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Longitudinal Spin Relaxation in Solid He't.
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Calculations of the spin-lattice relaxation time, T1, for He3 nuclei in solid Hea are made and the results are
compared with experiment. A simple heuristic argument is first used which treats the two important relaxa-
tion mechanisms —diffusion and Zeeman-exchange coupling —as electively independent and then a more
precise calculation is made which takes into account interference effects. An expression for the exchange
integral J is obtained as a function of molar volume which, compared with the experiment, indicates an
effective, reduced dipolar coupling. The effect of zero point motion on the dipolar interaction is investigated
and using a very simple lattice model, it is found to be an important (but not necessarily the major) factor.

I. INTRODUCTION"UCLEAR magnetic resonance measurements on
solid He' have recently been made' ' to deter-

mine (as a function of temperature and/or pressure)
the nuclear magnetic susceptibility, self-diffusion con-
stants, and spin-spin, T2, and spin-lattice, T~, relaxation
times. The results of the spin-lattice relaxation meas-
urements are of particular interest since they are
characteristic of a nuclear spin system which relaxes
to thermal equilibrium with the lattice by way of both
self-diffusion and spin-spin interactions. For solid He'
these relaxation mechanisms are not independent, ' and
a calculation of T1 must include interference effects.
This calculation is performed and an expression for T»
is obtained which is in agreement with experimental
data. Using the correlation time r for self-diffusion
obtained from self-diffusion measurements, ' the ex-
change integral J is obtained by fitting the experimental
values of T& to the theory in the region where Tj is
independent of temperature.

Before proceeding to a proper calculation of T~, the
available experimental data are reviewed and a simple
calculation of T~ is made, assuming that all interference
effects can be neglected. This latter calculation is per-
formed because it (1) results in a simple expression
which gives the correct general behavior of T» as a
function of the temperature T and the magnetic Geld
H, and (2) gives insight into how the two relaxation
mechanisms affect each other.

Solid He' exists at low temperatures =1'K and high
pressures =30 atm in either an n phase (body-centered
cubic), P phase (hexagonal close-packed), or y phase
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r = rs exp(W/T), (2)

where ~p and 8' are constants, and this accounts for
the linearity of 1nT& versus (1/T) as plotted in Fig. 1
for large values of 1/T. Equation (1) gives the correct
general shape for Tt (see upper solid line) but deviates
from the data by approximately 15%%uq. The solid curve
used here was obtained by using the most probable
values of 8' and '7 p given by H/'= 13.6'K and
v p=5.32X10 "sec'. Because of the uncertainty in the
value of v.p, the solid curve can be shifted to the right
until the left-hand side of the curve fits well with the
data, and it can be shifted an equal distance to the left.

Shortly after the results of Goodkind and Fairbank

' N. Bernardes and H. PrimakofI', Phys. Rev. 119, 968 (1960).
7 N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev.

73, 679 (1948).
s R. Kubo and H. Tomita, 7. Phys. Soc. Japan 9, 888 (1954).

(face-centered cubic). The nuclear spin of He' is I=-,'
and it has a relatively large gyromagnetic ratio, p, of
approximately 75'Pq of the gyromagnetic ratio of the
proton. As pointed out by Bernardes and Primakoff, '
there is a sizeable overlap of the atom orbitals of nearest
neighbors so that one can expect exchange effects to be
important. The first measurements of the spin-lattice
relaxation time T& in solid He' were made by Goodkind
and Fairbank' (open circles in Fig. 1) who found that
as the temperature was increased the relaxation rate
T1 ' increased to some maximum value and then
decreased again. These measurements were made in
the o; phase at a molar volume of approximately 20.12
cm'/mole, and the resultant behavior of Tt was inter-
preted as being due to the diffusion relaxation mechan-
ism investigated by Bloembergen, Purcell, and Pound
(BPP),r which leads to an expression for Tt (as cor-
rected by Kubo and Tomita), ' given by

1 2 I(I+1)ttp' — r 4r
Q r. .—6

, (1)
T, 5 Pt t 1+co'r' 1+4oo'r'

where pp is the magnetic moment of the He' nucleus,
r,; is the distance between the ith and jth nucleus,
os= yH (H is the applied dc magnetic field), and r is the
correlation time associated with the diffusion. The cor-
relation time v. has the form

