of the two effects. It is convenient to introduce the parameters
o. and P:

a—=LCase (iii) contribution to dgg)/LCase (i) contribution to dgg)

&nn' ((x)ng(y)n'g(z)nn') +&nn' ((z)ng(x)n'g(y)nn') +73 nn' ((y)ng(z)n'g(x)nn')

~- "'((*)-.(y&-'( )- )"'+~- "'(( )-.(*)-'(y&- )"'+~'- "'((y)-.( )-'( )- )"'

P—= )Case (iii) contribution to rgg)//Case (i) contribution to rg3)

C- ""'((x)-.(y)-"(z)- )""'+D- ""'((z&-.(x)-'(y)- )""'+D'- ""'((y)-.(z)-"(*)-)"'"'

~- "'((*)-.(y&-'(z'- ) '*'+D- "'((z)-.(*)-'(y)- )"'+D'- "'((y)-.(z)-'(x)- )"'

(22)

(23)

In these equations the two processes are distinguished by the superscripts (i) and (iii). The frequency factors may
be expressed in terms of p' and o. from Table III, and the small terms in o' ignored for the Case (i) factors. Equa-
tions (22) and (23) can then be rewritten in an algebraic form more convenient for analysis:

I p'/ o12)((x),(y) 'g(z) ')~"'+Lp'/o2+2)((z) g(x)n'g(y)nn')~"'~+Pp'/4o2+1/2)((y) g(z)„g(x)„„)~"'~
+~L((x)-.(y&-.(z)- )"'+((z)-.(x)-.(y&- )"'+((y)-.(z&-.(x)- )"')=o (22')

Lp'/o'+ 1)((x)-.(y)-.(z)- ) ""'+Lp'/o')((z&-. (x)-.(y)- )""'+I:—1/p')((y&-. (z)-.(*&-)""'
+k((*)-(y&..( )-)"'+(()-.( )-.(y&-)"'+((y)-.( )-"(*)-)"')=o (23')

Equations (19), (20), and (21) represent the three available experimental data. Manipulations similar to the above
yield:

L18—3p'/o'+ Sq—Sqp'/o') ((x)„,(y)„,(z)„„)""'
+2-»-3p'/- -16q- Sq. /- )((z).,(*&-,(y).- ) "'+L6p'/"-4q-2qp /") ((y).,(z&.',(x)..)-

+St((x)-.(y)-'(z&- "'+((z)-.(x)-.(y&- )"'+ ((y&-.(z)-.(x)- )"')=o (»')

L!.'-.'/ -+ + .'/-')(()-, (y)- () )"-'
+L.—:.—:—p'/2o2+4'/-g)((z&. ,(x).;(y)..) '- +I:-~/p —.-p /o2) ((y).,(z&. ,(x)..) -'

+I —&+1)t ((*&-.(y&-.( &-)"'+((&"(*)-'(y&-')"'+((y& ( &-'(*&-)"')=o (2o')

1—p'/o' ~+~p'/o')—((x)"(y)-' (z&

+L p / +2~+'mp /o')((z&"(x&. '.(y&- )""'+L1/p'+I'/2+~p'/&)((y&"(z&-"(x&- )""'
+L1— )L((*&-.(y&-.( &-)"'+(( &-.(*)-.(y)- )"'+((y)"( )- .(*)-)"')=o (»')
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In the preceding 6ve equations p', 0', k, m, q are treated
as known parameters. There remain 6ve unknowns:
n and P which are of particular interest here and three
others, each of which is a Case (i) matrix element triple
product divided by the sum of three Case (iii) matrix
element triple products. Thus it is possible, although
tedious, to solve for n and P. The leading terms of the
solution are:

n= 2p'(1 —m) —-', q
—p'(k —1)

P = —(1—m) ——',q
—p'(k —1) .

(24)

(25)

0. Kleinman'8 Symmetry Condition

Kleinman has discussed an additional symmetry re-
striction on the nonlinear coeKcients' which should be
operative for electronic" processes in a frequency range
where absorption and dispersion are negligible. In
particular, for KDP, this syrnrnetry restriction requires
that the second harmonic coefficients d~4 and d36 be
equal. The analytic part of Eq. (19) demonstrates this
equality in the present formalism for Case (i) ("elec-
tronic-electronic" ) processes, even for arbitrary values
of the matrix elements, provided the frequency factors
are equal. This condition is that a should be small which
requires distant absorption bands which, in turn, is
equivalent to the condition of negligible absorption and
dispersion.

The extent to which Kleinman's symmetry condition
is relaxed when dispersion is present (o. not negligible
depends both on the relative magnitudes of the matrix

Numerical restrictions on the experimental parameters
are:

p'&~0.01 (ratio of infrared to ultraviolet absorption
band frequencies)

m= 0.8 to 2.0 )ratio of electrooptic and second
harmonic effects, Eq. (21))

q~&0.05 (relative inequality of the second harmonic
coeKcients, Eq. (19))

k~1 /ratio of the two linear electrooptic coefficients,
Ecl. (20)).

Inspection of Eq. (24) reveals that n cannot be
larger than a few percent. Thus the second harmonic
effect is dominated by "electronic-electronic" (Case (i))
processes, with no more than a few percent contribution
from "electronic-ionic" (Case (iii)) processes.

Inspection of Eq. (25) reveals that P can be as large
as 1.0. Thus the Case (iii) contribution to the linear
electrooptic effect would lie in the range of 0 to 50%%uq.

This assignment could be sharpened considerably with
an improvement in the evaluation of the shielding
factors 5", together with an even more accurate experi-
mental value for d36.

