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Theory of the Insulating State*
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In this paper a new and more comprehensive characterization of the insulating state of matter is developed.
This characterization includes the conventional insulators with energy gap as well as systems discussed by
Mott which, in band theory, would be metals. The essential property is this: Every low-lying wave function 4
of an insulating ring breaks up into a sum of functions, 4 = Z „C~,which are localized in disconnected
regions of the many-particle con6guration space and have essentially vanishing overlap. This property is
the analog of localization for a single particle and leads directly to the electrical properties characteristic of
insulators. An Appendix deals with a soluble model exhibiting a transition between an insulating and a con-
ducting state.

1. INTRODUCTION Under these circumstances we expect a state resembling
a Fermi gas and that the system will have a metallic
character. If we denote the conductivity by

'
OST of the recent developments of many-body

~ ~ theory take as their starting point a gas of free
particles. This approach is appropriate for a wide class
of systems including nuclear matter, electrons in metals
and liquid helium. However, as has been emphasized
especially by Wigner' and Mott, ' a collection of elec-
trons at low temperatures and loz derIsities must be
expected to occupy states which are quite unrelated to
a gas-like phase and in which the electrons are
"localized. "

Just what is the precise nature of this localization,
in view of the fact that certainly there are 6nite overlap
integrals between the single-particle electron wave
functions? This is one of the questions to which a sharp
answer is proposed in this paper.

Another closely related question is concerned with
the electrical properties of such localized electrons. If
their ground state is isolated from the excited states by
a 6nite energy gap, as in a "conventional" insulator
like NaCl or Ge, the low-frequency conductivity at
T=O' is immediately seen to vanish, by well-known
elementary considerations. However, Mott has con-
jectured the existence of electronic systems zitholt am

energy gaP which are also strict insulators. In this paper
we show that insulating characteristics are a strict
consequence of electronic localization (in an appro-
priate sense) and do not require an energy gap.

To make the issues more precise, consider a regular
cubic lattice of hydrogen atoms with lattice parameter
e at T=O . We begin by considering the high-density
regime, a&&a0, where a0 is the Bohr radius.

Here the kinetic and potential energies per particle
are, respectively,

0 07 =0 0) Z0 0)

we expect at low frequencies the behavior characteristic
of free acceleration,

a) —+ 0:a" (co) = —rre'/m*(a, (1.5)

where e is the density of the electrons and m~ is an
effective mass parameter, of the order of the free elec-
tron mass.

Now consider o "(oo) as the ratio (a/us) grows and the
mean density of the electrons tends to zero. The elec-
tronic density between the hydrogen nuclei will ap-
proach zero and hence free acceleration will certainly
become more dificult. However, an interesting question
is now this: As (a/as) grows to infinity, does

(a) the conductivity a(&o) for low co maintain the
form (1.5), but with m*/m presumably growing to in-
finity, i.e., the system remains a metal but with a larger
and larger effective mass; or

(b) does the nature of the wave function change
abruptly for some critical value of a/us, beyond which
the electrons are locaIized and free acceleration ceases
entirely in the sense that

lllli Ma' (M) =0. (1.6)

Mott has given qualitative arguments in favor of
the second answer and adduced experimental evidence
to support this conclusion. In this paper we aim to
place this conclusion on a more precise and 6rm theo-
retical basis.

i=yrXRyX (av/a)',

v=ysXRyX (av/a),

where p& and p2 are of the order of unity. Hence

(1.1)

(1.2) 2. CURRENT AND GAUGE TRANSFORMATION

e&&t.
~ Supported in part by the QfBce of Naval Research.
r E. Wigner, Trans. Paraday Soc. 34, 678 (1938).
~ N. F. Mott, Proc. Phys. Soc. (London) 62, 416 (1949);Progr.

Metal Phys. 3, 76 (1952); Can. J. Phys. 34, 1356 (1956); Nuovo
Cimento Suppl. 7, 318 (1958);Phil. Mag. 6, 287 (1961).

C (x&y&z&, . , xr+I., y;, z;; . .)
=C (x&yrz&, ~ ~, x;,y;,z;; .). (2.1)

We consider a system in the shape of a ring. For our
(1.3) purposes this is suKciently characterized by imposing

periodic boundary conditions in the x direction
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A straightforward calculation gives for the induced
current density

where
J =o (ro)he&~ (2.10)

-3L
1 X 1 f 1

~-(~)=- —. —.&'I (~'l&l~) I'I
0 2GO ZG) kE ' —E —o&—is

Fro. 1.The function P(x).

We find it very useful to introduce, as a formal de-
vice, a constant vector potential in the x direction

1
(2.11)

E ' E+—o&+is

A—= —(c/e) k,
k= (k,0,0).

(2.2)

(2 3)

11- ( E
~-"(~)= —-- &—2'l (~'l~l~) I'I

Q o~ ~' E(E.' —E —ro)'+s'

(This may be thought of as arising from a magnetic
flux through the center of the ring. ) It gives rise to no
electric or magnetic fields inside the system. Our Hamil-
tonian is then, in atomic units,

E'—E+ro
(2.12)

(E '—E +co)s+s'

Comparison with (2.7) gives the important result

H(k) =—g I.", (p;+k)'+ V;i+ U, (2 4) |d'E
lliil coo' (M) =
co~0 0 dk'

(2.13)

where V; is the external potential and U is the potential
energy of interaction.

