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The relation between the amplitudes of the electric
field and of the acoustic displacement is found using the
result
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where the + sign correspond to the two branches in
Kq. (54). A simple calculation shows that at the cross-

For the left-hand polarization we obtain (after making
the same approximations that were made in Sec. II)

$~= —Le(~g —co~)/mco'a), jE+. (56)

In particular, for the crossing branches at the frequency
coq we find the relation

over the elastic energy density is equal to the electro-
magnetic energy density as expected.

The strong coupling between helicon and transverse
acoustic waves in the region of the crossover suggests
the possibility of exciting the latter modes by electro-
magnetic means. It is, of course, also possible to use this
e8ect for the detection of transverse acoustic modes.
Finally, it is interesting to notice that for some values
of the magnetic fteld Eq. (51) can have up to three solu-
tions for mz while ordinarily it only has one.
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The theory of localized magnetic states of solute atoms in metals is extended to the case of a pair of
neighboring magnetic atoms. It is found that the simpli6ed model based on the idea that the important
interaction is the diagonal exchange integral in the localized state, which is exactly soluble in Hartree-Fock
theory for isolated ions, is still soluble, and the solutions show both ferromagnetic and antiferromagnetic
exchange mechanisms.

I. INTRODUCTION

HE nature of the localized magnetic impurity
states observed in metals' was investigated in a

number of recent papers. ' 4 Following the ideas of Mott'
and Friedel' on the nature of the magnetic state, it was
shown that such states can be described as virtual
localized states in the conduction band. Their magnetic
behavior is dominated by the Coulomb repulsion be-
tween electrons of opposite spin in the same atomic

*Part of this work was done while at Bell Telephone Labora-
tories, Murray Hill, New Jersey.
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state. ' The magnetism is therefore basically of atomic
origin and in this sense resembles the truly localized
magnetic moments in insulators. ' The situation in
metals divers from that in insulators because the
localized states are virtual, i.e., spread out in energy
because of s—d interactions, and can therefore contain
a nonintegral number of electrons. As a result they
describe something intermediate between a localized and
an itinerant situation. The magnetic properties are
essentially those of localized states whereas the eBects
on the electronic specific heat are similar to those of an
itinerant density of states at the Fermi level.

The purpose of the present paper is to try to calculate
the interaction between two similar magnetic impurities
near to each other in an otherwise completely non-
magnetic material. Like the cases of a single impurity

7 For a discussion of these ideas see, e.g., Ref. 13.
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and of the pure magnetic metal, this case can, in prin-
ciple, be solved exactly within the Hartree-Fock method.
The results, in contrast to both of the other two cases,
can then be reasonably directly interpreted in terms of
exchange processes taking place between the magnetic
atoms, and in particular ferro- and antiferromagnetic
and indirect exchange processes can be easily identified.

We are thus investigating probably the simplest
model which contains most of the relevant physical
elements which may be of importance in the exchange
couplings which lead to ferromagnetism and antiferro-
magnetism in d-band metals. We would hope, therefore,
to find behavior corresponding to the three exchange
mechanisms which have been seriously proposed for
these metals: "direct" exchange between atomic d func-
tions, Zener indirect exchange' due to mobile d electrons
(or, more rigorously, mobile magnetic electrons), and
indirect exchange via "s" electrons. We do in fact find
mechanisms closely similar to those of these. The first
we find to be antiferromagnetic as in insulators, the
second ferromagnetic but present only in special circum-
stances, and the third we do not investigate in detail but
it seems it may be relatively small.

Van Uleck has suggested a model for magnetic tran-
sition metals in which the d electrons are partially
itinerant. He pointed out that one would not expect
these electrons themselves to form a band because the
separations between different ionization states of the d
shell are too large, In a metal the d electrons could how-
ever show an itinerant behavior because of the possi-
bility of transferring electrons to s states. For example,
one would expect the configurations 3d' and 3d 4s but
not 3d to be important in the conduction band of Ni.
Virtual magnetic states describe a similar type of be-
havior for isolated impurities. This is another reason
why it seemed of interest to investigate the magnetic
interactions between such states.