A j.7
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Fn. 1. Spin-lattice relaxation time
Tl versus (1/T) for solid He' at 20.12
cm'/mole. The open circles are the
data of Goodkind and Fairbank at
30.4 Mc/sec, the solid circles are data
of Reich at 5.224 Mc/sec. The solid
lines are given by theory.
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were published, Haskell Reich' reported further meas-
urements of Ti as a function of 1/T at lower magnetic
fields. The results of Reich show the same general
diffusion relaxation behavior for small values of 1/T
but were surprisingly independent of temperature for
large values of 1/T. Further measurements in agree-
ment with these were made, and those data points
corresponding to the molar volume of 20.12 cm'/mole
have been plotted as solid circles in Fig. 1. The theory
of BPP' is again in good agreement with the data in
the region before Ti becomes independent of 1/T, but
some other mechanism is necessary to explain the
behavior of T~ at lower temperatures. Further experi-
ments (in the P phase) in the temperature-independent
region have shown that T~ may be written approxi-
mately as

Ti (Ts) o exp(EP/2——H,'), (3)

where (Ts)e and B, are both constants. ' Relaxation of
this character was first investigated by Kronig and
Bouwkamp, ' who considered the effect of the spin-spin
coupling at low magnetic fields in relaxing the mag-
netization. Since (Ts)s is independent of temperature
(as long as the molar volume remains constant), the
resulting relaxation due to spin-spin coupling should be
independent of temperature, and consequently the low-
temperature region of Fig. 1 is identified as being
dominated by this relaxation mechanism. The 1611-6
magnetic field at which these experiments were per-
formed is considered lou because of the large effective
exchange field present which is of the same order of
magnitude.

' R. Kronig and C. J. Bouwkamp, Physica 5, 521 (1938).

II. APPROXIMATE CALCULATION

If two independent relaxation mechanisms are
present, then there results a relaxation rate 1/Ti,
given by

1/T, = (1/T,) +(1/Ti)b,

and in our case (assuming for the moment that the
diff'usion and spin-spin relaxation mechanisms are
independent) we might expect Eqs. (1) and (3) to be
inserted above. This is too great a simplification, since
in both the high- and low-temperature regions Eq. (3)
would predict that the spin-spin relaxation would
dominate, which is not observed experimentally. What
appears to happen is that at high temperatures the
diffusion mechanism dominates and at lower tempera-
tures the spin-spin relaxation mechanism dominates.
This comes about for two reasons: (1) At high tem-
peratures the rapid diffusion of the atoms which gives
rise to the diffusion relaxation process inhibits the
spin-spin coupling mechanism by eff'ectively averaging
out the dipole-dipole interaction which is responsible
for this coupling. (2) The large effective local field due
to the exchange energy inhibits the diffusion relaxation
mechanism at low temperatures and low-magnetic
fields by providing a minimum polarizing (or stabilizing)
field.

Let us consider how the relaxation equations should
be modified to take into consideration the above-
mentioned effects. The simplest case to consider is that
of the diffusion relaxation, which can be given the re-

quired character by replacing ~' with ce'+co,s in Eq. (1)
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hX is directly proportional to t. The quantities T2.&

and Tm* are related to each other by

1/T2*= L~g(~)/Tp. b'3, (8)

where g(pp) is a normalized density-of-states function,
1.e

where or.=yH. , and II', is the eRective local Geld due to
the exchange energy. The eRect of including cv, above
prevents the maximum in the relaxation rate from
appreciably increasing when co becomes smaller than co,.

The model used to justify Eq. (5) is one in which the
individual nuclei are polarized in both the applied dc
magnetic field and the exchange field from near neigh-
bors. This type of model is suggested by experiments
performed in the demagnetized state" where nuclear
magnetic resonance signals (both cw absorption and
dispersion signals and pulsed free-induction decay
signals) indicate that a nucleus effectively polarizes in
whatever field it finds itself, independent of the origin
of that field. The local fields due to neighbors are
random, so the eRective average polarizing field is
obtained from

22 —pp2+o/ 2 (6)

Equation (5) then states that a He' nucleus polarized
in an eRective Geld cp,«/p is relaxed by noise produced
at that frequency and its second harmonic. In this
model the noise is due to the modulated (or interrupted)
magnetic dipole-dipole interaction only; the modulation
of the exchange Geld gives rise to the exchange-lattice
relaxation which, in this paper, is assumed to be very
strong and serves to keep the exchange system in
thermal equilibrium with the lattice.

