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larger size of CdTe or may possibly reQect lattice dis-
tortion in incorporating Cr+ for Zn,

The variation in the interaction of Cr+ with second-
neighbor sites as compared to the lack of variation for
Mn~ is undoubtedly due to the greater extent of the
Cr+ wave function as compared to Mn+ . This is to be
expected since Cr in this configuration has accepted an
electron. Mn++, on the other hand, is electrically
neutral.

In summary, the resonance measurements that have
been made of Cr+ in four zinc-blende lattices show that

there are variations from crystal to crystal of the reso-
nance parameters g, a, 2 (Cr"), and Az, ce. The varia-
tions are consistent with changes in the degree of cova-

lency in the bonds and with lattice distortions caused

by incorporating the larger Cr+ in place of divalent
zinc.
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A theoretical and experimental study is made of the nuclear magnetization which appears after a sudden

unidirectional step magnetic 6eld is applied nonadiabatically to an ordered spin system which has been

prepared by the process of adiabatic demagnetization. The magnetization exhibits damped oscillations about

a nonvanishing equilibrium value. The oscillation frequencies correspond to the fundamental and harmonic

components of Larmor frequency determined by the combined effect of local dipole and external step fields.

The oscillations arise as the internally ordered dipole-dipole interaction energy exchanges with the suddenly

imposed Zeeman energy reservoir. A density matrix calculation carried to second order in time-dependent

perturbation theory, combined with a Gaussian decay model, accounts for the observed oscillations within

times comparable to the decay time. Fluorine nuclei in single CaF& crystals are studied for various crystal
orientations with respect to the applied step field. For long times after step 6eld application the attainment
of thermal equilibrium between dipole-dipole and Zeeman reservoirs permits prediction, using the spin

temperature concept, of magnetization developed along the step field.

I. INTRODUCTION

~ OLLOWING the sudden reorientation of equilib-
rium nuclear magnetization 3fp by a radio-

frequency (rf) pulse, a transient nuclear induction signal

appears which is a measure of the Fourier integral of the
resonance line shape. '' The relaxation time of this

signal, loosely referred to as T2, is a measure of the life-
time of coherent magnetization which precesses in the
transverse direction perpendicular to a large polarizing
magnetic field H p. In this paper the transient response
of the spin system is studied after a step direct current

(dc) magnetic 6eld H, is applied to an ordered spin
system in zero (Hp ——0) magnetic field. ' The ordered

spin state is prepared by carrying out an adiabatic de-

magnetization of the initially polarized sample by turn-
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ing o6 Hp slowly. The step field H, is then turned on
nonadiabatically in a time much shorter than the
I.armor period of the spins in the net field determined

by H, and the mean local dipolar field Hl, .A longitudinal
nuclear magnetization (M, (t)) develops in time along

the direction of H, after it is applied. A transient
longitudinal spin-spin relaxation (LSSR) behavior is

displayed by (M, (t)), which is a measure of the oscilla-

tory interchange of energy between the magnetic dipole-

dipole energy reservoir and the suddenly imposed Zee-

man energy reservoir. In a sense, these measurements

yield the Fourier integral of line-shape measurements

made by Anderson' on the nuclear magnetic absorption
of spins ordered in low magnetic fields comparable to

Hl, . The transient measurements reveal directly the

time evolution toward internal spin-spin equilibrium

and toward final thermal equilibrium between Zeeman

and dipole-dipole energy reservoirs.
A number of observers4 ' 7 have investigated various

4 A. Abragam and W. G. Proctor, Phys. Rev. 109, 1441 (1958).
5 A. G. Anderson, Phys. Rev. 125, 1517 (1962);115,863 (1959).
' S. R. Hartmann and A. G. Anderson, Phys. Rev. 128, 2023

(1962); S. R. Hartmann and E. L Hahn, ibid. 128, 2042 (1962);
F.&M. Lurie and C. P. Slichter, Phys. Rev. Letters 10, 403 (1963).

7 R. T. Schumacher, Phys. Rev. 112, 837 (1958);P. S. Pershan,
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aspects of nuclear relaxation in which nonoscillatory
changes in spin populations occur, relating more directly
to systems which can be assigned one or more spin tem-
peratures. In the present investigation of the F"nuclear
magnetization in CaF2 single crystals, one may only use
the spin temperature concept after the transient oscilla-
tions of (M, (t)) have disappeared and the dipole-dipole
and Zeeman reservoirs have attained internal equilib-
rium. The very long spin-lattice relaxation times are to
be neglected in considering the theoretical and experi-
mental results. %aller' was the 6rst to consider theo-
retically the process of LSSR in an electron paramag-
netic system. He found in the special case H,«Hg that
a thermal equilibrium magnetization (M,)=CH, /T
finally appears, where T is the initial temperature of the
spin system in zero external 6eld and C is the Curie
constant. The Zeeman energy W= (M,)H, a—ppears
at the expense of internal dipole-dipole energy which
resides in the system prior to the application of the step
field. %aller also found that the magnetization appears
as a sum of oscillating terms which represent the eigen-
frequencies of the system directly after H, is suddenly
applied. %e extend %aller's treatment here to include a
greater range in values of step field H, and consider the
nuclear dipole-dipole interaction to be the sole con-
tributor to the zero Geld energy. No type of scalar spin-
spin exchange energy is included.

Figure 1 shows schematically the sequence of mag-
netic 6elds applied to the spin sample in our experi-
ments. Following adiabatic demagnetization from a 6eld
Ho&)HI. , a step field H„usually comparable to Hl, , is
applied at time 3=0, after which time the spin system
evolves in the field H, . A second step held H~ greater
than H J. and H, is then applied at t= t~, and the evolu-
tion of magnetization (M,) in the field H, is interrupted.
One could, in principle, measure the magnetization
which develops at the time t~ by a pulsed nuclear reso-
nance measurement directly in the Geld H„but the
signals are too weak to make useful measurements. It is
necessary therefore to apply a second step 6eld H~ at
t=t~, and the particular magnetization which the spin
system has at that time is retained and. 6nally displayed
RfteI' Rn RdlabRtlc remagnetlzation bRck Into the hlgli
held Ho. A nuclear signal in the 6eld Ho can then be
obtained by pulsed resonance or by adiabatic fast
passage, which is a measurement linearly dependent
upon (M, (i)) at i=is. The entire sequence of field
switching must take place in a time short compared to
the spin-lattice relaxation time. By repeating the se-
quence for various values of t~ for given H, and Hg, the
transient response of the spin system can be determined.
The field dependence of the equilibrium magnetization
which develops after a long time can also be obtained
by varying H, while keeping H~ constant.