Our model and techniques are essentially those of
Anderson. 'We assume a Hamiltonian

where

X Xf+Xd+Xfsp

Xr ——p Eknk (2)

+Q(Vlsc] c2 +V21cs cl ) p (3)

where Ee is the self-energy of the localized states (1) and

(2) in the absence of interactions, U is the Coulomb

' C. Zener, Phys. Rev. 91, 303 (1953).
' J. H. Van Vleck, Rev. Mod. Phys. 25, 223 (1953); see also

P. W. Anderson, Oxford discussion on magnetism, 1959 (un-
published).

is the free (s) electron Hamiltonian and Ek and ask are
the energy and number operator for an electron with .
momentum k in spin state 0..

Xd ~0 Z(01 ++2 )+U (tsr '+1 +ass N2 )

repulsion between two electrons in a localized state, and

V12 V21 pl (r) p2(r)Xddr

is the transfer integral between the two d states. c;, c;*
are, respectively, the annihilation and creation operators
for a d electron at site i with spin 0, and n; is the corre-
sponding number operator. Finally,

Xfd= Q (Vki&k C~ +Vikcg ck )
ik, o

describes the interaction of the d states with the band.
Clearly

~1k 8sk ~~2~2k (6)

I M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954);
T. Kasuya, Progr. Theoret Phys. (Kyoto) 16, 45 (1956); K.
Vosida, Phys. Rev. 106, 893 (1957)."P.W. Anderson, Phys. Rev. 115, 2 (1959)."It is interesting to note that the Fermi level in a metal should
tend to adjust itself to such a position because of the large d-state
density,

with a proper choice of phases.
To calculate the magnetic interactions we use the

Green's function formalism described by Anderson'
within the Hartree-Fock self-consistency scheme. The
position of the Fermi level is taken as a fixed parameter
which does not depend on the position of the virtual
states. One obtains a set of four simultaneous equations
connecting the four occupation numbers e, . These
equations may have several stable isolated solutions so
that an explicit energy calculation is necessary to deter-
mine the self-consistent state of lowest energy. In
particular when both impurity sites are magnetic in
themselves and V&2 is small, the localized moments
could be aligned either parallel to each other or
antiparallel.

Clearly there are two types of coupling mechanism:
a direct coupling due to V» Eq. (3), and an indirect
effect via the s—d interaction Eq. (5). The effect of the
latter is oscillating and has the general character of the
Ruderman-Kittel- Yosida' interaction between localized
moments.

The effect of the direct terms can be studied much
more easily and has some interesting features. The sign
of the e6'ective interaction between the magnetic mo-
ment depends on the position of the virtual levels. When
the virtual levels are approximately symmetrical around
the Fermi level one has essentially an antiferromagnetic
kinetic interaction of order Vtss/U, very similar to that
existing in antiferromagnetic insulators. ' "On the other
hand, when one of the two (single impurity) virtual
levels is much closer to the Fermi surface than the
other one, a parallel alignment is favored. "This may
indicate a tendency for forming ferromagnetic bands of
the VanVleck type.
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II. THE GREEN'S FUNCTIONS

The Green's function G(«) is de6ned by the matrix
equation

lim(«+is X—)G(«) = 1.

As discussed by Anderson, ' many properties of interest
can be calculated from the density of states

p(«) = —1/ir Im(TrG(«)).

In particular the density of states in the localized states
at sites 1 and 2 and of the free electrons can be found
from the diagonal elements of G. Thus, e.g., for the
density of states of electrons with spin 0 in state 1 one
has the equations:

(«+1'$ EO Ull )Gll V12G21 Q VlhGh1 1 (9a)

(«+«$—Ep—UN«)G«i —V2iGii —p VmgGgi =0, (9b)

(«+is —Eg)Ggi' —Vg2G«i' —VgiGii' ——0. (9c)

Replacing the number operators e by c numbers, the
equations can be solved for GI~".