The modification of the spin-spin relaxation mechan-
ism is brought about because of the modulation of the
interaction between the Zeeman system (characterized
by the Zeeman energy) and the exchange system (char-
acterized by the exchange energy). The dipole-dipole
interaction which couples these two system is frequently
interrupted because of the diRusion. We know from
time-dependent perturbation theory that if a per-
turbation coupling two energy levels is suddenly turned
on, then the rate at which transitions take place is
proportional to t, where t=0 is the time at which the
perturbation is turned on. If there are a continuum of
levels, then the phases are soon randomized, and we
obtain a time-independent transition rate. If the oc-
cupation number of a certain set of levels is observed,
one can expect to And that its time dependence is given
by a function of the form

N =N p exp( —t'/(2T2, b'+tT,*)),
where Ã is a number characteristic of the occupation
number we are observing. For very short times
AX=X—Ãp is proportional to t', while for long times

'0 A. G. Anderson and S. R. Hartmann, Phys. Rev. 128, 2023
(1962).

g (pp)do/= 1.

Equation (8) is obtained by noting the connection
between the above expressions for AS for short and
long times and the equivalent expressions as given by
$chi ff.&&

We now suppose that the perturbation is interrupted
at t= v, at which time the atoms in the solid rearrange
themselves, and then the solid remains Axed until 7-

seconds later, at which time the atoms jump again, and
so on. Every time there is a rearrangment, we eRectively
start at t=0, and there is a slight Gaussian character
to the relaxation. After e periods of time 7 we have

~=~o exp
2T2ab +T2

or since ev=r, we write

M =Mp exp( —t/Ti) b,
where

( 1 ) prg(a&)r

t Ti) b Tp.b'$22rg(o&)+r)
(12)

making use of Eq. (8). The relaxation function. is now
a simple exponential as observed experimentally. The
function g(o/) is obtained by calculating the overlap
between the Zeeman line

(2)'/2 1
gz. (tp) =

(

—
[

—exp—
(tp top)

207g
(13)

and the line associated with zero magnetic field

/2)'/2 1 ppp

g,„(pp)=
~

—
~

—exp-' i cp, 2(p,2
(14)

The quantities co&' and ~,' are the second moments of
the Zeeman and zero-field lines. In Eq. (13) we use
cop=yII, . We obtain for the overlap integral

g(~p) = g-(~)gz. (~)d

(2) 1/2

exp
Mp

(15)
2' g

where &p,*p=o/.2+tpr, p. If we only consider the case in
which col.&&co„then we can replace or,* by co, in Kq.

'1 L. I. Schiff, QNaetlm 3IIechunics (McGraw-Hill Rook Com-
pany, Inc., New York, 1949), 1st ed. , p. 193.



HARRIMAN
&A20

2 coe

(Ti )p — '"
2~ ~to E2tpe~-

-expl

~ instead of using(15) to obta' (
(po)

(16)

«Q)
=Trl Q

—I=Tr (24)

Degne the operatoors and 3'p by

= X+bX~~ Xp '+
the Zeeman and excha gSince we

'
of time, we calculate

e are intereste in t
im

which, when v is long reduces to

T,= (Tp) o exp(cp'/2pp, '), (17)

(26)

be ap-

d 'r[X*( )r,X*( 'r); po] (27)

dr»{Q[X*(t),X*(r) po]} (28)
p

that the Zeeman and exchang yn es stems
e s in temperatures (notcan eac eh be characterized by spin em

necessarily equal), i.e.,
t =ex —X,/kT, ) exp( —3C, /kT, )

=1—(3C,/k T,)—(3C,„/kT. )
= 1—(Xo/k T.x)—(1/k) (1/Te 1/T~ 3C„—

so that on using the relation

ATRIX CALCULATIONIII. DENSITY MAT

eed to a more rea is ic1 t' calculation of T~.
The spin Hamiltonian is written in e

(29)3C=3C,+X +Xp,
the Zeeman Hamiltonian:where 3C, is e ian:

(19)X,=VIII.Q„I,„.
nd the secular3C, is the exc an

'
anh h nge Hamiltonian an

d' ole-dipole Hamiltonianpart of the uipo e- i

(20)(A I I+B Q,„I),ex mn

art of the dipole-dipoleand BCg isd BC the nonsecular part o
Hamiltonian.

dr Tr{Q[X*(t),X*(r);3Cp]}

dr Tr{Q[X*(0),X*(—r); 3Cp]}

= —'I Tr{Q[3C*(t),3C*(0))},
we obtain""
d(Q)

Xa—=G+x+G-i+G+p+G —p
1 1 1

Tr{Q[X*(t),X*(o)]}+,with [G+pI,I,]=MGtrt

+ (p'k/r„„)(-', cos'S „——,
'
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e
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which there is no diGusion.Let us erst treat the case in w ic e
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0
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LON GI TU 0 I NAL S P I N RELAXATION I N SOL I D He' A2 j.

When Q =X, =Xp—X„then since
t

dr Tr{Xp[X*(t),X*(r);X,J}

and
=ik Tr(x,[x*(0),x*(1)j}, (32)

Xex'l
lim Tr l[x*(t),X*(0)g =0,

x&
we And that

d(x,) 1 (1 1)
dt A'k kT, T,„/

(33)

and

X dr Tr(x,[x*(r),x~(0); X,j} (34)

(d/dt)(x )=—(d/dt)(x. ). (35)

TrG sr(t)Gsr= exp(ippt),

and inserting these terms above we 6nd

lim Trpe, [X*(1),x*(0))}=0. (38)

A similar argument holds when H, replaces X, in Eq.
(36). The expressions for the relaxation of Zeeman and
exchange energy, Eqs. (34) and (35), can be evaluated
by expanding the integrand in powers of v.. If the ex-
pansion is carried out to terms involving v' we 6nd that
since the coeKcient of the term involving the erst power
of 7 is zero we can replace the power expansion by a
Gaussian function. The Gaussian function is uniquely
determined by expanding it in powers of r up to the v'

term and equating it to the series expansion of the
integrand of Eq. (34). We fmd"

d(11 1 1 1
(39)

dt&T, i r. T. r.
d(1i 1 1 1

(40)
ditT, / r, T,. r.

'3 S. R. Hartmann and A. G. Anderson, in Magnetic and Electric
Resonance and Relaxation, Proceedings of the Colloque Ampere,
Esldhoeee, Jelly 196Z, edited by J. Smidt (Interscience Publishers,
Inc., Net York, 1963).

Equation (34) is equivalent to an expression obtained
by Kubo and Tomita' in studying the energy exchange
between two modes of a spin system. Equation (33)
was obtained by expanding X,* in terms of the G~~
operators, so that for the term involving K, we find

Tr(X,[X*(t),X*(O))}
=Tr( G+, (1—)G,e~~~+G, (1)G+,e '«-

—2G+s(t)G se""'+2G s(t)G+se ""'} (36)
where

Gsr(t) =exp[(i/A)X, , t]Gsr exp[—(i/k)x, „t) (37).
In the limit of large t all terms average out except those
for which

TrGsr(t)G sr ——exp( —mt)
and

Tr[G sr,X.„j[X,,G+srj
(42)

Tlex
7' +8

TrX

For relaxation in solid He it has been shown experi-
mentally, ' at least in the region T&0.5'K, that the
exchange system is tightly coupled to the lattice so
that the exchange temperature T, is equal to the. lattice
temperature T and T~= r, . The above result is similar
to the Kronig-Bouwkamp result but differs in that
there are two exponential terms. Yokota has also con-
sidered this relaxation mechanism and has obtained an
equivalent result. '4

Now consider the effects of diffusion. If the atoms
disuse, then the terms containing r „and 8 „will
Quctuate. We assume that the major effect of the
diffusion is to make Kq depend on time. The only eBect
of the fluctuation of X,„

is to couple the exchange system
with the lattice so that we can put T, = T. On this
basis we are led to Eq. (28) in which X*(t) also includes
the time because of diffusion. We argue that in taking
the trace we are effecting an average, and so we can
separate out the effect of the diffusion by including
some correlation function f(t—r) into Eq. (28) and
then treating the problem as we did before. If this is
done we are led to the result given by Eq. (34) except
that the function f(t) must be included inside the
integral. If this is correct, then the problem is one of
determining the correct form of f(t) If we cho.ose

f(i) = exp( i/r), — (44)

where v is the correlation time, then on performing the
integration and using the expression obtained previously
for the integrand in Eq. (36), we find that 1/Tt is given

by
(2s)'I' s M' TrG+srG sr

ReW(ssr), (45)
fz' TrI ' sr=~ (Q&pM')'"

where
SM ssr+spM )

~llf-
V2(aa&&)"'

PM=
%2(happ&) ~'Is&'

'4 hM. Yokota, J. Phys. Soc. Japan 10, 762 (1955).