Ho

fe Hg

M

Time

FIG. i. Magnetic 6eld applied to the nuclear spin sample as a
function of time. In time regions O~ I and M —&I', adiabatic
demagnetization and remagnetization occur, respectively. At
I', a 90' pulse inspection is made of the magnetization.

II. THERMAL EQUILIBRIUM THEORY OF LSSR

After the step field H, has been applied, the equilib-
rium Zeeman energy and magnetization can be rigor-
ously determined if t~ is sufficiently long so that the
two heat reservoirs characterized by the Zeeman energy
(Xo) and the dipole-dipole energy (Xqq) will arrive at a
common temperature. The Hamiltonian of the system is

Xo= —&H 2 y I.;

is the interaction energy of X spins in the rigid lattice
with the external 6eld H, y is the gyromagnetic ratio,
and I is the spin operator. The dipole-dipole interaction
Xzz will be given explicitly in Sec. III.

The reader is referred to the paper of Abragam and
Proctor' for the origins of expressions based upon the
density matrix method which will be used to analyze the
thermal equilibrium of spin ensembles in our experi-
ments. At a spin temperature T, the ensemble has the
density matrix

exp( —X/kT)

Tr{exp(—X/kT))

In the high-temperature approximation

—Tr{Xdg')
(Xgg) =

kT Trj.

obtained from the relation (Xqq)=Tr{Xqsp). Hence-
forth all traces will be taken as normalized so that Tri
will be replaced by unity. The local 6eld HI, is de6ned
from

Hzs = —Tr{Xdg)/Tr{M,s},
where the operator M, is given by

ibid. 117 109 (1960); A. Landesman and M. Goldman, Compt.
Rend. 2 2, 263 (1961).

o I. Wailer, Z. Physik 79, 370 (1932).
M, =A Q y,I„.
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(X(ts))= (Xgg(ts)) (—M, (tii))Hii
= (Xgg(i)) —(Hg —H,)(M, (tg)). (17)

(7)(M.)=CH/T,

Tr{M,') I(I+1)EA'y'
C=

where

An equilibrium spin temperature Tz will now result
after a long time and the energy becomes

(X(B))= C((—Hg'+Hi')/Ts) . (18)
and the Zeeman energy is given by

(xo)= —(CH'/T) .
After combining Eqs. (17) and (18), one obtains

9

to
1 —(Xgg(i))+ (Hs —H)( M, (t&))Following adiabatic demagnetization by reducing Hp

zero, according to Fig. 1, the 6nal spin temperature
T = TOHz/Hp is reached, 4 where T0 is the laboratory
lattice temperature. The resulting zero-6eld dipole-
dipole energy

(19)
C(Hii'+ Hz')

The equilibrium magnetization developed in H& is,
therefore,

The thermal equilibrium magnetization in constant field energy is
H is

(Xgg(i) )= —CHz, '/T' (10)

From Eqs. (10) and (11) the final spin temperature T, is
obtained as

(12)

Substitution of 1/T, into Eqs. (7), (9), and (10) gives

(CHz') ( H, '
xo(s) =-

& T, & I H.2+H, 2&
'

(CHz') ( HI.'
xgg(s)) =—

5 T, &&H~+H,~&
'

and
(CHP ( H,Hz )
4 T; ~ EH,2+Hz, '~

The eRect of the second step field Hg is essential to
the actual recording of (M,) data, and will require again
the same considerations of energy conservation as given
above. Let H~ be applied in the same direction as H, at
a time I& after H, is turned on. The dipole-dipole energy
(XJg(ts) ) at any arbitrary time t'ai and the corresponding
magnetization (M, (tii)) exist whether or not spin-spin
thermal equilibrium is achieved. The sudden appearance
of H~ has no immediate eRect upon the dipole-dipole
energy, but the Zeeman energy is abruptly switched
from (M, (ts))H, to —(M, (t'ai))Hii at tim—e ts. Just
before H& is turned on, the total energy of the system is

will divide between the equilibrium dipole-dipole and
Zeeman energies (Xqq(s)) and (Xo(s)), respectively,
after the application of step field H„so that

C (H.2+Hz')
(11)

h(M, )= (21)

If (M, (tz)) is the equilibrium magnetization as given
by Eq. (15), then the corresponding incremental
magnetization is

(CHr, Hii[Hii H.]) ( H,Hz-
(21a)

( T; H~'+Hz' I (HP'+Hz'

which has a maximum value when H, =HI., assuming
that H~&&H~. This provides a novel method for measur-
ing HI, , as shown in Fig. 2, for F nuclei in QaF2 single
crystal, where H, is applied in the (111)direction.

III. THEORY OF TRANSIENT LSSR

Hii(Hii H,)—
(M*(B))= (M*(~s))

Hii'+Hz'
(CHr, ( HzHa )

(2o)
k T, kH 2+H,2)

It is important to note that the first term in Eq. (20)
is proportional to the magnetization (M.(t~)) developed
after the first step Geld H, is applied. This (M, (t~))
term, although it may be a transient value, contributes
to the equilibrium value of (M, (B)) after the second
step field Hs is applied. It is preferable to keep Hs) H,
with both Gelds constant in amplitude. Then (M, (B))is
a measure of the transient response of the system to a
single step Geld H„since (M, (B)) is a linear function of
(M, (tii)) and may vary as tii is changed. A signal
proportional to (M, (B)) is measured Gnally in terms of
a free precession signal after adiabatic remagnetization
to a high magnetic 6eld H p.