We denote the eigenfunction and eigenvalues of
(2.4) and (2.1) by C (k) and E (k), where the n's are
state labels. Then

For orientation we now consider two especially
simple systems.

Free Partic1e
Here

E.(k) =LC„(k),a(k)e. (l))

and, because of the stationary nature of (2.5),

dE. (k)/dk= (C (k), LdH(k)/dk)C. (k)},
= I:C-(k), Z(p'+k). @-(k)J,

= —W.(k),

(2.5) H(k) =-,'(p+k)'

whose eigenfunctions are, for all k

()=(/ '") "'
(2.14)

(2.15)

(2.6) where, for simplicity, we assume periodic boundary
conditions also in the y and s directions, which is how-
ever of no further consequence. Here

where Q is the volume and J (k) is the current density
in the x direction carried by the state o..

Another result which follows directly from (2.4) is

q;= (2r./L)xl, l=0, &1, &2,

to satisfy the ring conditions (2.1). Clearly

E(k) = —,'(qi+k)'+-,'(qss+qss).

(2.16)

(2.17)

where

d'E. (k)

I x=0

I
(~'I l'I )I'

=X—2 Q
a'ga Ea Ea

(2.8) d'E(k)/dk'= 1,

(2 7) Hence by (2.6), (2.7), and (2.13)

J(k) = —(1/Q) (qi+k), (2.18)

(2»)

k = (1/iso) (Se&~+"0,0) . (2 9)

(Here, and in what follows, s is dropped where it plays
no significant role. )

Next we consider the response of the system to a
uniform time-dependent electric field in the x direction,
Se 'e". Here s is a positive infinitesimal which de-
scribes a field whose amplitude is slowly being turned
on. The appropriate Hamiltonian has again the form
(2.4) with

(2.20)

These are all very familiar facts. Note, however, that
in the present context they depend on a failure of gauge
invariance in the conventional sense. One is accus-
tomed to' assuming that the spectrum of (2.4) is inde-
pendent of k, since the latter may be removed by a

' V. Aharanoff and D. Bohrn, Phys. Rev. 115, 485 (1959).
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simple gauge transformation

5=exp( —ik Q x;). (2.21)

However, the new wave function

O'=C exp( i—k Q x;) (2.22)

no longer satisfies the ring condition (2.1) if C did, and
hence is not admissible. Thus it is not surprising that
the correct E does have a k dependence.

Localized Electron

As a second example consider an electron bound near
the origin in a region of linear dimensions d((L.

Define now $(x), for any value of x, as the unique
member of the set

3. GAUGE INVARIANCE —SECOND-ORDER
PERTURBATION THEORY

We now return to the lattice of hydrogen atoms de-
scribed in the introduction. We demonstrate in this
and the following section that for suSciently large
values of u/ae (low density), the energies of all low-

lying levels are gauge invariant in the sense of (2.29),
from which the insulator properties (2.30) and (2.31)
follow. '

A major difhculty is that the wave functions for the
lowest lying states of this system, which are presumably
of an antiferromagnetic character, are not known even
in zeroth order of approximation. For this reason we do
not discuss. the wave functions themselves but rather
generate a k-independent effective Hamiltonian from
which the gauge invariance of the entire low-lying part
of the spectrum follows.

The external potential energy of our hydrogen lattice

such that
x+vL v=O, &1, &2,

—I./2& P(x) & L,/2.

(2.23)

(2.24)
V(r) =P v(r —R„), (3 1)

(See Fig. 1.) Then if we denote the bound state of the
electron corresponding to k=0 by C (x,y,s; 0), we have

where we assume v(r) to fall off rapidly, ' but where,
since x and x+L are physically identical, we have

C (x,y,s; 0) ='0 for $(x) =&L/2. (2.25) v(x+L, y, s) = v(x,y,s). (3.2)

Here we have introduced the symbol =' for equality
apart from terms which tend exponentially to zero as
L —+~ in a manner such as e ~~~ where b is of atomic
dimension and independent of L.

We now see that
U=Q N(r, —r;) (3.3)

In this lattice there are E particles interacting with a
short-range' repulsion, giving rise to the additional
potential energy

C (x,y, s; k)='C (x,y, s;0)e 's&&*&

For the right-hand side of (2.26) satisfies the Schroed-

inger equation everywhere (except at the isolated points
x= +L/2, +3L/2, ~ ~ ), and also obeys the ring bound-

ary conditions. It does have impermissible discon-
tinuities at the points x= &L/2, &3/L2, , but since
the wave function is near vanishing (in the sense ='0)
at these points, these discontinuities are of no conse-

quence. 4 We therefore have

(3.4)

We shall work in a representation of Wannier func-
tions tv„(r—R„) associated with the single-particle
Hamiltonian

k—= -,'p'+ V(r), (3.5)

We denote by y„(r,q) the normalized Bloch-like
eigenfunction of band index e and wave vector g
associated with h:

(2.29)E (k) =' E.(0),

J,(k) =0,
and hence

(2.30)

(2.31)
p„(r+~; q)=exp(iq v)q„(r; q),

g,= (2v/L) &&integer,

(3 6)

where z is a lattice translation vector. Then
Equations (2.30) and (2.31) reflect the nonconducting

nature of the state. We see that it is intimately related
to its localized character which permits the application
of a conventional gauge transformation.

