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Third-order elastic constants can be determined from the velocity of small amplitude sound waves in
statically stressed media. For this purpose exact expressions are derived for the sound velocity and for a
natgrel velocity and their stress derivatives, evaluated at zero stress, in terms of second- and third-order
elastic constants. The formulas apply to arbitrary crystal symmetry and to arbitrary stress systems depend-
ing on a single scalar variable. Special formulas for hydrostatic pressure and uniaxial stress are listed for the
cubic point groups 0, Og, Tq, and for isotropic materials. Attention is given to the proper variation of prop-
agation direction with static stress in order to maintain propagation normal to a given crystal face as in ultra-
sonic experiments, and to the proper separation of isothermal and isentropic coe%cients in the results. The
simplest and most convenient form of the results employs the natura/ velocity (natural unstressed length
at the same temperature divided by the transit time), which is computed directly from experimental
data without correcting the path length for the e6ect of stress.

1. INTRODUCTION definition of higher order elastic constants given in the
following paper. '

In Sec. 2, the stress is related to energy functions, '
and an appropriate general form of the equation of
motion is derived. In Sec. 3, the equation of motion is
linearized about an arbitrary state of homogeneous
strain, and solutions are obtained for small amplitude
plane waves superimposed on a homogeneously strained
initial state. Section 4 relates the actual propagation
direction n and velocity V to the corresponding ectlrcL
direction N and natura/ velocity 5' used in Sec. 3. For
stress systems depending on a single scalar variable,
formulas for the stress derivatives of ppW' and ppV',
evaluated at zero stress, are given in Secs. 5 and 6,
respectively. Finally, in Sec. 7, we list results for the
cubic point groups 0, OI„and Tq and for isotropic media
when the stress is hydrostatic pressure or uniaxial
compression.

BIRD-ORDER elastic constants play an impor-
tant role in solid-state physics. They allow an

evaluation of 6rst-order anharmonic terms of the inter-
atomic potential or of generalized Gruneisen param-
eters, which enter the theories of all anharmonic
phenomena, such as the interaction of acoustic and
thermal phonons and the equation of state.

The third-order constants can be determined from
velocity measurements on small amplitude sound waves
in statically stressed media. ' Mason' and Seeger and
Buck' calculated the sound velocities in terms of
second- and third-order elastic constants for various
wave modes in uniaxially and hydrostatically com-
pressed cubic crystals. Using a nonlinear' stress-strain
relation they derived special equations of motion for
the given crystal symmetry and solved them by sub-
stituting plane-wave solutions. This procedure is
exceedingly laborious, especially for crystals of lower
symmetry.

The method presented here, for arbitrary crystal
synunetry and arbitrary homogeneous stress systems
depending on a single scalar variable, yields general
results in a form suitable for algebraic machine reduc-
tion4 to any desired special case. Considerable simplifi-
cation is obtained by properly maintaining the direction
of propagation perpendicular to a chosen crystal face
during the deformation, and by introducing instead of
the actual wave velocity a euturaL wave velocity which
is more readily obtained from experiments. The result-
ing formulas for the squares of the actual and of this
natural velocity and for their stress derivatives,
evaluated at zero stress, are exact. The ease of taking

2. EQUATION OF MOTION

From the theory of the mechanics of continua, one
has, in the absence of body forces, the equations of
motion

pas = (ctictoct.)st,;, (2 &)

where the stresses rq; are given bP'
1 OSIS 8$~'

&kj=- "ue.J 8$„88~
(2.2)

The u; and x; are the coordinates of a material particle
in the unstrained and strained states, and the 5; are
the components of its acceleration. J, the Jacobian of
the deformation,

these derivatives depends on the thermodynamic 8$& ppJ= (2.3)
'T. Bateman, W. P. Mason, and H. J. McSkimin, J. Appl.

' ~~s' p
Phys. 82, 928 (1961). ' K. Brugger, Phys. Rev. following paper 133, A1611 (1964).