From Eq. (20), let the incremental change in (M, (B))
be de6ned as

(X „(i)) (X„„(~)) (M (~ ))H (16) We now inquire into the nature of the observed oscil-
lations of (M. (ts)) directly following the application of

and immediately after H& is switched on, the total step fieM H, . For simplicity, assume that the local 6eld
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FIG. 2. Equilibrium fluorine nuclear
magnetization as a function of applied
step field B,. The step Geld H, is
applied after adiabatic demagnetiza-
tion of F nuclei in CaF2 from high-
Geld IJp.
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(M, (t~))=
H,

(22)

indicates that a theory which evaluates (Xee(t)) (here
' W. I. Caspers, Physics 26, 778 (1960).' S. R. Hartmann and A. G. Anderson, Magnetic and Electric

Resonance and Relaxation, I'roceeding of Colloque Atnpere, Eznd-
hoven, July 2962, edited by I. Schmidt {Interscience Publishers,
Inc. , ¹wYork, j.963), p. 157.

"A. Abragam, Premceptes of lVaclear 3Eagrtettsra (Oxford
University Press, New York, 1961).

remains static, as shown in Fig. 3, and that the resultant
field at the site of an ordered i spin is given by
H;=H, +Hr, immediately after the application of H, .
The i spins begin to precess in phase at approximately
the frequency co;=pH;, and after a time comparable to
1/yHr, the phases become random. The direction of H,
defines the s direction and the oscillating component of
(M,) will derive from those spins which do not lie
parallel or antiparallel to H, at the time of its applica-
tion. In the limits of H,))H~ and H,(&HI., this simple
model shows a change in (M,) which is proportional to
1/H, and H„respectively, in agreement with Eq. (15)
which refers to thermal equilibrium. Actually, the
internal field Hl, is itself not static, and because Hl, will
oscillate, it is found that second and higher harmonics of
oscillation will appear in addition to the fundamental
frequency VII; displayed by (M,).

A time-dependent perturbation method will now be
applied to determine the transient response of A(M, (t~))
to second order, valid in the limit that H, &HL, for the
short time ttt(1/yHr, . The evolution toward thermal
equilibrium for time t&))1/yHr, „when the oscillations
of M, (t~) have died out, will not be discussed in detail
in this paper. Analysis of the equilibration time constant
to give final thermal equilibrium in this latter case has
been given in detail by Caspers. ' Othersl" have also
applied the transient spin temperature approach to this
and related phenomena.

From Eq. (16), the expression

after let t& t) will be——tested by measurements of
(M, (t)). From an expansion of Eq. (3), the effective
initial density matrix in zero field is given by

pe ———Xee/&T, (23)

where we recall that the expression Tr1 is normalized to
unity. After H, is applied, the density matrix evolves as

p(t) = exp( —iXt) pe exp(+iXt), (24)

(Xea(t)) =Tr(Xeep(t) )

1
Tr(Xee exp( —iXt)Xee exp(+iXt)) (25)

kT

is carried out to second order. Note that (Xee(t))
=(Xee(—t)). It is convenient to express the equation"

FIG. 3. Schematic representation of
precession of ordered spins n and j9 follow-
ing application of step Geld H, to an
adiabatically demagnetized sample. The
local Gelds Hg, and HL„p exist at 0. and p
spin sites, respectively. After sudden
application of H„spins a and P precess
about the respective resultant fields H;,
and H;, p.

where X is given by Eq. (1); A is chosen to be unity
here and in all the analysis which follows. The explicit
solution of
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for the density matrix as

dp'(t)
={X«*( t—), p*(t)j,

~h~~~ Jz,+t pk Jz,+t The useful transformation
property

(26) exp(@Cot)Gkf exp( —ixot) =Gkr exp( —siVyIIt), (34)

where

X«a(—t)=TX2 '—Xo——Tx«T ',
p*=T'p(t)2 ',

follows with the aid of Eqs. (2) and (33c), and
Pk Pl

In zero order, Eq. (29) gives

and T=exp(+ixot). With the formal solution of p*(t)
expressed as a perturbation series

p*(t) =po*(o)+pi*(t)+ps'(t)+ "
+p.*(t)+p~t*, (27)

the successive terms are related by

(X«(t))o
——Tr{x«*(—t)po} .

Combining Eqs. (23)& (26), (30), and (34) with (35),

(X«(t))o

Tr Q {Gkr Q Gkt exp(iM'toot) }, (36)

p +i*(t)= s—tft'{ X«*(—t'), p„*(t')j, (28) where ato ——yII, . With the property that Tr{GkIG kt, }
0 =&kr, kr Tr{GkfG kr},

(30)

G~= ,' P &-skr*(ski) &skr(J",J') .
kgl

(30a)

The quantities U2~ and V2~ are the components of
irreducible second-rank tensors on a spherical coordinate
basis, referring to space and spin coordinates, respec-
tively. Upon deaning I'I, ~ as the vector distance between
spin $ alld spill tt) Fki='yk'yp'ki, and $kt) 'gkk /k) as tile
direction cosines of rj, ~ with respect to the x, y, and s
axes, respectively, the space components are:

&so(rkt) = &(&6)I'kt(3'f—kP 1), —

Usyt(&kt) +saki(5k+&ttkl){ kl y

IIsps(rkt) = Fkt (kkd=s—ski)'

The spin tensor components are

(31a)

(31b)

I'so(J" J') = s(V'6){J."J*'
+-', (J~tkJ i'+J tkJ+t')$, (32a)

P' (Jk Jl) ~ggj kJ t+J kJ t] (32b)

and po*——po at t=0 In ter.ms of p*(t), Eq. (25) now
reads

(X (t))=T {X '(—t) *(t)}

It will be useful at this point to write

2

(X«(t))o= — p Tr{GkrG kr} coskIcoot. (3t)
$g M=2

The 6ve terms of (X«(t))o include a constant term, two
terms oscillating at the Larmor frequency «, and two
terms oscillating at frequency 2~0. This zero-order
result describes the initial response of the spin system in
the limit of very high field (Xo))X«) where spin inter-
actions in pairs predominate. The results are in agree-
ment with the results of Eisenstein's" calculations
carried to lowest order where coupled spins respond to a
step field and oscillate indefinitely. Attenuation effects
will appear among an ensemble of spins only after
higher order terms are included.