(2 26) where the e s satisfy periodicity conditions analogous
to (3.2). The total Hamiltonian, for k=O, is then

4 If we consider I. to be the x dimension of the unit cell of a
periodic lattice, and remember that the introduction of k into B
is equivalent to a change of boundary conditions, we see that these
facts are familiar results of the extreme tight binding limit of
band theory.

(3 &)

s In Sec. 5 we add to these the result iim„00'(m) p.' The true s(r) is of course Coulombic and a satisfactory treat-
ment of such long-range forces would, as usual, require a more
subtle discussion. We cannot, however, see any physical reason
why our conclusions should be altered by the long-range char-
acter of the true interactions.

7 See remarks of footnote 6.
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Pre. 2. Schematic spectrum
of Ho and degeneracies.

appropriate degenerate perturbation theory, although
a formal proof of its convergence is not attempted. We
therefore write

Notice that, in view of (3.6), our Wannier functions
satisfy periodic bondary conditions

w„(x+I., y, s) =w„(x,y,s). (3.8)

Denote by A„,the destruction operator for an electron
described by the Wannier function w„(r—R„) and spin
m= +-', . We then use as a basis the set of states

H =H p+kFI)+ AH' (3.15)

and treat ) formally as small, although of course in
fact X=1.We now look for a canonical transformation

Z2

H=e ' He' = H+i[H, S)+ [[H,—S),S)+ (3.16)
2

with

(-4 x )) sr*)' ' .' (~ ) ) )*) (3.9) S=XSg+X'Ss+ (3.17)

where 4' & is the vacuum state.
In this representation we write the Hamiltonian in

second quantized form as the sum of three terms:

H =Hp+Ht+H'. (3.10)

Hs is diagonal and describes (a) the expectation
value of the one-particle part of H and (b) that part
of the expectation value of U arising from pairs of
Wannier functions on the same site R„.If we introduce
the number operator

X„„=—A„„*A„„, (3.11)

then Hp has the form

Ho= Q e A', ,+Q Q Q U 1V .1V ~, . (3.12)
tL)tO) V nm n'm I

(I'j'IH'I~j)=(1 ~~ ~)(~',i'IHI Jj) (3 14)

We are interested in the low-lying states which
arise out of Ep when the effects of H~ and H' are taken
into account, which will partly remove the degeneracy.
In the limit of large separation the energy of these
states is almost wholly determined by H p. Furthermore
Ep remains separated from the first excited level by a
finite gap. For these reasons we feel justi6ed in assum-

ing that the effects of H& and H' may be treated by the

The spectrum of Hp is schematically shown in Fig. 2.
Ep corresponds to each site being singly occupied by a
particle in the lowest band Wannier function, spin up
or down (degeneracy=2~); E~ to one site having an
electron in the Wannier function of the 6rst excited
band (degeneracy=X. 2~); Es to one unoccupied site
and doubly occupied with electrons in the lowest
Wannier function, etc. Notice that the spectrum is dis-
crete. We denote the general eigenvalue of IIp by EJ,
and its eigenstates of the form (3.9) by %z,;, where j
is a degeneracy index.

H& is de6ned in such a way that H p+H) is identical
with H within each subspace 0 J,;, j=1, 2, , but has
no matrix elements connecting states of diferent J; i.e.,

(I'j'IH~I Jj)=&~~[(J'i, 'IHI Jj) E~~)')) (313)—
Finally H' is that part of H which connects states of
diGerent J

which eliminates matrix elements connecting states
with J=O to states with J/0, to all orders in X. Com-
bining (3.15), (3.16), and (3.17) we obtain

H= Ho+X{H)+H'+i,[Hs,S))}
+X'{i[HO,Ss)+z[H~+H', S~)+ (i'/2) [[Hs,S)),S))}
+X' (3.18)

It is evidently possible to choose 5 to all orders such
that

(I',j'ISIS,j)=0 unless J=O, I'&0;
or JHO, J'=0, (3.19)

To 6rst order in X

Is Io~
= (1/i) [1/(E —Eq')) (I',j'

I
H'

I
0 j), J'WO (3.20)

and hence up to second order in X

(0,jsl@IO,j~)= (0,j~ IHo+~H~IO, js)

(O,js IH'I ~',j') (I',j'IH'
I 0,j~)

+X' Q . (3.21)
J', j' Ep EJr

H is the new effective Hamiltonian in the 2~ dimen-
sional space, J=O, j=1, .2~.

Next we construct in a similar way the effective
Hamiltonian corresponding to

H(k) =P [-', (p;+it)'+ V(r;))+ U (3.22)

with k/0. For this purpose we use the fact that w„(r)
is an exponentially decreasing function of'r, 8 the char-
acteristic length being an atomic dimension. ' We now
introduce a new representation in which the Wannier
functions w„(r) are replaced by

w„(r; k) =w„(r)e "t&*& (3.23)
'W. Kohn, Phys. Rev. 115, 809 (1959). Actually this paper

establishes the exponential drop of Wannier functions in one
dimension only. We assume here that three-dimensional Wannier
functions have the same property.