An analysis of the d&4 and r4~ coeKcients, similar to
the analysis of d36 and r63 given in this section, yields
essentially the same conclusions,

elements appearing in Eq. (19), and on which process
LCase (i), (ii), or (iii)) is dominant. U the matrix
element triple products are equal then the symmetry
condition is exactly obeyed for each of the three cases
regardless of the value of 0. This insensitivity to dis-
persion was not appreciated in the earlier discussion of
Franken and Ward. In addition, the possible validity of
this symmetry condition even for "ionic-ionic" and
"ionic-electronic" processes was not recognized in the
original discussion by Kleinman. That is, the fact that
the two coeKcients are nearly equal does not in itself
preclude the possibility that "electronic-ionic" (Case
(iii)) processes are operative in second harmonic genera-
tion. LCase (ii) processes can be excluded when dq4 ——dq6,

as is shown in Sec. V.2.) However, if the matrix element
products do in fact differ appreciably then the experi-
mentally verified equality of the coeKcients' does imply
a dominant contribution from Case (i) processes. )This
follows directly from inspection of Eq. (19) and
Table III.) In the absence of an a priori knowledge of
the matrix elements we cannot deduce from the experi-
mentally established equality of the coeKcients pre-
cisely what role is played by ionic processes. The
analysis of Sec. V.5, with its cognizance of other data, is
required to establish the predominance of "electronic-
electronic" processes in second harmonic generation.

APPENDIX A

Linear Electrooptic Effect

The linear electrooptic eGect is usually described" in
terms of the coefFicients r;; de6ned by

(Ai)

where i is xx, yy, ss, ys, sx, or xy and j is x, y, or s.
The analysis is in terms of the Fresnel ellipsoid. It is

instructive to derive directly the relation between the
experimentally measured quantities and the X"because
attempts at translation between the two descriptions
can lead to confusion.

Maxwell's equations for the nonmagnetic insulator
are

p xH=(1/c)eE
~ x E= —(1/c)H

(A2)

giving a wave equation for electric field in the crystal

~ x ~ x E= —(1/c') eE (A3)
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t n'(1 —ss) —e7E"=0. (A6)

The dielectric tensor as modified by the linear electro-
optic effect in KDP is

Sp
e= 4rrX„,~.O

.AX,„,E„P

AX„„E,P
Ãp

4m.X,„,E '
AX,y,Eyp

4+X,y,E,P .
2Sg

(A7)

For the situation of the present experiments and in
Carpenter's experiments to measure r63/E, =E„'=0;
E, QO; s= (0,0,1)7, we find that the refractive indices
are

n~ ——np+-', (4n X„„"/np)
n = np ——,'(4rrX„„"/no)

and the corresponding eigenvectors of E" are

E+"——(1/v2) (1,1,0)
i

E"
i

E "=(1/v2) (—1, 1, 0)
i
E

i

and by comparison with Carpenter

X„„"= —rcanp'/4rr.

(AS)

(A9)

(A10)

For the present experiment, the KDP crystal is placed
between a polarizer and an analyzer both having trans-
mitting axes parallel to (1,1,0). Defining the fractional
modulation M as the ratio of the transmission with a
potential V, across the crystal to the transmission when
V,=O, and defining the half-wave voltage V),/2 as that
voltage which produces zero transmission, we have the
relations

and for a Fourier component at frequency co

~ x ~ x E&„&"—(air/c') eE&„i——0. (A4)

The solution expressed in terms of a refractive index n
and a direction of propagation s, is of the form

Et„l"=E" expLi(ol/c)ns r7. (A5)

An equation determining two values for e and the corre-
sponding eigenvectors E is obtained by putting this
solution back into the wave equation

APPENDIX B

Measurement of the Wavelength Dependence
of the Linear Electrooptic Effect

The experimental arrangement is shown in Fig. 3.
The light source is a microwave excited mercury or
cadmium discharge in a quartz tube and the required
wavelength is isolated with a small grating mono-
chromator. The light propagates along the 2' axis of a 1
mm thick KDP crystal (Baird Atomic) placed between
uncrossed polarizers which transmit light polarized
parallel to the x axis of the crystal. Gold grids (holes 1
mm square) deposited on the s faces of the crystal serve
as electrodes for the application of a 60 cps electric 6eld
to the crystal in the s direction. The angular aperture for
the light propagating through the crystal is limited to 1'.
The light which is modulated at 120 cps is detected with
a photomultiplier and displayed on an oscilloscope.

to High Voltage
MONOCHROMATOR '

I

l i.l l, = Oscilloscope

C RYSTAL STOP
SOURCE Z AXtS

FIG. 3. Experimental arrangement for measuring the wavelength
dependence of the linear electrooptic coefficient ree(X„, ).

The amplitude of the 60-cps voltage across the crystal
which produces a certain convenient depth of modula-
tion (40%) is a measure of the electrooptic coeKcient.
The required applied voltage at X=5461 A was found
to be 25% larger than that predicted from Carpenter' s
data. However, we do not claim an absollte accuracy
better than 25%. Absolute accuracy is limited by the
variation of the modulating 6eld in the xy plane and the
uncertainty in the degree of clamping introduced by
the crystal mount. Neither of these factors affects the
determination of the variation of the coeKcient with
wavelength, which is of particular interest here. In Fig. 1
are plotted experimental values for X/Vi~2 against li.

normalized to lt/Vi~2= 1 at X= 5461 A. We consider this
relative data reliable to within 2%.

( X 2 X cos '(M)'I' SrrX„„
!
EVy(2 m V,

"See, for exam le, American Institute of Physics Handbook,
(A11) edited by D. Gray McGraw-Hill Book Company, Inc. , New York,

1957).


