
PHYSICAL REVIEW VOLUME 133, NUMBER 6A 16 MARCH 1964

Theraiodynamic De6nition of Higher Order Elastic CoefBcients
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General thermodynamic delnitions of the higher order elastic coefBcients of thermoelastic media are
presented in tensor and engineering notation. They are natural generalizations of the customary delnitions
of second-order coefficients, they retain the usual conventions relating tensor and engineering stresses and
strains, and they simplify thermodynamic calculations.

ECENT extension of ultrasonic techniques to high
pressures and high frequencies' ' renewed interest

in the higher order coeKcients of nonlinear elasticity.
We proceed to give a general definition, both in the
tensor and in the abbreviated or engineering notation,
of elastic coefficients of any order as partial derivatives
of the thermodynamic potentials of thermoelastic
media subject to finite deformation. Whereas third-
order stiQ'nesses have already been introduced into the
literature, ' ' the present definitions are believed to be
justified since they provide the following advantages:
(a) They are natural generalizations of the accepted
definitions of the second-order coeKcients. (b) The
customary relations between tensor and abbreviated
notations for stresses and strains are retained. (c)
Thermodynamic relations are readily transcribed from
the tensor to the abbreviated notation and vice versa.
(d) No unwieldy numerical factors occur in thermo-
dynamic calculations. (e) The coeflicients defined above
are identical with those encountered in anharmonic
lattice theory. ~ "

The energy equation for conservative (nondissipative)
thermoelastic media" gives the main thermodynamic
potentials; namely, the internal energy U, the free
energy P, the enthalpy H, and the Gibbs function G,
in terms of the conjugate variables S and T, and t;~
and si;b/pe, as
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Since the strains and the thermodynamic tensions
are symmetric, i.e., p;I,=p» and t;&——t»., only six of
each set of nine variables are independent, and it is
customary to introduce the Voigt' notation: 11
22~2, 33~3, 23~4, 13~5, 12~6. By convention" we
define

slab z (1+~ah)'gA and tab 4 y (3)

where lower case subscripts run from 1 to 3, and where
capital subscripts run from 1 to 6. Considering the
potentials now as functions of the single-subscript
variables, the first of Eqs. (1) and (2) for example
become

where S is the entropy, T the temperature, and the t,~

are the thermodynamic tensions, and the p;I, the
Lagrangian strains. "The potentials and all extensive
quantities are taken per unit mass. From the relations
(1) follow naturally general definitions of the elastic
coefFicients for any order. Namely for the adiabatic and
isothermal sti6nesses c and compliances s of the nth
order, for n&2,

dU=TdS+ (1/po)t;bdrt;b

dF = SdT+ (1/pe) t;—bdrhb

dH = TdS (1/p p)rhbdt;b-
dG= SdT (1/pp)rt bdt;b— —

d U =TdS+ (1/pq) tsdrts

(1) and

(2')c sp =pe(B .".U. /Btls8rtp )s).. .

and similarly for the other three equations. Between
the elastic coefIicients in the tensor notation and in the
abbreviated notation one has the relations
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From the definitions (2) and (2'), and from the sym-
metries of the strains and tensions follow the familiar
symmetries in the subscripts of the elastic coefBcients.
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For example

and
cjoy„q. . .=cl ~„q. . .=cI qj (6)

where the elastic coe%cients are evaluated at zero
strain.

Rewriting the last equation as

cJI'. . .=cPJ. . .= ' '
~ (7)
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Two examples will illustrate the absence of unwieldy
numerical factors in thermodynamic formulas and the
ease with which formulas can be transcribed from the
tensor to the abbreviated notation, or vice versa: A
straightforward thermodynamic calculation gives the
relation between the purely adiabatic third-order sti8-
nesses CR;j,pq„, defined in (2) and mixed coef5cients
C;zp„,——(BcR;i„q/cjqj„,)r of the type occurring in Eq. (5.9)
of the preceding paper. "In the two notations they take
the forms

poU(qf)= q p C JJriJ+ p C JpqjJqjp+6 Z C JJ JqlJ
J J&I' J
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one observes that in general the numerical coeQicient
for any term is 1/'et, where e is the number of equal
indices of the strains. This rule allows a convenient
check of energy expressions and their partial derivatives
with respect to strains.

Between stiffness coefficients in the abbreviated
notation introduced above and others encountered in
the literature the following conversion relations hold:
Murnaghan~:

and

C JPR CJPR+ c zoo'm
poC~

cJP= cjkyq=

CJ'Pg =Cj k~qrs

1+&,j, 1+&„
qc

2 2

CJpR' ' (12)
22 2

1+5jp 1+8, 1q+5,.

where Ct, is the specific heat per unit mass at constant t,
and the cx's are the thermal expansion coeKcients

n„„=(Brj ./BT) j and nrj ——(Bqjrj/BT), . (9)

Expanding the internal energy about the state of zero
strain one obtains as the second example for
poU(jjj) =poU(S, qjj) poU(S, O) th—e forms

ppU(qJ) = qC jjrpqqjjk7fjjq+ jjC j jjjjqrr'gj7rqjjjqqjrs+ ' ' ' (10)

cJP=cJP
C JPR E6/$(JPR)]C JPR

where N (JPR) is the number of ways in which cJpR can
be written with tensor indices, for example X(111)=1,
E(114)=6 and X(4S6)=48. The third-order stiffnesses
in the tensor notation are the same as those of Toupin
and Bernstein, ' and they are six times larger than those
of Hearmon. '
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