(46)

where

1 (2m)'ls s M' TrG+tG i

PP TrIP sr i (&~jr)'~'

M'0' q-
Xexpl — I, (41)

2(~~))
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FIG. 2. The exchange integral J as
a function of molar volume.
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(47)

and for a body-centered cubic lattice
W(s) =exp (—z') 1+ e+"dt

o 1 14.5h'y4I (I+1)
)ReW(x+iy)

T ttz(g~ z)1/z

+4 ReW(2x+iy) j, (50)
with

(ao/&') = (7 59)(I//tt)'I(I+1) (51)

and u is the lattice constant, assuming J&0 for nearest
neighbors only. '~

The data in Fig. 1 correspond to: a=4.05X10 ' cm;
7 =ra exp(W/T); rs ——5.3)&10 " sec; W=13.6'K.
The value for J was also determined from T2 measure-
ments but because of the approximations made it will
be regarded as determined by fitting Eq. (50) to the
data. The criterion for fitting the data was to adjust
the value of J so that the experiment and theory agree
in the region where the theory predicts that T~ is
independent of temperature. The small cross at
1/T=1.5('K) ' was chosen as the reference point in
this region and the value of J so determined together
with the above data then determines the whole theo-
retical curve. A surprising result of this fit is that J is
determined to be (in units of cps)

and (Ao/44') is given as before.
When yM ~ 0 we obtain the familiar expression for

relaxation by diffusion.

2 2 T

Q M'TrG+srG sr (48)
A2 TrI 2 M-l 1+~so/zrz

while for (o/zr') —& 0 we find that Eq. (41) is again the
correct expression for 1/Tt. The expressions for Ti are
given in terms of quantities which are susceptible to
independent measurement, so that only within the un-
certainty of outside measurements of such quantities
as the exchange integral, correlation time, lattice
constant, temperature, etc., can one adjust the parame-
ters to obtain a best fit. On the other hand, one can use
Eq. (41) to determine, say, I, if all other parameters
are known.

In order to compare the above theory with experiment
it is necessary to evaluate the various lattice sums in
Eq. (41). Using the results of related lattice sum calcu-
lations" "we find that for a cubic lattice powder

Tra+~G g
——Tra+2G 2

(ho/4') = (ao/z')
"R.L. Strombotne, thesis, University of California, Berkeley,

1961 (unpublished).
"H. Cheng, Phys. Rev. 124, 1359 (1961).

(J'//tt) = 1.1X10'cps,

'r The expression for W(z) was evaluated on an IBM—7090
computer using program C3 BS WOI Z of the SHARK catalog.
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Fro. 3. The exchange integral J as
a function of molar volume after cor-
recting for a modi6ed dipolar inter-
action.
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which was (to an accuracy of two significant figures)
just what was obtained by the T2 data.

It should be noted that the size of the dip in T~ was
not an adjustable parameter but was Axed once the
reference point cross was chosen. In fact, if we had
chosen a reference point which was greater (i.e., a
larger value of T&) than that actually chosen, the
theoretical dip would have been greater, so that the
reference point in the temperature-independent limit
does not affect the fit to the data in the diffusion-
limited region very much. The fit to the open circles of
Fig. 1 is, of course, also determined by Eq. (50) and is
given by the solid curve of Fig. 1. This curve was dis-
cussed in the beginning of this paper when relaxation
by diffusion was considered. Several other T& measure-
ments with solid He' in the 0. phase have been made and
by fitting the theory with the data in the temperature-
independent region, values for J have been obtained at
several molar volumes. The values for vo and 8' have
been taken from Reich's diffusion measurements. ' A
plot of J versus molar volume is given in Fig. 2 where
the triangles indicate the value of J obtained by the
foregoing procedure. It is to be noted that for each
molar volume we determine two values of J. (When
(Aai+)(~s and increase in j increases the Zeeman-
exchange coupling as more transitions are possible
which can conserve energy, whereas when (&&usr'))~'