A. Seeger and O. Buck, Z. Naturforsch. 15A, 1056 (1960). 6 C Truesdell and R. Toupin, Handbuch Per P'hysi&, edited by
F. D. Murnaghan, Finite Deformation of an Elastic Solid S. Fliigge (Springer-verlag, Berlin, 1960), Vol. III/1, p. 226.

(John Wiley Bz Sons, Inc. , New York, 1951). ' R. N. Thurston, in Physical acoustics, edited by W. P. Mason
4 W. S. Brown, Bell System Tech. J. 42, 2081 (1963). (Academic Press Inc, , New York, 1964) 1A, p. 1.
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equals the ratio of unstrained to strained density, and

(2.4)

1 Bxg Bxg

2 Ba, Ba,
(2.5)

Equation (2.4) shows that in the terminology of
Truesdell and Toupin, ' the quantities t„, are thermo-
dynamic tensions conjugate to the variables p„,/po,
while Eq. (2.2) enables one to identify )!~, as the second
Piola-Kirchhoff stress tensor. '

Substituting from Eqs. (2.2) and (2.3) into (2.1) and
making use of the identity of Euler, Piola, and Jacobi, ' ~

B f1 Bxp

Bxg U BG~
(2 6)

the equations of motion become

with U and Ii, respectively, the internal energy and
Helmholtz free energy per unit mass. 5 and T denote
entropy and temperature. The Lagrangian strains are
given by

PON j=~ jkym
rt 8.

Ba„Ba
(3.4)

The tensor A B,k„can be expressed in terms of deforma-
tion gradients and derivatives of the internal energy
with respect to the classical strain components p;; by
making use of the relation

Bg,z 1 /Bx~ Bx~

B(Bx,/Bu, ) 2 EBu, Bu;
(3.5)

which follows easily from the definition (2.5). By
differentiation of Eq. (2.8),

where

aS.
~'k~m

B[(Bx;/Bag)t„j
B (Bx),/Ba„)

X& 85k
Bjikpm+ c yqmi y

Baq Ba,
(3 6)

Then, substituting from Eq. (3.1) into Eq. (2.7) and
retaining only first powers of the displacement gradients
Buk/Ba, we obtain linearized equations of motion
for I, in the form

8 Nk

with
I'~'= (Bx~/Bo.)4'

(2 7)

(2.8)

(3 7)

I';„ is the first Piola-Kirchhoff stress tensor, or double
vector. '

where

M';„Bx), BX),)I';„—P,„= ~ ~ ~

B(Bxi,/Ba„) Ba„Ba„J
BNk

+
Ba

(3 1)

3. SMALL AMPLITUDE WAVES IN A
STRAINED MEDIUM

We now consider the propagation of small amplitude
elastic waves in a homogeneously deformed medium.
We define, for every initial temperature T, a;=coordi-
nate in the ma)!Nral or unstressed state, X,(a)=coordi-
nate in homogeneously stressed or initial state,
I;—=x;—X;=component of displacement from initial
state due to the wave. We regard P;„ in Eq. (2.7) as a
function of the entropy and the deformation gradients
Bxi/Ba To obta. in an appropriately linearized equation
of motion, we expand I';~ about the initial state of
coordinates X;, denoting the initial values by over
the symbols, and assuming explicitly that the deviations
from X to x are lsentropic:

The symmetries of cs~„„with respect to permutation
of indices have been used in arriving at Eq. (3.6). The
quantity AB;),„„ in Eq. (3.4) is then obtained by
evaluating Eq. (3.6) at the homogeneously strained
initial state:

8X; BXk
C' yqme ~~',~,-=&,it, +

Baq Bag
(3.8)

We now assume plane sinusoidal waves of the form

u;=A; expt j&u(t —(E;a;/W)) j, (3.9)

where N is a unit vector.
According to this expression, the wave front is a

material plane which has unit normal N in the natural
state; and a wave front moves from the plane N a=0
to N a=LO in the time Lo/W. Thus W is the wave
speed referred to natural dimensions, and we call it the
natural velocity for propagation normal to a plane of
natural normal N.