The 6rst-order contribution is

(X«(t))t
=Tr{x«*(—t)pi'(t) }

dt' Tr {X«*(—t)LX«*(—t'), X«]}, (38)
kT 0

using Eqs. (23) and (28). A direct evaluation of Eq. (38)
shows that it contains only odd functions of time and of
field. Since (X«(t)) is an even function of time and of
6eM, the 6rst-order contribution vanishes identically.

A. The Second-Order Contribution

'fTs (Jk Jt) —2J kJ (32c) Following the procedure above, the second-order
contribution becomes

where J~tk ——(1/V2) (I k+s7„k), J,k=I,"=Jok, and I is
the spin operator. The useful commutation relations are

t g/

(X«(t))s——— dt' dt"
(J„J )=mJ„ for ott=1, 0, —1,

(J+t,J i)=J.,

(J.,Gkr) =MGkr,

(33a)

(33b)

0 0

&&Tr{x«*(—t){X«*(—t'), LX«*(—t"), p,$]}.(39)

"J. Eisenstein, Phys. Rev. 85, 603 (j.952); J. Jeener, H.
(33c) Eisendrath, and R. Van Steenwiniml, Phys. Rev. 133, A478 {1964).
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(Xdd(t))p+(Xdd(t))2 is an even function in t, one can
usually approximate the observed damping behavior of
the observed (Xdd(t)), or (M, (t)), by a Gaussian damp-
ing function. Such a function should describe rather well

the damping behavior for the few oscillations which
occur near t=0 Ad. ding Eqs. (37) and (41) gives

Manipulation of Eq. (39) with the use of (30) and (34)
gives

(Xdd(t))2

2 2

Tr{[GM, Xdd*(—t)][Xdd,GM j)
PP M 2 llf'=2 —k T(Xdd (t))p, 2

= ((X-(t))o+(X-(t)) ) (—&2)

= [1+(HL'/H ')A j Tr(G '}
+2[(1 B1p1—L2P+A1HL'/H ')
Xcos4dpt C1(H—L2/H, 2)popt sin&pot] Tr{G1G 1}
+2[(1 B21dL2t2+A 2HL2/H 2)

Xcos2Mpt —2C2(HL'/H, ')&ppt sin2&ootj Tr(G2G 2)

+ (I'2/&po2) [COS (34p pt) —1], (42)

XF(M,M', t), (40)
and

F(M,M', t) = dt"dt' exp(iM&ppt") exp(iM'4ppt') .

The individual traces in the sum of Eq. (40) may be
expressed in the general form

r,+I',
Ap ———

ppL2 Tr(Gp')

Ag2 ——

24pL Tr(G1, 2G—1,—2}

~1,2
2o1L' Tr(G1,2G 1, 2)1 ro(&oot) sincopt

(Xdd (t))2
—— I'1t' cos&ppt+ I'2P cos2&ppt+

kT GOp Cg=-
2ppL' Tr{G1G 1)

(4pot) sln2Mpt (cosMpt 1)
+I'4 +r,

(

Tr([Gpd, Gpd j[G2d",G24-.j) .
where

In order that such a trace should not vanish identically~
the indices must satisfy the equation M+M'+M'
+M'"=0. This requirement, together with general
properties of the trace leads to the result that Eq. (40)
reduces to nine independent trace terms, given in
Appendix A. Separate terms from Eq. (40) can be
identified with the same time dependence which

group together as follows:

GOp

t'cos2ppot 1) t'c—os34dot —1)+I.
l I+I

i I (41) '"'
Mp COp

C2=-
44pL' Tr{G2G,)

L2 y2IIL2

The F coeKcients are de6ned in Appendix A in terms of
combinations of the traces obtained from Eq. (40).
Explicit expressions for the traces are also given in the
Appendix, where they are related to HL2 and lattice
sums for the CaF2 system. Those readers who are con-
cerned with detailed calculations in problems involving
the use of the particular commutators discussed in the
Appendix may find them useful and time saving.

Each of the terms in Eq. (41) has an amplitude be-
havior proportional to P for very small t, and all leading
terms in P, plus constant terms, are independent of the
field II,. The terms involving I'I and I'2 are negative,
which indicates that damping of the oscillations must
occur in the high-field limit IJ,&)IIL. These terms are,
in fact, the leading terms in the power series expansion
of the rigorous damping function which would be
evaluated if our calculations were to be extended to
arbitrary high order.

B. Gaussian Damping Function Approximation

In the absence of knowledge of higher order contribu-
tions to (Xdd(t)) beyond the second order, and because

The second and third square bracket terms in Eq. (42)
are of particular interest because they pertain to oscilla-
tions observed at Larmor frequencies ~p and 2~p,
respectively. At t=0, note that (Xdd(t))p, 2=(Xdd(i)),
which indicates, according to Eq. (22), that (M, (0))=0.
The last term is indicative of the presence of a compo-
nent at 3cop, but proves to be negligible in amplitude
compared to the lower frequency terms. The problem
now is how to best estimate the damping function. It
would not be reasonable to assign an over-all second
moment to the Fourier transform of the transient func-
tion (Xdd(t))p, 2 because this estimate would ignore the
fact that the resonance lines at frequencies ~p and
2orp are observed to have diferent widths and ampli-
tudes. ' Therefore, by way of example, we may approxi-
mate the expression in the second square brackets as

Q(o1p) = {(1+A1HL /H, ) cos[4ppt(1+C1HL /H, )g}
Xexp( —B14pL2P). (43)

With the experimental condition that

x=C1(HL'/H. ')4pot(1, y=2C2(HL'/H, ')4pot

sin(x, y) =x, y, cos(x,y) =1,
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expanding Eq. (43) gives terms in the second square
brackets of Eq. (42); namely,

Q(ppp) =cosuttpC—z(Hz, '/H, ')(apt sinu)p1

+ (A zHz'/H, s Bg—(vz'1') cosa) p1

+0(Hz, '/H, 4)+O(Hg'cpz, 't'/H p'),

if the higher order terms are dropped. The construction
given by Q(~p) to describe the oscillations at frequency
~0 and the damping is justihed primarily by the experi-
mental results. Cheng" has calculated zero and second
moments for lines at both ~0 and 2coo for powder samples
of the cubic lattice type. Applying the above reasoning
as well to the terms pertaining to 2~0, the final theoret-
ical expression which approximates the observed tran-
sient ls given by

P4~(z))p, p

(1/») E—(1+A,H. /H, )»(G,')
+2(1+A zHz /Hp ) cosLppp1(1+CzHy, /H )]
Xexp( Bg(az't)—Tr(GzG z)+2(1+A pHz'/Hp' )

)& cosI 2pppt (1+CsHzg/HP) ]
)&exp( —Bpo)z'P) Tr{GsG p)]. (44)

The Gaussian damping factor Bp in Kq. (44) is

greater than B~, so that the oscillation amplitude
component at frequency 2~0 decays more rapidly than
the component at coo. This behavior agrees with
Cheng's" result that the second moment of the absorp-
tion line at 2eoo is greater than the second moment at coo.