P lt must, however, be remarked that, as the band index e
approaches inanity, the spread of the Wannier function also in-
creases without limit. But one may see, in simple model calcula-
tions, that this difhculty is spurious and that one arrives at the
correct conclusions by regarding the spread of m„as generally of
the order of an atomic dimension rather than L.
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Like w„(r) these functions satisfy the ring condition
(3.8). The lack of continuity at x=L/2 is of no conse-
quence in view of the just mentioned near vanishing
of w„(r) at that point.

Consider now some typical matrix elements of H(k).
For example

FIG. 3. A typical interaction diagram.
R,

Mi=—$w„'(r—R,'; k), -', (p+k)'w„(r —Ri, k)]. (3.24)

This is clearly a function only of Ri' —Ri, and we may
therefore take

$(X))=0. (3.25)

Because of the localization of the Wannier functions it
then follows that unless

](X,')&&L/2

the matrix element vanishes. In, view of (3.24) and

(3.25) we obtain

M'i='e ''&(x" x"Lw„(r—Ri'), 2p'w„(r —Ri)]. (3.26)

Quite similarly

M,—=Lw„.(r—R,', k) &(r)w„(r—Ri, k)]
='(: '"«x"-x»Lw. (r—Ri'), V(r)w„(r—Ri)]

and

(3.27)

Ma —=(w„(ri—Ri', k)w„(rm —R,'k),

XN(ri —r2)w (ri—Ri, k)w„(r2—R2, k)]
ik((xg'+—xp' xg x»—t"w—, (r R &)w, (r R ~)

XN(ri —r2)w (ri—Ri)w„(r~—R2)], (3.28)

where we have used the assumed short-range properties
of v and N.

The construction of the effective Hamiltonian pro-
ceeds now exactly as before and leads again to an ex-

pression of the form (3.21). Clearly by (3.26)—(3.28)
all diagonal matrix elements Eg are the same as before.
Off-diagonal elements differ by phase factors which lead
to such combinations as

&ik((x&'+xa' —xg—x2)&—ik((x&'+xa' —xg-xa) 1 (3 29)

Therefore
B(k) ='B(0) (3.30)

4. GAUGE INVARIANCE —ARBITRARY ORDER
PERTURBATION THEORY

and consequently, up to second order in perturbation
theory, the entire low-lying part of the energy spectrum
of H(k) is independent of k.

f g i):$(x& x»s—i)(xa -R4)g —i f(XM X»— —

~
—'k . . .~

—')1(,'~—'kI (4.3)

Such a term does introduce a k dependence into 8'(k).
However, since we may assume that the procedure of
successive canonical transformations converges for large
L at a rate independent of I., terms of this very high
order are exponentially negligible.

This concludes the demonstration that to all orders
in perturbation theory the low-lying levels are de-
scribed by an effective Hamiltonian H which is inde-

per, dent of k, apart from terms which are exponentially
small in I and hence negligible. Thus, all these levels
E (k) are in fact independent of k, from which it fol-
lows by (2.6) and (2.13) that none of them carry a cur-
rent or exhibit a free acceleration in an external
electric Geld."

5. NATURE OF THE LOCALIZED MANY-PARTICLE
WAVE FUNCTION

When we are dealmg with a system which is strictly
localized in the usual three-dimensional space, the inde-

pendence of the spectrum of k is immediately demon-

that J('), j(') has one additional occupancy of sites Ri
and Ra, and no occupancy of R2 and Ri (holes); and
that state T"),j")has one additional occupancy of Ri
and a hole at R(,. The initial and final states each have
exactly one electron on each site. The phase factor
associated with Fig. 3 is

f g i):((x—g+xs-x~x4)s ik((x—2+x4 x3 x—»—
Xs—i~((xa—x». (4 2)

As in Sec. 3 we may assume that all X; are close to the
origin, which permits us to drop the $'s and gives f= 1.
Thus, to any finite order im (i.e., m fixed and independent
of I.) we see FI(k) to be indpendent of k.

A new feature arises in very high order $0(L/a)]
perturbation theory. Consider for example the following
graph (Fig. 4), where X„=va and Ma=L. The phase
factor associated with this graph is

All higher order terms of B(k) will contain products
of matrix elements of the form FIG. 4. A pathological high-order diagram. , IR

(0 g2(H( I( ) g( )). . . (J(2) j(2) [H) jo) j(1))
X(I(,q )H[oj,), (4.1)

where 8 is either Hi or H'. Such an expression may be
partly characterized by the following kind of graph to
be read from the bottom up (Fig. 3). This graph states

' In particular this means that spin-wave states of an insulator
carry no current and exhibit no free acceleration in a dc electric
Geld. This is not an entirely trivial result, since it cannot be de-
rived from any selection rules. In fact, for a ring of Rnite I., spin
waves do carry a Qnite though small current.
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the ground-state Wannier function with spin up or
down, and 0 ( ) is a superposition of such states. Evi-
dently the spatial wave function corresponding to 4 "'
will be large whenever

-2L -L
I

2L r, ~ R„&;&+m;L, (5.6)