the Zeeman-exchange coupling is essentially propor-
tional to T2 ', which being exchange narrowed, means
that. a decrease in J will also increase the Zeeman-
exchange coupling. ) In the case of V=20.12 cm'/mole,
the lower value for J is clearly the correct value since
the larger value of J would not produce any dip in the
relaxation curve as given in Fig. 1. The other sets of
J values cannot be differentiated from the T~ versus
1/T data because of the slight disagreement between
theory and experiment in the region of the T~ minimum
as evidenced in Fig. 1.If we assume that J is continuous
then we are led to the conclusion that J increases to a
maximum value at about 21.6 cm'/mole and then
decreases again. The results of Reich' and Thompson,
Dheer, and Meyer' have been plotted in Fig. 2, to-
gether with a curved line predicted by Saunders'
theory. 's At 20.12 cm'/mole the results of Reich, '
Saunders, "and this calculation are in excellent agree-
ment. At lower densities the agreement between our
results and those of Saunders and Reich is less satis-
factory, but there is reason to be suspicious of our
results in the region about 21.6 cm'/mole and 1611 G,
because at this molar volume and field, the behavior
of J versus molar volume is very sensitive to the ab-
solute value of Tj in the temperature-independent

's E. M. Saunders, Phys. Rev. 126, 1724 (1962).
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FIG. 4. Spin-lattice relaxation time
T~ versus (1/T) for solid Hes at 20.12
cm'/mole. The open circles are the
data of Goodkind and Fairbank at
30.4 Mc/sec, the solid circles are data
of Reich at 5.224 Mc/sec. The solid
lines are given by theory after cor-
recting for a modi6ed dipolar inter-
action.
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region. We are further handicapped because, for values
of J/5 greater than 1.5X 10' cps at 1611 G, only a very
small diffusion dip in the relaxation curve is predicted
which prevents one from distinguishing unambiguously
between the two possible values of J. If data had been
taken at higher molar volumes, we could have again
been able to distinguish between the two values of J
and would know whether or not we remained on the
same branch in Fig. 2.

Since the theoretical preduction" of J versus V and
the experimental determination of J from T2 data both
yield a monotonic curve for J, it is informative to
inquire what modidcations in the spin-lattice relaxation
calculation (Sec. III) are necessary to achieve this
monotonic behavior for J when determined from T~
data. One can question the assumption that the
character of the relaxation function for the spin-spin
relaxation is Gaussian, but we prefer to accept this
simplifying assumption and look elsewhere for the
discrepancy. According to Reich, his sample of solid
He' was a powder (polycrystalline), but there is the
possibility that it consists of only a few crystals ran-
domly oriented. Grilly and Mills" have reported that
they found it djLfIicult to avoid making single crystals
because of the large diffusion which is present. Reich's
sample volume is an order of magnitude larger than
that of Grilly and Mills, and it therefore would have
been more diKcult to have grown a single crystal. If
the sample differs substantially from a powder, then
the values for (h~&) and TrG+srG ~ will differ ac-
cordingly. A change in TrG+qG ~ of only 25% is enough

"K.R. Grilly and R. L. Mills, Ann. Phys. (N. Y.) 8, 1 (1959).

to produce a monotonic J versus V curve when J is
determined from Tr data. The quantity (Acosr') is not
as sensitive as TrG+~ sr to deviations of the sample
from being a perfect powder.

Another eGect which should be considered is that due
to the very large zero-point motion. Since the inter-
acting atoms are vibrating with large excursions and
at very high frequencies, the effective interaction
between the atoms is altered. "In order to estimate the
effect, we assume that the relaxation is altered according
to the equation

TrG+&G t ——(TrG+tG-~) sE1+A($.'), /(R')'), (52)

where A is a constant, R' is the distance between nearest
neighbors, R =R '+$, R s is the equilibrium ath
component of the position vector to an atom, and $
is the deviation from R '. The variation in (h&usr')

with V has been assumed to be very small, since it is
independent of R'. Saunders" has calculated (&,'). as
a function of molar volume, and we find that if we

choose A = —14, then we obtain the J versus V plot
shown in Fig. 3.