The immediate change in the dipole-dipole energy is
reflected by those terms proportional to Tr(GzG z) and

Tr(GpG s}.These terms can be labeled as nonsecular,
which contribute to rapid oscillations of energy between
the Zeeman and dipole-dipole reservoirs. The energy
proportional to Tr(Gps) is constant in Eq. (44), but
actually diminishes in time much more slowly than the
observed transient decay of the oscillations. This term

Tax,z I. Table of parameters for second-order transient
response described by Kq. (44).

pertains to the secular energy in the dipole-dipole
reservoir, and decays with a time constant given
approximately by Caspers' as.(H.)=.(0) exp(H, /2(~H )),
valid for H,)&Hz, where p. (0) is the time constant at
H, =O and (AH') is a characteristic mean-square local
Geld.

A better approximation to the measured values of
(3Cqq(t)) wouM of course be possible if the complete
fourth-order term (Xqs(1))p were to be patiently worked
out. The third-order term (Xqq(/)) p is zero for the same
reasons which make (3!ss(1))z——0. The fourth-order
corr'ection would require the computation of 61 traces
of the form

Tr(LG- I:Gp Gv]]LI G p G ]Gr]) .
These would contribute terms at frequencies Coo and
5~0, and would also entail corrections to the second-
order frequencies and amplitudes.

IV. EXPERIMENTAL RESULTS

A. Equilibrium Magnetization Measurements

The theoretical plot of Kq. (21a) for three values of
the parameter Hzz/Hz is given in Fig. 2 by the smooth
curves for Hs along the (111) direction in CaFp. Also
shown are the experimental observations (dark points)
of incremental magnetization versus step field for H8
with H~ of approximately 70 6 applied at tg = 200 p,sec.
The three theoretical curves are normalized to unity
and the experimental plot has been scaled to make its
maximum amplitude also unity. Step field H8 is ex-
pressed in units of gauss on the top scale and in units of
Hl. on the bottom scale.

VA'thin the experimental error the maximum incre-
mental magnetization occurs when the step Geld H8
equals the theoretical local Geld HI, of 3.25 G. There is
good agreement between the experimental results and
the theory for H~=20HI, =70 6 when one considers
that the finite rise time of H~ probably reduces the
e8ective value of Hg.

B. Transient Osnllations

«Gp»
((Gi))
((Gp))

~0
A1
Ag

&x

Bg
C1

C2

1/5
2/5
2/5

—2/5
31/30

—5/6
7/30
1/3
4/5
1/15

Parameter Pox&der (100)

0.3975
0.1367
0.4658

—1.395
3.342
0.209
0.4637
0.9062
0.438

—0.361

(110)

0.1506
0.4658
0.3835
1.375
0.456

—1.094
0.1813
0.2398
0.885
0.174

0.0683
0.57'75

0.3561
12.22

—0.506
—1.528

0.07'89

0.1139
1.04
0.351

P(1)=—Hs(AM*(z)) (xez(t)), ,
(~ ('))

where (~~a(1))p,s is given by Eq. (44). The expression
for F(z) can be written as

Table I lists the numerical values of parameters
which enter into Kq. (44), described for each crystal
orientation of CaF2. The experimental results are
expressed in terms of the energy ratio obtained from

Eq. (22):

a See Appendix B for explicit expressions of the parameters.

"Hung Cheng, Phys. Rev. 124, 1359 (1961).
F(1)=As++ A; exp( —Bpt') cosC;1,
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f F(t) E . (46), given in Figs. 4-9 inclusive.Taax.z II. Parameters for theoretical plots o, q. ,
' ' ' . '

ive.

Figure

5
6
7
8
9

CaF2
Sample

(100)
(110)
(111)
(100)
(110)
(111)

7.0
7.1
7.2
3.5
3.5
3.8

Ap

0.6137
0.8455
0.9158
0.6484
0.8322
0.8725

AI

—0.1459
—0.4700
—0.5700
—0.1746
—0.4834
—0.5549

100B1

5.655
3.536
2.345
5.655
3.536
2.345

0.5903
0.6000
0.6134
0.2991
0.3105
0.3351

—0.4678
—0.3752
—0.3458
—0.4739
—0.3489
—0.3176

10082

7.906
4.067
2.803
7.906
4.067
2.803

1.162
1.183
1.211
0.5601
0.5861
0.6397

where

A, = 1—(1+A sHr, '/H ') Tr{Gss)/Tr {Res'),
and

Tr{Gt,sG i, s)
A, = 2(1+A i—,sHr, '/H, ')

Tr {Xmas'}

Table II lists the parameters for the theoretical plots of
F(t), given in igs. oF' 4 t 9 Measurements of the transient
response were ma e ad at step fields H, =1.8HI, , 3.6HI, ,

and 111and 7.1Hz„applied along the (100), (110), an ( )
crystal directions. The vertical scales for the experi-

h been adjusted to fit the first maxi-
mum of the theoretical F(t) function given by Kq. ( )
ln lgs. . 1F' 4—9. Three scales. are given for the time t t~ .
in microseconds; in reciprocal units of the local fie dl

d in units of the fluorineangular frequency or& ——pHI. , and in uni s o e
(F") Larmor period T=2a. (&FH)

For increasing values of H, (H.)Hr) the signal-to-
noise ratio deteriorates as the magnitude of hM, corre-
spon ing y ecred 1 decreases. On the other hand, the t eory is
expected to give a ed

'
better description of the results as

the ratio, I. iH /Hl. is increased. Best agreement etween
theory and experiment is found for those measuremen s

H =3.6H I„. Figures 4, 5, and 6 show the main
features of the transient response of the magne

'

to large step fields. The response consists of damped
oscillations with (100) CaFs showing the greatest

nd &111, CaF2 the least. The relative minima
that appear near the peak of the first cyc e p
evidence for a component oscillating at twice the Larmor
fre uenc .The ratio of second harmonic to fundamental
component is greatest for (10 a s

(111' a 2. nj' C F . In these figures, the agreement between
th and experiment is rather goo up o aeory

d6 the2/ to, rand fair thereafter. In Figs. 5 and
ex erimental curves show greate p' gr dam in for the third
and later full cycles than the theoretical curve, owing
probably to the assumption of Gaussian damping
functions.