FIG. 5. Wave function of well-localized particles on a ring.
where R„&,&

is one of the lattice vectors which we may
restrict to the interval

strated: If 4 (0) is eigenfunction of H(0), with eigen-
value E, then it is well known that the function with

(5.7)

(k) —e
—iszsig) (0) (5.1) P X„=O;

1

(5.8)

is an eigenfunction of H(k) with the same eigenvalue
E . On a "ring" this argument in general breaks down
because, e.g.,

4 (xr+L, yr, sr, , k)
=e 'sz4 (xr,yr, sr, , k) (5.2)

and therefore violates the ring boundary condition.
Nevertheless we say in Sec. 2 that for a particle local-
ized near the origin we could de6ne

4 (x,y,s; k) =' e '"&& &4 (x,y,s; 0), (5.3)

which is single valued and gives rise to an eigenvalue
E (k) which, apart from terms vanishing exponentially
with L,, is independent of k. The essential feature in the
demonstration, of this fact was that in going around
the ring the wave function became exponentially small.
The discontinuity in the phase factor occurred in the
region where the function was exponentially small and
thus introduced a negligible error in the energy. A plot
of 4,(x,y,s;0) as function of x has the following
general appearance (Fig. 5). Note the essential char-
acteristic that it consists of a sequence of practically
disconnected parts. "

We show that a similar disconnectedness exists also
for our many-particle system and is responsible for its
insulating properties.

The essential features may be seen from an examina-
tion of the zeroth-order wave function. Denote one of
the eigenfunctions of (O,jsIHIO, jr), e.g., (3.21), by
(O,jr I&r). Then the full eigenstate of H is given by

the set & (i) exhaust all &; m, is an integer; and L is a
vector of length I in the x direction.

We may write the periodic Wannier functions in the
form

w (r—R„)=' P w„(r R„—mL), — (5.&))

where w„ is the Wannier function for the infinite in-
terval. Then the wave function C (') can be broken up
correspondingly into an infinite sum

4„"&=' Q 4.&')(mr, ms, m»&), (5.10)

I= [ws(rr —R~——mrL) . . w&&(r~ —R»r —m»&L)]'

where C & )(mr, ) is obtained from 4„"'(0,0, ) by
shifting the locations of the Wannier functions from
Rr, Rs, ~ ~ ~ to Rt+mrL, Rs+msL, etc. We now show
that each 4 &')(mr, ms, m~) is spatially localized in
the 3—S dimensional space and has negligible over-
lap with all other 4 "& (mr', ms', m)i'), for which

Pm, WPm .
The localization is evident. Thus%' "'(0,0, ~ 0) has

an electron localized near each lattice point in the
volume A)&L where A is the cross sectional area of our
ring, so that this function extends only slightly beyond
the boundaries of a hypervolume of dimension (AL)~.
To estimate the overlap, we consider the integral

where

(5.4)
&([w&&(rt—Rr' —mr'L) ws(r~ Rri' m—sr'L)]-

&(dr, . drN. (5.11)
(5.5)

etc. The states 0'0,; all have one electron on each site in

"At this point we make contact with an important recent paper
by C. N. Yang, Rev. Mod. Phys. 34, 694 (1962). Yang considers
the behavior of density mutrices in going around the ring and notes
that for normal (i.e., nonsuperfluid) systems, they are similarly
localized. From this point of view there is no basic distinction
between a normal metal and an insulator. In the present work,
where we consider the behavior of the meme functions in going
around the ring, this distinction becomes apparent.

where
g —Q)r (5.12)

Q —= w&&4 (r)&&tr.

We have chosen an integral with nonnegative integrand,
so that accidental cancellations cannot occur.

The R„' are some permutation of the R„; they arise
from the antisymmetrization of the wave function. For
mr —— m~' ——0 and R =R; (maximum overlap) I has
the value
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For the general case we use an upper bound of the form

t()o'(r)coo(r —S)dr & Qe-(8&(io, (5.12')

& Io expl —
l P(X,' —X,)+ (m, '—m, )L l /b J

where S is an arbitrary lattice vector and b is a char-
acteristic length related to the range of the Wannier
function. Then we may write

I& Io expr —P l (X,' —X,)+ (r)s,
' —m,.)L l /b J

This result implies that the entire con6guration space—oo &x;,y, ,s;&+ oo may be divided into a sequence of
geometrically similar nonoverlapping regions, (R~, and
their outside S.' such that for every ~ the partial wave
function C,~ is con6ned to (R~." We shall see that
from this property all the characteristics of an electrical
insulator follow.

6. ELECTRICAL CONDUCTIVITY OF LOCALIZED
ELECTRON SYSTEM

It is clear from the above discussion that if 4 (0) is
a perturbation eigenfunction of H(0), then

M =Qm„. — (5.14)

In quite the same way we can derive an upper bound
for the unintegrated product of two wave functions,

wp I'y — y
—5$y ' ' 'wp rg — g —sag

X I t()o(r&' —Rt' —mt'L) t()o(r)v —R)v' —mN'L)
I

& Ce—(M' M(1/c (5
—15)

where C is a constant of order e—'N and c is a length
similar to b.