(l u+ Vu) (lwmi+ V2i)
Gii'(«)= « «i +ia—

« —«2 +f6

«, '=E«+Re~ lim P ~+ U{ei—')
k'~ & «+is E—i,~

=E«'+U{ni '),
««'=Eo'+U{ii« '),

X;,=
«+is —Eg

h=h(«)=1m' lim Q
k -« ~ «+is —E,)

(12)

(13)

For simplicity we assume the V;~~ depends on the
energy (E~) only, and that i V;~ and the unperturbed
density of states of the free electrons Lp„(E))are slowly

varying functions of E.One then has E«' ——E« in Eq. (11)
and

6(«) =4m'( V;g)'p„(«),

l~(«) = Xi«——l~«i ———ih(«)sin(kri«)/krim (15)

from (12) and (13). Here k is defined by Ej,= «. The
expression (15) for li is clearly meaningful only in the
dilute case, i.e., when r~2 is sufficiently large, so that

kry2»1

is the region of interest. (For the&ubrect effect only, of
course. ) In general, if the phases are chosen so that Vi«
ls real~ Xyo=X2y.

The expression for G««(«) is exactly analogous to
Eq. (10).

The free-electron Green s fun. ction is (again using the same phase convention)

G».(«) =L(G» («))«+LGii (.)+G,2 («))»m~ Vn~«/(«+'$-E, )«

(Vi~Va«+ V«~V~i)P(«)+ Vi«)
+lim (17)- (-E.+') t:( —.+'~)(-"+'~)-(~+V-) )

'

where (Gqq')«=lim(« «i+is) ' is —the unperturbed free-electron Green's function. The physically interesting
8~

quantity is of course the total free-electron density:

ps'(«) = ——Im Q Ggg'(«)

=p- («)+~ip'(«)+b«p'(«)

Im d
Sip. («) = LG„(«)+G„.(«))—lim P

d« -' « i (« Ei+is)—
Im (X+V«i)2Re(V2gVgi)

82p'(«) = — lim Q f(« «. '+id) (« —«~+id) (X—+V )').—
(«—Ey+is)'

(19b)
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With our previous approximations (19) becomes

Re dh(e)«-.()+G- (»
A

(20a)

Im d)
bop'(o) = 2(X+V„)— [(o o—i +zA) (o o—z +zd) (—) +Viz)']. (20b)

The first correction term lip [or the corresponding
term in (17)]describes the independent polarization of
the free electrons by the two impurity sites. This e8ect
is discussed in detail by Anderson (see Sec. VI of Ref. 2)
and is probably small. The eGect of the interference
term 8zp should be even smaller as long as (16) applies.

III. SELF-CONSISTENCY CONDITIONS

on the n and d . Clearly

n = ——Im
2%.

[Gil (o)+G22 (o)]do

[G .(o)+G .(o)]do, (29)

Equation (10) determines the density of states in
terms of the four occupation numbers n,'.To find a self-
consistent solution one has to solve the four simultane-
ous equations for the n;

«f

d'= — Im [G+ (o) —G ~(z)]do,
2mv '

where

Gg (o)= (o o~ +—ia)

(30)

(31)

n = ——Im
lr

G; (o)do, (21) from Eqs. (21) and (24) and the definitions of n' and d .
Evaluating the integrals one finally finds

1 1 ( or —o+n'= —+—
~

tan ' +tan '
~, (32a)

2 2~&

Ud ' 6f—6+' 6f—6 '
tan ' —tan ' . (32b)

2m V

All the tan ' functions are in the range —-,'x & tan '& ~~.
One notes that there are two obvious types of solu-

tions. Equation (32b) has the trivial solution
V= Vi&&l&(o) I (22)

in the region of interest. One can then write [instead
of (10)]: (33)dt=d~=0q

which implies
Gii (o)= [o oi +zlzz —V /(o —oz +zk)]
Gzz (o)= [o—oz'+zh —V'/(z —oi'+zA)] '. (23)

(34)vt= V~= v

in Eq. (32a). These solutions describe a state where the
two localized moments are parallel to each other, i.e.,
[from (33)]:

Equation (23) can be rewritten as

G» (o)=i[(1+Ud '/V ')(o o+'+z~—) '

+(1—Ud '/V ')(o z'+id) '] —(24)

G22 (o)= z[(1—Ud /V )(o oy +zA)
+ (1+Ud-. /V- ) (o—..+a~)-i],

ni =n2~= n~.