~ ~ ~ tn Figs. 7, 8, and 9 the relative maxima in the rs

arises because the frequency of the second harmonic
component is somewt '

omewhat less than twice the frequency
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FIG. 5. Transient F magnetization response for H, =7.1 BI,
parallel to (110)direction.
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l, 50

l.25

0
0

F ]e o

0.75—

0.5

0.25

0
0

0

i

0

I
10

I
'20

2T

1

2
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I I
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I

3
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1
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I
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H, il (ili)

Hl ~ 7.P. Hg

I
'60

1

5
CalL

E

'6T

70

I

.ao,i
I 1

7T

FrG. 6. Transient F magnetization
response for H, =7.2&I, parallel to
(111)direction.

of the fundamental component. To be sure, damping
produces a similar effect, but damping alone is not
enough to make the effect as large as it is. For example,
if the signs of the frequency shifts for (111)CaF2 are
reversed while keeping the damping unchanged, the
asymmetry is reversed.

The dashed horizontal line in each of Figs. 4—9 is the
asymptote of the theory which changes in amplitude as
a function of H„according to the correction terms o
the theory. The solid black dots marked Il and P are
fiducial point measurements of the magnetization at
time tg 200 psec, where Ii and Il' correspond to the
beginning and end of a complete experimental run. For
Figs. 7 to 9 the points F and F' are within 3% of the
theoretical asymptote.

ln Fig. 10 we have plotted the experimental results
for low step fields comparable to j..8II~ for all three
crystals. At this low 6eld, the theory is in poor agree-
ment with the experimental results, and the theoretical
plot has therefore not been included. A smooth curve
has been drawn through the points for each orientation
of the 6eld. The data have been normalized so that the
equilibrium magnetization at t& 200 psec observed at
the start of. the run (the point labeled F) is unity. The
greatest oscillatory structure and least damping is
exhibited by the data taken on (111) CaF&, just as it
appears at the higher 6elds H, . Evidence for an absolute
frequency shift is given by the pronounced minimum

1.3
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FiG. 7. Transient F magnetization response for II,=3.5 Bl,
parallel to (100) direction.
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8. Transient F magnetization response for H, =3.5 HJ.
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Fio. 9. Transient F magnetization
response for IX,=3.8 HI, parallel to
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at about 3T/4 and a second shallower minimum at about
3T/2, where T is the period of the nominal Larmor

th fi ld. The subsidiary structure between

d' tes the resence of a second oscillating component
f the funda-having a frequency less than twice that of e

mental component.
The data for (100) CaF& display the least structure

and greatest damping as the strong damping and re a-
tively arge secon1 1 ond harmonic content corn ine to
pro uce e md the minimum near T/2. The curve or

es forCaF2 has intermediate characteristics. The curves or

(111) CaF2 are representative of samples witwith little

represen a ivsentative of samples with a relatively large pro-
m lesportion of secular energy. Presumably powder samp es

would give experimental plots which look very muc
like the curves plotted for (110) CaF2.

The general technique for adiabatic demagnetization
an su sequen med b t easurement of nuclear induction

14ls in hi h field have been described elsewhere.
Particularly unique in the study here is the pro uc
of step 6elds in very short times. A condenser bank is
charged to a high voltage and then discharged by a
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FIG. 10. Transient F magnetization
response for H, =1.8HJ. parallel to
(110), (111),and (100) directions.
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"W. E. 3lumberg, Phys. Rev. 119, 1842 (1960);P. S. Pershan, Ref. 7.
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hydrogen thyratron into a series circuit which includes
the step field inductive coil I.and a limiting resistor R.
The particular circuit used in our application included
two thyratrons separated by a large resistance. To
produce the first step field H„ the circuit is closed
through the large resistance by one thyratron. At a
predetermined time ta later, the second thyratron is
fred, shunting the large resistance and thereby produc-
ing the second larger step field Hg.

The L/R of the closed circuit determines the step field
rise time if it is not so short as to be affected by the
firing time of the thyratron, Since only one coil is used
and the charging voltage is usually constant, it follows
that Hri has the longest L/R rise time. Normally, the
step Geld H~=80 G turns on in about 3.5)&10 ' sec,
during which time the component of F"magnetization
oscillating at 2coo could at most precess through an
angle of rr/4 rad. This 6nite rise time is probably the
explanation for the failure of the equilibrium magnetiza-
tion of Fig. 2 to match the theoretical curve for
Hgg =20HI..

V. CONCLUSIONS

The time dependence of the magnetization of P'
nuclei in CaF2, following the sudden application of a
magnetic field, agrees reasonably well with a theory
which computes the oscillations in dipole-dipole energy.
The observed damping is roughly approximated by a
Gaussian-type decay function. Although the damping is
not predicted very well for large times, which a fourth-
order correction would help to remedy, the decay for
short times is in general agreement with linewidth
observations in steady-state experiments. In large step
fields, the spin system attains internal equilibrium in
two stages. In the first stage, which is treated as
rigorously as is feasible in this paper, the magnetic
oscillations decay in a time t 1/&Hr, . The 6rst and
second harmonic Larmor frequencies are displayed,
and each frequency component shows amplitude and
frequency corrections. The second stage of relaxation is
not treated here, where the secular spin-spin energy
comes into thermal equilibrium with the Zeeman energy.
The theory of Caspers' for the latter case is only valid

in the limit that H, /Hr)&1, in which case the experi-
ment is dificult to carry out because the signals are
very weak. Very rough measurements indicate that
Caspers' theory is not well confirmed in detail although
the lack of agreement could be ascribed to the fact that
the ratio H, /Hr, did not obey Caspers' condition.
Obviously this lack of agreement points out the need for
a theory of relaxation of the secular spin energy for the
case H, Hz, . The theory of the transient response for
H, Hl. is not discussed, but can be done phenome-
nologically, '5 using the results of Wright' and Broer. '