Thus we see that each zeroth-order wave function of
the system breaks up into an infinite sequence of dis-
connected equivalent pieces, each of which is char-
acterized by a common value of M:

=I, expL —
I Z (r)s,

' —rm, ) I L/b3

—IQ expL —
l
M' —M

l L/b J, (5.13)
where

4.(k)=—Q 4,sr expl —sk(Q x; ML)j—(6.1)

E (k)='E (0). (6.3)

It can be directly veri6ed that the procedure of Secs. 3
and 4 leads exactly to the function (6.1).

From (5.18) follow at once the insulating properties

j ='0, limo)o„"(o))=0. (6.4)

These properties are, however, not yet sufficient to
assure that the system is an insulator; they are also
shared by metallic alloys. We need still to show that

is an equally good perturbation. expansion of 4 (k)
which, because of the nonoverlap, has precisely the
same energy

L4 (k),H(k)4 (k)]='l 4 (0),H(0)4 (0)), (6.2)
or

@ (o) —g 4, ~(o)
M~ (5.16) limo. '((o) =0, (6.5)

Consider now an arbitrary one-particle position
operator Q,G(r;). It is clear from (5.15), and may be
simply verified, that

where

4= P 4,sr,
M

4', )k( P G(I;)4,sr dr)' 'dr)v=0,

M&M', n, n' arbitrary. (5.19)

4,M")*g G(r,)4,M ("dr) . dr)v ——'0,
MAM', n, n' arbitrary. (5.17)

Furthermore, since the perturbation corrections +,~('&,

etc., differ from the unperturbed function by having a
small number (of order 1) of Wannier functions
shifted through distances of the order of atomic dimen-
sions and possibly excited, it is clear that if the per-
turbation series converges, then we may write for the
full wave functions

( lI l
)—= 4..*I'4.dr, dr~" (6.7)

( Q 4'a', M' I Q 4'asr)
OI(I M'~oo

Xdrt dr)v) (6.8)

where the integration goes over the standard region of
volume Q~, bounded in the x directions by —L/2
& x,&L/2.

"Ifwe start at a point (rq, ~ .rg} in (Rs( and move one of the
x coordinates around the ring, we come to a corresponding point
in (R~+&. We may remark however that for our purposes it is not
sufBcient that the wave function vanishes when a single x1 is
taken around the ring, but it must vanish on every path leading
from S~ to (R~, M'&M.

where o
' is the real (absorptive) part of the conduc-

tivity, given by

187'
~-'(~) =-—2 I

(n'II'ln) I'
Q (g a

X Lb(E —E,—o)) —b(E —E +o))$. (6.6)
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and is a well-behaved operator in our Hilbert space of
periodic functions. It satisfies the following commuta-
tion relations:

and
[Q,e(r')]= [Q, N(r' —r )]=o (6.11)

1 1
[-, p pp, Q]= g p;,= F in all (—R~, (6.12)

which may be combined to yield

1
[a,Q]=—F in all ~R.&.

z
(6.13)

In view of the fact that 4' ' is near vanishing in N, ',
(6.13) may be substituted in (6.8) and yields

(~'(F[~)='i(&.'—&.)(~'(Q(~) (6 14)

Now the order of magnitude of (n'~Q~~) may be esti-
mated from the low-order perturbation expression (5.4)
and is found to be a length independent of the dimen-
sion of the system, say

( 'IQI )=o(d). (6.15)

When we substitute (5.28) into (5.21) we obtain

Now define a periodic operator Q(r~, rN) as fol-
lows: As before we denote by (R~ a set of similar non-
overlapping regions in the unbounded 3Ã-dimensional
space of the r; such that C,~ is near-vanishing outside
N,~ for all o. ; and we call N' the region outside of all
Gt~. Then Q is given by

Q(rg, . rN)=xg+xm+. .xN —ML m 61~
(6.9)=F(rx, ' ' 'rN) in N,',

where F is a largely arbitrary, periodic function but
chosen such that Q is everywhere twice differentiable.

Q may be Pourier expanded as

Q=p Q(q) exp[i' (r&+r2+ ~ rN)] (6.10)

tions 0',~. It is a simple matter to verify that also the
ground states and exciton states of a conventional in-
sulator with an energy gap (like an array of He atoms)
have this property. Furthermore preljminary work
indicates that the same criterion applies also to dis-
ordered insulators. Thus, it would seem that this dis-
connectedness of the wave function, rather than more
special conditions like an energy gap, is the essential
characteristic of insulators.

Clearly the quantity (P(X))dX, where ( ) denotes
expectation value, is the probability that the sum
x~+ xN has a value in the range X, X+dX, modulo L.

We begin by evaluating (F(X)) in the zeroth-order
wave function

wo(xg —Xq)wo(x2 —X2) . wo(xN —XN) . (A1.3)

This gives

1
F(X)= Qexp[iq (X&+ —XN X)]FN (q), —(A1.4)

L e
where

L/2

F(q) =— wp'(x) e"*dx.
-E~/2

(A1.5)

APPENDIX 1. LOCALIZATION OF THE
CENTER OF MASS

Consider a system of X one-dimensional particles, of
coordinates x1, x~ on a periodic interval of length J.
There are V potential wells and, in the sense of Secs. 3
and 4, there is in zeroth-order one particle in each well.
We wish to explore the distribution of an appropriately
defined center of mass.