In a typical ultrasonic experiment, plane waves are
rejected between opposite parallel faces of a specimen,
the wave fronts being parallel to these faces. One
ordinarily measures a repetition frequency E, which is
the inverse of the time required for a round trip between
the opposite faces. Hence,

Clearly,

~Jib

a(ax /aa-))x, g

~

~

BP;,/Ba, =0

(3.2) W= 2LOF. (3.10)

The advantages of W and N over the actual velocity
(3.3) V and actual propagation direction n which would
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appear in the representation

expLi~(~ —(I'X'/l")) j
Rlc Rs follows: (1) W Is proportional to tllc directly
measured frequency Ii, whereas V involves the actual
length under stress (2. ) n may change with static stress,
but since the propagation direction remains normal to-

the same faces of the specimen, N is constant.
Substitution of Eq. (3.9) into Eq. (3.4) provides the

propagation conditions

psW'I; =As;s~„X~„Ns. (3.11)

It follows that the possible values of po8" for plane-
wave propagation normal to the material plane of
natural normal N are eigenvalues of the second rank
tensor

Sgs (N) =28;s„~—~„, (3.12)

and the possible particle displacement directions are the
corresponding eigenvectors. It follows from the sym-
metry of t~ and ca~~; that 5;I, is symmetric, and hence
at any state of strain there are three mutually per-
pendicular particle displacement directions for plane
waves corresponding to a given N. For three real waves,

5;~ must also be positive de6nite. Criteria for this are
discussed in the literature. ' 'o In general, S;q depends
on rotation as well as strain, but the rotational depend-
ence reQects only the obvious fact that the particle
displacement directions must rotate with the material.
For a given N, the eigenvalues peW' are independent
of the rotation.

To obtain a representation completely independent
of the rotation, we transform the particle displacement
direction u back to the natural undeformed direction of
the material line along it by the transformation9

I,= (BX;/Bu,)U, .

Then Eq. (3.11) is transformed to

poW'U =~ I,UI.
where

8a; BX,
5„,

BXq BCIu

=X,N, (8;st„+Cselsps, )

BX;BX;= (~,a+2Il,s)
88~ 8@I,

(3.13)

(3.14)

(3.15)

(3.16)

It is now obvious that all quantities appearing in
Eq. (3.15) are independent of the rotation. They
depend on the strain and one other thermodynamic
variable which may be taken as either the entropy or
the temperature. %'e emphasize the signi6cance of

s C. Trnesdell, Arch. Rail. Mech. Anal. 8, 263 (1961).
9 R. A. Toupin and B. Bernstein, J. Acoust. Soc. Am. 33, 216

(1961).
'0 C. Truesdell and R. Toupin, Arch. Ratl. Mech. Anal. 12, I

(1963).

Eq. (3.14):The possible values of peWs for propagation
normal to a material surface of natural undeformed
normal N are the eigenvalues of I;s, and the material
lines along the corresponding eigenvectors U are rotated
by the deformation D.e., transformed by Eq. (3.13)j
into the actual particle displacement directions u. The
three clgenvectors U corresponding to a given N are
not in general orthogonal.

u;= (Bu;/BX;)X;. (4.1)

It follows that the actual plane wave front in the
homogeneously deformed body has coordinates X;
satisfying

¹ a=ill';(Bu;/BX;)X;= const.

Thus, the propagation direction has the direction num-
bers E,Bu;/BX; and the direction cosines

n; = (fw) N, (Bu;/B-X,),
wllel'c thc normahzatlon fRctor fN sRtlsflcs

8$ BQp
=C;I, ~E;Xy, .fN'=&8's

BX;BX;

(4.2)

(4.3)

)It is readily verified that (Bu;/BX;) (Bus/BX;) is the ik
element in the inverse of the tensor C~s.)

To obtain the actual path length and propagation
velocity, we note that a material line segment of unit
length along N in the unstrained state is rotated and
stretched by the homogeneous deformation into a new
line segment having the components (BX;/Bu;)X;
Letting I denote a unit vector along its new direction,
and XN the stretched length, we have

BXg
~Nteg= -Xg, .