The response of a spin system to a step field not only
will take place in the laboratory frame, but occurs as
well in experiments which study the behavior of spin
order in the rotating frame. ' The possibilities for facile
manipulation of radio-frequency fields H& in the rotating
frame, with H& playing the rale of H„would require in
many respects the same theoretical techniques described
in this paper in order to account for transient changes of
nuclear magnetization in the rotating frame.
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APPENDIX A

There are nine nonvanishing traces of the form
Tr{[Gkr,Gsr. ][Gkr,Gkr t), where the Gsr are sPherical
tensor components of the dipole-dipole Hamiltonian.
The number is limited to nine because of two restric-
tions. The number of essentially different commutators

[Gsr,Gkrj is six, while M+M'+M"+M"'=0 is the
condition for a nonvanishing trace.

The traces of the above form have been calculated
for any general number, kind, or distribution of spins,
The results of the calculation are given below, where
D=J(J+1).

Tr{[Gs,G+r][G i,G s])
Es= =s p DkD~D (yk'y~y )'(rk~rk ) (1 fkp)'(1 {k ')tk—'—

T11 kglgm

+-', Q* (DkD&D~) (yk'pry )s(rk«k ) '(1 i kP) (1 i—k~s)i k~{k—&($kifk~+rtkirtk~)
kgl&m

+s 2 (DkDlD )(Tksvlv )'(rkPrk rl ) '{(1 ikP)sfk-il (4—-hl-+9k rtl )
It:re-'l&m

+2(1 {kl')iktik —[(kl '
rtl ')(bkl4 —rtklgk )+~—kl nl (tktgk +rtklkk )]

+(1—tkP)ikP[(4 '—rtk ')(hi '—ni ')+44 nk 6 ri~ ])
3

+—2 DkDl(12Dl 9) (vn l)'(rk—l) "(1 t kl')'t kl'—
80 ~~i

"R.L. Strombotne, thesis, University of California, 1962 (unpublished).
"A. Wright, Phys. Rev. 76, 1826 (1949).
'~ L.&H. Broer, Physica 10, 801 (1943).
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Tr{[Go,Go][Go,G—o]} 5
(DkDlD-) (vk'vlv-)'(rklrk-) '(1 t—k-')'(3t kl' —1)'

T11

1
+—p* (DkDiD~) (vk'viv )'(rky k~) o(3gkP —1)(3)k~' —1)[(pkP gk—P) (/k~' qk—~')+4&kigk~gk~gk~]

1
+—p (DkD~D~) (vk'v~v~) (rkprk r~ ) '{(1—gkp)'(3)k~' —1)(3f~~a—1)

12 k«gm

+(3fkt' 1)(W—i
' 1)P—kP gkP)—(gk

'
gk

'—)+44mki4 qk ]
+(3{kP—1)'[(4 '—

gk ')((i '—gi ')+44 nk 6 ni ]}
1

+ p DkD~(12D~+21) (VkV~)'(rk~) "(3fkp—1)'(1—fkp)'.
160 k«

Tr{[Gg,G r][G i,Go]}
&~(3)=

Tr1

DkD~D (Vk'V~V~)'(ra~ra ) o(3{kP —1)gk ' sin'8k sin'8k~ exp[2i (yk yacc)7-
k«gm

Q* DkD(D„(Vk'V &V„)'(rk)rk„) '(1 g—kp)f—k(pk„(3/k ' 1) sin—8k sin8k& exp[i(yk yk&)—]
kglgm

+xo Q DkD&D (Vk'V&V„)'(rkPrk„r&„) '{2fkP(3/&„'—1) sin'8k& sin'8k„exp[2i(yk& yk„)—]
kglgm

+2{&„gk (3t kp 1) si—n'8k~ sin8k sin8~~ exp[i(yk +y~~ —2yk~)]

+gk„fk&(3t'(„' 1)(1——gkP) sin8k& sin8k exp[i(yk) —yk )]}

E'g(2) =

p DkD((4D( —3) (vkvi)'(rki) "{kP(R'kP —1)(1—fkP)'
160 k«

gk~= cos8k~, pk~=sin8k~ cosyk~, qk~=sin8k~ sinyk~.

Tr{[G,,G g][G+g,G o]}
(DkD~D~) (vk'v~v~)o(ra~ra ) '(1 t k p)'t k~—o(1 fk~')—

+o E (DkDP )(vk'viv )'(rkPrk~i ) '{(1—tkP){k h (5k 6 +nk e )

+t kl (1 fkl )[(5 nPk5knP) (kin 'gled)+45am Vkm$lta rllrn]}''
9 ( 11)

+—z DkD~I 6D~+—
1 (vkvi)'(rki) 'ot-kr(1 {.k-r)o—

80 k~~ k 2~

Tr{[Gx,Go][Go,G i]} 7
Eq(1)= =—p (DkD~D )(vk'v~v )o(ra~ra ) o{kp(1—{kp)(3{k o—1)o

T11 24 k~i~m

5
+—p* (DkD(D )(vk'v(v )'(rktrk~) o(3fkp 1)(3tk~' —1)fk)&k~(gk—)pk~+gkg(~)

24 k«gm

+~ p (DkD)D„)(Vk'V)V„)(rkprk r(„)-'[fkp(1—{kp)(3&k '—1)(3t )
'—1)

k«&m

+ (3(kP 1)(gk ' 1)gk&{
—i~(pk)pi~+—riage~~)+ (3&k P 1)'fk~t i~(pk~$&~—+gk~glys)]

1
+ p DkDq(84Dq —5) (vkv~)4(rkr) "(3tkp —1)t kP(1—t'kP) .