For this purpose we define the operator

F(X)=bg(x)+x—2+ xN —X), (A1.1)

where 8p is the periodic 5 function

8~(x)—= (1/L) P e"*, q= (2w/L)(0, &1, . ) . (A1.2)

(e'n.)
M 0! Q

En'

For small q we may write

F(q) = 1—b'q'+ (A1.6)

where b is a length of the order of the range of the
~~+~)] ( ) Wannier function. Hence we can write

co —+ 0:o. '(co) co", e ~&2. (6.17)

In view of (6.15) and the diBerence of the two b func-
tions appearing in (6.16) we see that and

logFN(q) =X logF(q) =Eb'q'

FN(q) e (N&~~by)~—

(A1.7)

(A1.8)

Thus the dc conductivity does indeed vanish.

"l. CONCLUSIONS

This falls o6' so rapidly with q that the small q approxi-
mation is a posteriori justified. Substituting into (A1.4),
and recalling the convention QX„=O gives

1
We have seen that the essential property of the array F(g')

of hydrogen atoms which assured its insulating char- 2x'"S'~'b
acteristics was the fact that each of its low-lying wave yg exp( —[(X—mL)/21P"b]'} . (A1.9)
functions 0 „consisted of a sum of disconnected func-
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Fto. 6. (a) Localiza-
tion of the center of mass
in a one-dimensional in-
sulator. (b) Nonlocaliza-
tion of the center of a
mass in a one-dimen-
sional free electron gas.

&P(X&& t

(b)

L/2

X

Thus, we see that X, which may be regarded as S
times the center of mass, is localized —on the interval—
L/2&~X&L/2 —in a region of width (ba '/')L'/' much
narrower than L (see Fig. 6). It is clear that if exchange
terms are included in the evaluation of (P(X)) or if the
expectation value of P(X) is evaluated in the true
eigenfunctions, C =e' C ('), the general nature of the
result is not altered. Thus, while the individual electron
coordinates are of course spread all over the interval

L/2&~x&L/2, the cen.ter of mass, X/E, is localized
in an interval of width a/It/1/2, where a is of the order
of atomic dimensions.

This state of affairs may be contrasted with that of
a free electron gas. Here

P(X)= (1/L) g, e " (e'«x'+ xNl) (A"1'.10)
= (1/L)

i.e., X is entirely unlocalized )see Fig. 6(b)].
hen we go from one to three dimensions we en-

counter a somewhat strange situation. If we call the
cross-sectional area of our ring A, we find, in exact
analogy with the one dimensional case that the width
of P(X) is given by

tt/~ (.4.L) '/2a "'b (A1.11)

which is much smaller than L, only for an extremely
thin ring, for which

g 1/2/I ((g3/2b —1L—1/2 (A1.12)

If all dimensions of the ring are of comparable magni-
tude (A1/2 L), then 2//»L and the center of mass be-
comes delocalized. Referring to the regions N,~, deined
in Sec. 5, we may say that for the one and "thin"
three-dimensional ring, I is restricted inp each (R3f to a
narrow range of values, which do not overlap, while for
the thick. ring the values of X in diGereo, t S,~ overlap
considerably.

APPENDIX 2. ONE-PARTICLE DENSITY MATRIX

The localization of the wave function is also reflected
in the one-particle density matrix,

/- (r,")—= (+-,4- *(")4-(r)+-). (A2.1)

To zeroth order, we find, e.g., in the ferromagnetic
state,

pram' (r~ r )—4-1/2~ed-1/2

Xg„tt/p(r —R„)tt/p(r —R„). (A2.2)

Because of the exponential decay of the Wannier func-
tions, we can write, for

~

x' —x)&&L,,

p„(r,r') &Ce ~'—"—~/' (A2.3)

where C is some constant and c is of the order of an
atomic dimension. A result of this form persists to all
orders of perturbation theory.

It is tempting to suppose that this exponential be-
havior of p is characteristic only of insulators. This is
not so. The same behavior is found for metallic alloys, "
and even for free particles p vanishes for

~

r—r')~~,
although not exponentially.

APPENDIX 3. MODEL EXHIBITING TRANSITION
BETWEEN INSULATING AND

CONDUCTING STATES

@N/2, p g ek+2 g p(klk2 [to [klk2)
k kg, kg

—(ktks I "Ikrk1) j, (A3.1)

where all k run over the fundamental Brillouin zone.
For S,=X/2 —1, and given q our Hilbert space con-

tains E state vectors, 0k, which diBer from N by
having a spin-up electron missing in q k, and having a
spin-down electron present in state q k+~'.

+k= 13k+2- 13k++ ~ (A3.2)

The eigenvectors of H must then be of the form

e=g A(k)ek, (A3.3)

'3 D. C. Mattis and J. Bardeen, Phys. Rev. 111,412 (1958).

The main body of this paper has been concerned with
a characterization of the insulating state. In particular
it was shown that under certain conditions (e.g., large
lattice parameter) a system with one electron per
atom, which in band theory would be a monovalent
metal, will be an insulator. Presumably as a is de-
creased, the system eventually becomes a metal but
the nature of this transition is not at present known.
This Appendix deals first with a soluble model ex-
hibiting a transition of this general nature.