BC'
(44)

By projecting the slant distance XN back onto the new
normal n, we 6nd the ratio of deformed to undeformed
perpendicular distance between material planes of
natural, undeformed normal N:

I. Bu, BX;—=AGNI'I= — g 'Xp=—
I-o fN BX; Bus fN

(4.5)

Hence, the actual propagation velocity V, given by
LW/Ls, is

V=W/fN.

4. PROPAGATION DIRECTION AND VELOCITY

In the de6nitive paper of Truesdell' and in other
published work, ~ ' results have been. expressed in terms
of actual propagation direction and velocity. To permit
ready comparison, we shall relate N and W in Eq. (3.9)
to the actual propagation direction n and velocity V.

In the homogeneous deformation, the material point
at a in the natural state moves to X, where
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The geometric relationships involved here are
pictured in Fig. 1. They may be summarized as follows:
N denotes the original unit normal to a pair of parallel
material planes. The originally normal material line
segment LON connecting the planes is deformed into
XNI.~ while the material planes acquire the new unit
normal n. The separation of the planes changes from
Lo to L=XNLom n=LO/fN.

From Eq. (4.2),

0

NATURAl
STATE

gLotn

DEFORMED
STATE

NI, fNrt——;(BX;/Buj,) . (4 7)

In view of Eq. (4.6), the possible values of peV' for a
given propagation direction are the eigenvalues of the
tensor Q;z S;&/fN——'. From Eqs. (3.12) and (4.7),

~X& ~Is
Q;I, (n)=Z sp~„n„,n

88„88~
(4.S)

5. VARIATIOÃ OF pp W2 VGTH STATIC STRESS

In a typical experiment, the repetition frequency Ii
is measured as a function of the applied stress at con-
stant temperature. In all measurements on elastic
crystals known to us, '" " this relation is linear to
within experimental error. Hence its slope is of primary
interest. Whereas one could readily evaluate the
isothermal stress derivative for an arbitrary stress
system, it seems sufBcient to consider deformed states
depending on a single scalar variable p. Ordinarily,
though not necessarily, p will represent either the

"H. J. McSkimin and P. Andreatch, J. Appl. Phys. 34, 651
(1963).

"H. J. McSkimin, measurements on quartz (private communi-
cation)."J. R. Drabble, measurements of germanium and silicon
(private communication).

Truesdell' has called Q(n) the acousticat tensor for the
direction n in an elastic material subject to the deforma-
tion gradient BX~/Bu . In one respect, the formula (4.8)
is but a special case of Truesdell's general result, the
specialization having been made to a hyperelastic
material (material for which there exists a stored energy
function). The loss of generality is unessential for the
present purpose. Moreover, our inclusion of a non-
mechanical variable (either temperature or entropy) in
the internal energy function makes it possible to treat
isentropic deformations superimposed on a state which
is reached by an isothermal deformation from the
natural unstrained state.

In showing that the speeds of propagation are
independent of the rotation, the previous treatments~ '
introduced a vector v equal to the present N/fN. The
above discussion and Fig. 1 clarify the geometrical
signihcance of this vector. Its direction is the natonal
normal to the material plane containing the wave front,
and its magnitude is the ratio of stressed to unstressed
path length for propagation normal to this material
plane.

Fn. 1. Change of propagation direction I and path length L
with change of static deformation. (The propagation direction
remains perpendicular to the reflecting faces of the specimen while
the material line segment LoN is rotated and stretched into
XNLom. The perpendicular distance between the faces changes
from Lo to L=XNLom n.)

hydrostatic pressure, or the magnitude of a uniaxial
load in some prescribed direction per unit of natural
undeformed area. We refer the strain components to
the natural unstressed state at the temperutlre of the
experiment. Then strain components rt;; and thermo-
dynamic tensions t,; are functions of p which vanish at
p=0. We wish to evaluate the quantity

at p=0.
By differentiation of Eq. (3.14), we obtain

(5 1)

U U=1, U U'=0. (5.3)

Multiplying Eq. (5.2) by U; and making use of Eq.
(5.3), we find

(po&')'=&w s'&I+&w 1&1' (5 4)