Substituting (34) in (32) one finally gets two equations
for nt and n~:

1 1
nt= —+—(tan i[y(x—n)z —v]

2 2'
+tan —'[y(x—nz)+z]),

where we have defined

(25)

(26)

(27) nz =-+—[tan-'(y(x —nz) —z)
2 2'

oy'=Eo+« '+V ',
n'=-,'(ni +nz'),
d'=-', (ni' —nz ),

Vn —+[Uz(dry)2+ Vz]1/z

(35)

+tan '(y(x —nz)+v)],(28)

where the integrals are from the bottom of the (free-
electron) conduction band to the Fermi level (zr). For
simplicity we assume a low concentration of localized
states so that the Fermi level can be regarded as a 6xed
parameter which does not depend on the position of the
virtual levels. Moreover we will restrict ourselves to a
situation where the interactions are dominated by the
transfer integral:

It is now convenient to replace the self-consistency
conditions for the n,' (21) by the equivalent conditions

where we have introduced the dimensionless parameters

x= (Er—Eo)/U; y= U!6; v= V/h. (36)
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0.8

for the existence of localized magnetic states. Ke will

return to this problem in Sec. V.
As one would expect intuitively the effect of the

interaction on the size of the moments is usually small
(when V/U((1) except very near the critical boundary
for the existence of magnetism. Over most of the range
of values of x and y for which a single ion is magnetic
both Eqs. (35) and (40) have stable magnetic solutions.
To determine the preferred orientations (i.e., the signs
of the effective magnetic interaction) one has to compare
the energies.

'0,1 0.2 0.3 0.4 0.5 0. 0.? Q,S 0,9 ).0 h~

Fio. i. Plot of nt(e~) and at(wi) in the Nt, n& plane for the
following values of x =Er Eo/U, s = V—/6, and y= U/6: (a) For
x=~, y=5 curves with @=0, 0.5 and 2 are shown. Note that for
v=2 there is no magnetic solution; (b) @=0.85, y=10, @=0.5, 2;
(c) g=O, y=10, v=0.5, 2; The latter value of e gives a magnetic
solution. The line of nonmagnetic solutions is also shown and the
points (x,—,') and (&~,x) are marked by squares.

IV. INTERACTION ENERGIES OF
LOCALIZED MOMENTS

The energy of the two magnetic ions is

Im
eds(G11 (e)+Gss (e)+Gil (e)+Gss (e))E(V)=—

—U(nitni~+nstnsi), (41)

%here the last term is needed because the interaction
energies are counted, twice in the integral. Again we

neglect the polarization of the "free" electrons. Using

(24), Eq. (41) can be rewritten as

Im
&(V)=— ede[G+t(e)+G t(e)+G+i(e)+G i(e)7

dt/d& (0, (37)

so that in a sense all these solutions show a tendency for
antiparallel alignment. The simple antiparallel solution
for which

I'n Fig. i we have plotted these two functions in the
Nt, n& plane for a few values of x, y, and e.

For the second type of solution d 40. It follows from
(32b) that:

—2U(ntni+dtdi), (42)

where the G~(e) are de6ned in (31).
The energy in. (42) depends on V through the e~, n'

and d . Let

be~'=e~ (V) e~'(0)=—Ubn '&bV ',
bn = n'(V) n'(0)—; bd'= d'(V) d'(0);-
bV = V (V)—V (0)= V'(V) —Ud'(0).