In Fig. 3, the upper and lower branches come to-
gether and the solid triangles give a good fit to Saunders'
theory. As a further check, the T~ versus 1/T curves
have been recalculated using 2 = —14, and we 6nd in

Fig. 4 that the agreement between the theory and the
experiment has improved. In fact, the fit in the region
of the relaxation dip is good enough to enable us to
distinguish between the two possible values of J at
22.6 cm'/mole. The higher value of J is found to be the

so D. E. O'Reilly and Tung Tsang, Phys. Rev. 128, 2639 (1962).
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is independent of n and P as long as nWP. In order to
get agreement with experiment it is necessary to show
that Eqs. (52) and (53) are equivalent, i.e.,

R,oR„o(~.„.,~„„.„)..
(54)nx av ~

(R')2

As a crude approximation it was assumed that

COIt;~= C~k,

coI,g= cgk, (55)
e '(k)=k /k,

"A more detailed paper concerned with the relaxation of solid
He in the P phase is in preparation by R. L. Garwin and A.
Landesman.

correct one indicating that at higher molar volumes J
lies on the upper branch. The values of J as obtained
from relaxation data in the P phase have recently been
compared4 with the theoretical predictions of Saunders"
and, as we 6nd in the n phase, the agreement is rather
good."

The results of Figs. 3 and 4 remain essentially the
same if we postulate a constant correction factor to
TrG+tG t of =—25% due to not having a perfect
powder since ($ '), is essentially constant (there is
=25% variation) over this range of molar volumes.

We now consider the validity of Eq. (52). In the
simplest model of two atoms vibrating along the line

joining their centers, the sign of A is positive and not
negative resulting in a correction factor of the wrong
sign. The next approximation is that of considering one
atom fixed and its neighbor oscillating about its equilib-
rium position with oscillations of spherical symmetry,
i.e., (&.'). =(&„').=(&.e),. In this model we find that
A is zero. The transverse oscillations, therefore, tend
to decrease the dipole-dipole interaction, while the
longitudinal oscillations have the opposite effect. In
order to make a more realistic estimate of the effect of
zero-point vibrations, we expand TrG+~G ~ to the second
order in its displacements and we find that

TrG~tG t ——(TrG~tG t)
27 R,oR„og„„,)„„o

X &+—Z, (53)
2 N~ (Ro)'

where P„„,= P,—$„„andthe subscripts I, tt' refer to
the ttth and n'th atoms. In obtaining Eq. (53) we only
considered nearest neighbor interactions and a single
crystal oriented with the cube axes along the x, y, and
s axes. The symbol +zest means a sum over nearest
neighbors. For the case considered it is readily shown
that

where k is the wave vector, c~ and c~ are the velocities
of longitudinal and transverse waves, respectively, and
e '(k) is the nth componen. t of the polarization vector
for a longitudinal wave whose wave vector is k. If a
square Brillouin zone is chosen and if ct= %act (as given
in KitteP' when the forces are central and each atom
is at a center of symmetry), then we find that the sign
in Eq. (54) is indeed negative but the expression on the
left-hand side is about a factor of ten too small. Because
of the gross oversimplifications made above, this result
does not rule out the possibility of the 25% Tt cor-
rection factor being due to zero-point motion, but it
does indicate that the zero-point motion does have a
sizeable effect of a few percent and consequently must
be taken into consideration in any precise calculation
involving magnetic interactions between the nuclei.

CONCLUSION

An expression has been obtained for the relaxation of
magnetization in a solid where the principal relaxation
mechanisms are due to diffusion and Zeeman-exchange
coupling, and where the exchange system is tightly
coupled to the lattice. It is found that the resulting
expression for the relaxation rate T» ' when plotted as
a function of T is in excellent agreement with experi-
ments performed on solid He'. %hen the above theory
is used to determine the exchange integral J it is found
that there is reasonable agreement with the theoretical
calculations of Saunders' and the measurements of
Reich. ' The resulting determination of J indicates an
effective reduced dipolar interaction which can arise
from either a nonperfect powder or zero-point motion,
and a simple calculation of the effect of zero-point
motion indicates a contribution of possibly 10% to the
effect.
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