Now at p=O, w;& is symmetric, being identically equal
to 5;~. It follows that

(Drwe~)~o= (poly"~~),=o (5.5)

and hence when Eq. (5.4) is evaluated at p= 0, the last
term vanishes, leaving only

(poW')' o= (U,w, 'Lr ) (5.6)

Equation (5.6) states that the derivative of an eigen-
value of the tensor w;~, evaluated at p=O, is obtained
from the corresponding eigenvector of the tensor mr;~

and the components of m;~'.
If w, ~ has multiple eigenvalues at p=O, a precaution

should be observed in the use of Eq. (5.6) because the
direction of the eigenvector belonging to a multiple
eigenvalue is not determined. It is implicit in the use of
the relation U. U'=0 that in this case one should use
in Eq (5.6) the .limiting right eigenvector of w;q(p) as

(poW')'U, +pe~'&/ =w;~'&r+w;t UI,', (5.2)

where the prime denotes the derivative with respect to
p at constant temperature. We assume without loss of
generality that the eigenvector U is normalized, and
hence
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Tmz.E I. Cubic crystals under hydrostatic pressure. a

Propagation
direction

[100]

[100]

Liioj

[110]

[110]

Displacement
direction

[100]

Any J direction

[110]

[110]

$0011

~=(P0V2), 0

C11

c44

g(C11 +C12 +2C44)

2 (C11 C12 )

c44

lpow'l'~ o

2m 1—1————(C111+2C112)
3B 3B
2Ã 1—1————(C144+2C1«)
38 3B
2N 1—1————(g C111+2C112+C144+2CI«+ 2 C123)
3B 3B
220 1—1————(g C111—2 C123)
3B 3B
2Ã 1—1————(C,44+2C, «)
3B 38

a B—= 1/3 (sllT+2sls ) =-', (cllT+2clp') =isothermal bulk modulus at p =0.

P ~ 0, and not just any eigenvector of w;b(0) belonging
to the multiple eigenvalue.

Let us now evaluate w;b'(0) for use in Eq. (5.6).
Quantities dependent on the strain are differentiated
in accordance with the formula

For hydrostatic pressure, rb;= —Pab;, and hence

8$„88,
t„,'(0) = —8, J = a,. (5—.11)

BXk BX, ~0

For uniaxial compression in the direction of a unit
vector 3f,

rb; oMbM; =———p(Ao/A)M—bM;,

= tbm S ijbrnl
(ag„) r

(5.7)

faC jrbsS.

4 aq,„r,„o
(5 9)

Recalling that N is independent of p, we obtain, by
differentiation of Eq. (3.15),

w;b'(0) =S,S,La;bt„,'(0)+t.b'(0)

X (2s,b.bc;„,+s;,.bC;,&,;,)5 (5.8)

where all quantities are evaluated at p=0 and

Ao aor aug )
t,.'(0) = —MbM; J—

l

= —M„M, . (5.12)
A aX, aX,)„o

Now let Uo denote a limiting eigenvector of w;b(p)
as p ~ 0, and w the corresponding eigenvalue, i.e.,

w—= (po~').=o= (t oi") -o (5.13)

where 0. is the actual magnitude of the compressive
stress, i.e., force per unit of actual area A, and p is the
compressive force per unit of original area Ao. By
substitution into Eq. (5.10), and differentiation with
respect to p, we hand

It follows easily from Eqs. (3.14)—(3.16) thatThe derivatives t„,'(0) are easily evaluated for hydro-
static pressure and uniaxial compression. From
Eq. (2.2),

w;b(0) =1V,S,cs;„b„

w;b(0) Uso=wUbo, (5.14)
~T8 71 j'

BXk BX;
(5.10)

where the elastic coefFicients are now understood to be

Tash.x II. Cubic crystals under uniaxial compression along t Ooi j.'