We consider a cubic lattice of S fixed nuclei and X
interacting electrons and will be concerned with di-
agonalizing the Hamiltonian H within the Hilbert
space spanned by the Bloch wave functions, q», of the
lowest band. Ke note that the total s spin, S„and
total wave vector q, which characterizes the behavior
under over-all translation by a lattice vector, are good
quantum numbers.

When 5, has its maximum value X/2, our Hilbert
space contains only one state vector, +, with all elec-
tron spins aligned and q=0. The diagonalization of H
is then trivial:
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superconductivity. We erst introduce

1
o=——P A(k') (A3.10)

(a)

k—0 and then solve (A3.9) in terms of a:

2 (k) =—) o/Lrf (k) —E'j.
Summation on k results in the relation

(A3.11)

(b)

k-a

Fro. 7. (a) The func-
tion ep (schematic). (b)
The function s(k) for q= (s./a) (schematic). (c)
The function g(k) for
q) 0 but q« (s./o) (sche-
matic).

1+X(1/Ã) Q (1/Lrf(k) —E')I =0 (A3.12)

which is an implicit equation for E'.
Now p(k), Eq. (A3.5), is a periodic function of k,

shown schematically in Figs. 7(b) and 7(c), whose
minimum and maximum values we denote by %go. We
now deGne

F(E')—= (1/X) Q (1/prf(k) —E'g} (A3.13)

and study the solutions of (A3.12) by graphically
equating

(A3.14)

(see Fig. 8). For )rf~ ~&rip it is useful to introduce the
limiting function

1 /Q) 1
F(E)= limF(E) =

~

—
~

dk. (A3.15)
(2m)'kX/ rf(k) —E

Notice in particular that because of the volume ele-
ment in dk, F(+rip) are finite, and call

and the diagonalization of the Hamiltonian leads to
the equation

F(—rip)
—=Fp. (A3.16)

Lg(k) —E)A (k)+Q u(k, k')A (k') =0, (A3.4)
Then clearly for attractive interaction, X(0, we have
the following possible situations'.

where

and
q(k) —= eg~,—es, (A3.5)

(a) if ~X()1/Fp, there is an isolated ground state
plus a continuum;

(b) if ( P
~
(1/Fp, there is only a continuum.

u(k, k') =—(4a, M „.) . (A3.6)

It should be noted that (A3.4) has a structure analogous
to a one-particle Schroedinger equation. We now study
its solution in two especially simple cases.

Case I. Contact Potential

We first consider the case in which u(k, k') is assumed
to have the form

In situation (a) the ground state is a spin-wave state,
in which the spin-up hole and spin-down electron are
bound together. It is straightforward to verify that the
corresponding wave function has the disconnectedness
property typical of insulating states. The continuum
states however describe free electron hole pairs which
conduct. In situation (b) we have only conducting
states. Thus, as

( X( decreases from values )1/Fp to 0,
we get a sharp transition from an insulating to a con-

u(k&k ) =XfpEpag~+ (1/X)1 &
(A3.7)

(A3.8)E'—=E—XyX,

Eq. (A3.4) becomes

Ln(k) —E')A(k)+h/E) Q A(k') =0. (A3.9)
Ql

where 7 is a constant and X is a strength parameter.
Then de6ning

F(e') t

%o E'

FIG. 8. The function
t(E'), Eq. (A3.13).

This type of equation is well known from the theory of
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ducting ground state. This is our soluble model ex-
hibiting a sharp transition.

Another case, of great physical interest, which does
not exhibit a transition is Case II.

Case II. Coulomb Potential

N(k, k')=XLVMgg+(1/N)(1 —Bgg )f(k,k') j (A3.17)

where for k=k',

f(k,k') = (1/~' I k—k' [') . (A3.18)

Just as in the ordinary two-particle problem with
Coulomb interaction one obtains an isolated bound
ground state, no matter how weak the interaction is,
so also in the present case we obtain an insulating spin-
wave ground state, describing a bound electron hole
pair, for all negative values of X.

Speculations about the Transition between
Insulating and Metallic States

We conclude this Appendix with speculations about
the nature of the ground state as 5, decreases from its
maximum value N/2 to 0.

The ground state with S,=N/2 is insulating. With
S,=N/2 —1 the ground state is a spin-wave state with
that wave number q which results in the lowest energy:
For strong Coulomb interaction, g=0, maximizing the
effect of the interaction (ferromagnet); for weak
Coulomb interaction q= (s./u, 0,0) which gives the
lowest band energy Lsee Fig. 7(b)]; in intermediate
cases the lowest state may have some other value of q
(spiral magnetization).

When S.=N/2 —I, with N«N, the ground state will
have e of the lowest energy spin waves and still be an
insulator

However, when e becomes comparable to E, inter-
actions between spin waves must be taken into account.
For su%ciently large e, the spin-wave excitons may
overlap sufficiently so as to substantially screen the
Coulomb attraction between electrons and holes and
thus Anally lead to a dissolution of the bound pairs.
This would then result in a conducting ground state. '4

On the other hand, the overlap may not sufficiently
weaken the attraction, so that an insulating ground
state can result even for S,=O. This is the case which
has been the main subject of this paper.

'4 Compare an analogous discussion in Sec. 2 of N. F. Mott,
Phil. Nag. 6, 287 (1961).