160 k~~
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Tr{[G~,,G g][G g,G+g])
Eo(3)= = s 2 DkDd4(vk'vlv )'(rI p&I ~rim) '(1 t—kp)fkl{ km

T11 k~$+m

Eo(2) =

X[(&~ '
rl~
—')(b~b g~—m~ )+26 qi (be~ +nabab )]

9——P DqD~(2D~+1)(pity~)'(rq~) "(1 {I,P—)'{kP.
80 ~~&

Tr{[G2,G 2][G2,G 2])
DI D~D„(y~'y~y )'(rl, ~r~„) '(1—{~P)'(1—{~„')'

+ P DqD~(8D~ —1) (yqy~)'(rl, ~) "(1—{qP)'.
320 ~st

Tr{[G+~,G q][G+~,G q]) 9
Eo(1)= = 2 DIDiD (y~'pry )'(rq«q ) 'pl, P(1 tI,P){—k '(1 {'q ')—

Tri

+-,' P* DaDP-(v~'vn )'(r~«~ ) '{~P{I, '[(bP naP) (b-'—na-')+4b—lgklb'
kQlQm

+4 p D~D(D (p~'y(y )'(rgprg r( ) '
kgl&m

X{4hptl {i [(bP rikt,')(6—6 rll ni —)+2btrfai(b Ei +a~ n~ )]+hP(1—{aP)4 {i (b $t +pa ni ))
9+- P DI,D~(D~+1)

(pj's~)

(rw) ' {ai (1 {I P)—.
4 act

The notation P* means that the sum is very nearly
a vanishing sum in the following sense: The sum over
three indices k/l/m may be transformed into a sum
over two indices, say k/l, that is multiplied by the total
number of spins E. The sum over two indices, in turn,
may be expressed in terms of unrestricted sums by use
of the relation of the form

Q 0',gSg=p Sg Q 8(—Q Sg$1, .
kll k k

When this process has been used on the sum P* the
sum over a single index is a sum over terms in 1/r" and
normally contributes only one or two percent. to the
total trace. The product of two sums vanishes identically
for a cubic lattice that has the s axis parallel to a (100),
(110), or (111) direction and is probably completely
negligible for other orientations and other lattices,
though there is a possibility that for particular orienta-
tions in particular lattices it may contribute significantly
to the trace.

Two of the traces given above have been calculated
by other investigators who have also included the ex-
change Hamiltonian with Go. Cheng" has calculated
E~(1) and E2 for a system of like spins and evaluated
them for powder samples of simple cubic and body-
centered cubic lattices. Caspers' has calculated E~(1)
for electronic spins. His result is in essential agreement
with the result given above, although it seems he has
assumed that the sum labeled as P* vanishes identi-
cally. Caspers evaluated E&(1) for a simple cubic lattice

with the s axis parallel to a (100) direction and also for
a face-centered cubic lattice with the s axis parallel to a
(100) direction and with it parallel to a (111)direction.

The dominant sums of the various traces give
reasonably good approximate values for the traces when
only one type of spin is present. The dominant sums are
thosesumswith (rI, ~) '(r~ ) 'and whicharenotstarred.
The trace Eo(3) has no such sum. The trace E~(3) is the
only complex trace. It is not expected to be a significant
trace in comparison with the others because of its
complicated orientation dependence.

The I' coefficients of Eq. (41) are defined:

I'g= —Eg(1),

F2= —E2,

I'3 ——E 3
—2E0(1)—Eg (2),

I',=2E,+2E,—2E, (2)—E,(2),

5 10 16
I', = ——E,+—E,(2)+6E,(1)+—E,(3)—4E,(1),

2 3 3

3 10 4
I' =2ESj-E2——E (2)——Ep(3) —Eo(2),

2 3 3

APPENDIX B

From evaluation of the traces the following general
approximate expressions for spin systems with one type
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of spin are obtained:

Ep =—WSgSp/5',
2

5
Ep =-WSpSp/5',

3

the theoretical curves in the body of the paper great
care was taken to properly evaluate the coefficients Bj
and B~. The approximations given here were used in
evaluating the remaining parameters.

In terms of these approximate traces the various
coeflicients A, 8, and C in Eqs. (42), (43), and (44) are
given by

where

7
Eg(1)=-WSgSp/5'

6

Eg(2) =WSgSp/5',

E,(3)=0,
3

Ep(1) =—W(Sg/5)'

Ep(2) =W(Sp/5)',

Ep(3) =0,

A p
———(A kg+A pSp)/Sp,

A y= (845p—365y+255p)/(125)
&

A, = (155p—145'—65,)/(6S),
A p

——SgSp/(45'),

Bx——75p/ (65),
8,=SSp/(3S),

Cg ——(35g+5,)/(2S),
Cp = —(10Sp—3Sy—3Sp)/(6S)

= —(13Sp—3S)/ (6S) .

In Table I, numerical values of the above parameters
are given together with the parameters:

8'= ~y' H1,4 ND,
H '=y'D Q r P=p'DS/4

& is the total number of spins, and S=Sp+S~+Sp
=4 P r—'. The lattice sums S, are

Sp ——P p rp-P (3 cos'8p —1)'

S~——12 P p rp
—' sin'8p cos'8p,

where 8~ is the angle between the Beld direction and the
vector from the origin to the lattice site k.

In most instances these approximations are accurate
to a few percent. However, when H, is along the (100)
direction, A~, B~, and C~, and to a lesser extent Ao,
will require more exact evaluation because of the poor
approximation to E& given by one term. In constructing

&(Go))=Tr(Gp'}/Tr(«~} =5o/5~

((Gg))=2 Tr(GgG g}/Tr(«d'} =Sg/5,

((G&))=2 Tr(G&G &}/Tr,'X~j}=Sp/S.

The lattice sums S~, S~, S3, accurate to a few percent,
were evaluated up to and including a distance of 7
lattice constants. A cuto8 error correction was made
by integrating over a sphere beyond the 7th lattice
constant to a distance out to in6nity. Sums over
(rpPrp rE„) 'were carried out—to at least two lattice
constants, beyond which major contributions for each
r~~ were singled out. The latter sums have errors no
greater than 15/o, but do not have a major effect on
most of the E values, which are generally accurate to a
few percent. The only exception is E~, when H, is
parallel to the (100) direction.