Propagation Displacement
direction direction ~=—(P0V') FUO (p,W )'„,

[100]
[100]
pioog
Eiioj
L-iioq

[110]

[100]
[010]
pooij
L-»oj
[110]
[001]

C11

c44

c44

~(C» +C12 +2C44)

$(C» C12 )
C44

a
4(a—b)

a

k(a —b)

2m FU'+aC111+C112(a—b)

2mFU —bC144+2aC1«
2mFU +aC144+C1«(a —b)
2mFUo+ ~ac»1+@C112(3a—b)+2aC1« —bC144 ——', bC123

2mFU'+-', aC»1 —,C112(a+b)+-', bC123

2m FU +aC144+ C1«(a—b)

a 8 ~—@1ST —C12Tf3B(C11T—C12T) Q ~gllT = (CllT+C12T)/3B(Cll —Cl& ).B=$(Cll +2C13 )'
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Tel,z III. Cubic crystals under uniaxial compression along L110j.'

Propagation Displacement
direction direction ~—= (Pod), O FUO (ppbt") 'n-p

L001$
(001j
[001]

LiiOj

[110j
Liioj

$001j
LiiOj
[110)

[110j
$00ij

Cll

c44

c44

g (Cll +C12 +2C44)

2 (Cll C12 )
C44

a

—',(u —b+2c)

—,'(a —b+2c)

-', (a—b —2c)
a

2m FU'+aC111+ (u —b) C112

2m FU +~ (a—b) C144+ 2 C166 (3u —b) —2cC456

2»UP+'s (a—b)C$44+-,'Clos(3u —b)+2cCsss
2m FU'+-,' (a—b) Clll+ ~4C112(5a—3b)

+C„,(a—b+4c)+uC„,+-,'aC„,
2»U'+s (is b)—Clll+sC112(cs+b) q«—lss

2m FU +~2(a—b) C144+-,'C166(3a—b)+2CC456

a c =)s44=1/4c44. a, b as in Table II.

evaluated at p=0. When Eqs. (5.8) and (5.14) are This term is therefore zero when the propagation
substituted into Eq. (5.6), we obtain direction is perpendicular to the direction of uniaxial

stress.
(ppW')'„p t,b'(0)[——N~b+U Ubp

X (2wsr, b,b+N„N, sr,„bCs,b„„)]. (5.15)

The reduction of Eq. (5.15) to obtain special formulas
for given directions of wave propagation and stress can
be quickly carried out by hand only for simple direc-
tions in crystals of high synunetry. However, such
algebraic reduction can be done automatically by
computer. The special results for cubic crystals in
Tables I—III have in fact been checked by a computer
program using Ar.pAK. '

In experimental investigations, the "natural" direc-
tion of propagation N is frequently chosen such that Uo

is along a principal axis of the second rank symmetric
tensor

(~IW)'= (III-o)'= Ilf '. (6 1)

By straightforward evaluation, using Eqs. (4.3), (3.16),
and (5.7),

=2NbN srb ~qt„q'(0)
-clP fNi —T; y=o

6; VAMATION OF yoV2 WITH STATIC STRESS

The formula for (pp V')' is in general more complicated
than that for (ppW')' because of the variation of

Then

('dqt qb =s qbqbtab (0).,=o
(5.16)

It follows that

=2SI,Ã F'I, (6.2)

~ qk~k ~U Uq (5.17)
Dpo&')' (poW')' j~o—=2NbN~F'bow. (6 3)

(5.18)
(po V')'„o=N,N, Us'Ub'$b;bt„, '(0)+2NjV „Fp;„cs;„b,

+2F qbC jrqs+F iqsCjsbsiqs js (6.4)

2wsr;b. bt. b'(0) UboUsp= 2wFup.

Thus, whenever the particle displacement direction U
is an eigenvector of F q~, we obtain the following simpler
version of Eq. (5.15): where, as before, all quantities are evaluated at p=0.

Equation (6.4) differs from a formula published
previously7 because the previous formula is for propaga-
tion along a given material line, whereas the present
formula is for propagation normal to a given material
plane. The two formulas give the same result whenever
the normal direction to the material plane continues to
lie along the same material line, or when N is an eigen-
vector of- the second rank tensor P'; dered in Eq.
(5.16). This is true for all of the special cases previously
worked out, and will frequently be true in future
experiments. In this case, Eq. (6.3) can be simplified:

(poW')'~=o =2wFuo

+N„N, [t„'(0)+U, Ub s;„,bt, b'(0)C;„b„„g. (5.19).
In addition, N„N, t„(0) is easily simplified . for

hydrostatic pressure and for uniaxial compression
along M.

N,N, t„,'(0) = —1 for hydrostatic pressure,
= —(N M)' for uniaxial compression. (5.20)

where IiU' is the eigenvalue of Ii'qI, belonging to O'. In
this case, themiddleterminEq. (5.15) canbesimplified In view of Eqs. (5.14) and (5.15), the general result
as follows: (6.3) can be expanded to the form
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Tax.z IV. Isotropic medium.

Type of stress

Hydrostatic pressure

Hydrostatic pressure

Uniaxial compression

Uniaxial compression

Uniaxial compression

Propagation
direction N

arbitrary

arbitrary

J to stress

J to stress

J to stress

Mode'
Displacement

direction U

f[ toN

J toN

fj toN

~~
to stress

J to stress

w —(poV')v 0

cj&s=ps+2@,

C44=p

S—gS+2p

c44=p

c44=p

(vo)V')'

1—1——(2w+3vr+ 10vo+8vo)
3B
1—1—(2w+3vo+4va)

3B
1—Lo (2w+ 8vo) +v i (2o—1)+vs (8o—2)g

jV

1—(—2w+vo(2o —1)+2vo(o—1)g

1—(o(2w+4va)+vs(2o —1)j
jV

' L =longitudinal, S shear; B=X~+qy =isothermal bulk modulus; Z =1/s1 p' =3yB/(V'+p) =isothermal young's modulus; e = —s18ys&F
=) &/2 () &+@)=isothermal Poisson's ratio.

When N is an eigenvector of P'b,

L(pe vs)' —(poIV')')~0= 2~N'tv, (6 5)

where FN0 is the eigenvalue of P'b belonging to N.
Because early workers'' have reported values of

(p V')', we note that at p=0,

( V')'-(poV')'= —
I

poV'—
i

dPi 0

(POV & A abtab )V'=o.

and for the third order:

C111=C222= C838)

C144 C255 C866 )

C112 C228 C188 C113 C122 C288 )

C155=C244= C844= C166=C266= C856)

C128)

C456 )

and all others zero.

(7 2)

Of course the same formula also holds with V replaced

by 8'.

7. RELATIONS FOR CUBIC CRYSTALS AND
ISOTROPIC MEDIA

The elastic coeScients of the eth order are tensors of
order 2e. They must be invariant under the symmetry
operations of the point group of the crystal. This condi-

tion requires certain coeKcients to vanish and supplies
relations among some of the remaining ones. The
second- and third-order coeKcients have been exhaus-

tively treated and the results are tabulated for all point

groups. "For the cubic point groups 0, Oy, and T~, one

has in the abbreviated notation of the following paper'
for the second order:

C11=C22 =C38 )

C12—C28= C18 )

C44= C55= C66 )

and all others zero,

'4 See for example, %. P. Mason, Piezoelectric Crystals and
Their Application to Ultrasonics (D. Van Nostrand Company,
Inc. , New York, 1950) for second-order coefficients; and R. F. S.
Hearman, Acta Cryst. 6, 331 (1953) for third-order sti8nesses.

For isotropic media, the above three second-order
coeKcients and six third-order coefficients have the
following representation in terms of the Lame coefB-
cients of second order (X,p), and third order' (vr, vs, vs):

crt =X+2@,

C128 Vl )

C12—X )

C144 V2 )

' c44=p, )

C456 (7.3)
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Crrs=vr+2vs, Crbs=vs+2vs, Crtt=vt+6vs+Svo.

Values of u and (po&s)'v=o for various cases in cubic
crystals belonging to the point groups 0, Oy„and pg are
given in Tables I—III. The corresponding formulas for
(poV')' and (pV')' are consistent with formulas already
in the literature. "~ The new definitions should be
noted. '

Special formulas for isotropic media are given in
Table IV. The corresponding formulas for (pe V')' agree
with those given by Toupin and Bernstein' if one sets
yT yS