(44)

(38)
The change in energy due to introducing t/' is, then, to
second order in the 8's

E(V)—E(0)=Q(be+'n+'(0)+be 'n '(0)

—s[(bN')'p+'(0)+(~e-')'p- (o)7)

2U[nt (0)bn&+n —~ (0)bnt+d(0) t bd&

+d(0)~bdt+bntbn~+bdtbd&7, (45)Vt = Vi = [U'd'+ V'7"'= Uw (39)
whe1e

is singled. out by the fact that it goes to the proper limit
of two antiparallel localized moments of equal magni-
tude as V/U-+ 0. The model we are using is certainly
meaningful only as long as V/U is small so that one
feels reasonably safe in considering only these special
solutions.

It follows from (38) that

(This defines w. ) Using this and (38) in (32) one finds
the two self-consistent equations for antiparallel
moments:

n+w=-,'+1/rr tan 'y(x —n+w),
n —w=-,'+1/m. tan 'y(x —n —w).

(40)

The existence of self-consistent magnetic solutions of
either type obviously depends on the parameters in
Eqs. (35) and (40). It is interesting to investigate the
conditions on the parameters and in particular to see
how the interaction affects the requirements (on x and y) can be neglected.

(~e)'(dplde) (48)

~n~( )V=-' +s1/ tram '[er —sg (V)7/4 (46)

p..(V)=(1/ )~/[(r-" (V))'+&'7

are the occqpation number and density of states for the
virtual states described by the G+(e) (31).The meaning
of (45) is fairly obvious (see Figs. 2 and 3).The first two
terms describe the energy change of the four virtual
levels when shifted by a small amount so that terms of
order
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V» ~ g'» 1 . ~ g» ~ —e (0)+V
~ ~

' ~

]—e~(0)
J ~

—e~(0) -V

V/U, 6/U«1.
Consider 6rst a symmetric situation:

(eg —Ep)/U--,'.
Then

(55)

(56)

and

It follows that

Upi Up' 5/U«1

dp/de-6/U'.

(57)

(58)

I Ub~I -V2~/U, (59)

and both (52) and (53) hold. The energy gain (51)
becomes

In a properly magnetic state (I et —I&
I 1) at least

one of the virtual states is far from the Fermi surface.
%e assume also:

E(V) —E(0)=—8V'6/n. U'. (60)

In an asymmetric situation

(6f EQ)/U 0 or 1—(ef Eo)/U 0 '—(61)

one virtual state (e.g., et) is much nearer to ey than the
second one, i.e.,

FIG. 2. Schematic diagram showing change in energy for parallel
spins. Without interaction the virtual levels at both sites are at
et(0) and each contains n electrons. The splitting by V shifts n
electrons down and n —Vp electrons up (by V). The slice Vp near
ef remains unchanged. The change in energy is therefore V'p.

When the two moments are parallel to each other,
one has

I '(0)=e '(0) V'=bV =V d =bd'=0, (49)

6t
z(f

A sufBcient condition for the expansion is now:

V/I"-"l«1
From (54), (55), and (63)

be~ —(6/ U)be~&&bnt

(62)

(63)

(64)

so that (45) becomes

I:E(V)—E(0)jp-= (U'~~ "+—V') p'(o)
—(U'bet'+V')p~(0) —2Ubetbe~. (50)

so that
(bet=-'V'

I
1——p~

I
V'/(ef —et)' (65)

de 4 ~ J

For sufficiently small be this reduces to

LE(V) E(0)j -= V'( + ')

This is illustrated in Fig. 2. To see if this is consistent
one has to check whether

From (64) and the estimate of p implied by (62), it
follows that the corrections to the energy (50), because

(51) of changes in occupation, are at most of order V'be'. The
corrections are therefore small when (63) holds.

For antiparallel moments:

and, moreover,
U2be2(q V2

Ubm~bet&&V'(pt+ p~) .

(52)

(53)

I+'(0)=e+'(0) =e+,
nest (0)=n2'(0),

e t=n &=n .
(66)

The last requirement is particularly important because
be~ and be~ have opposite signs in the magnetic state
and the last term on the right-hand side of (50) is
therefore positive.

From (35) one finds

bye~ = —Ube~ pt+ ' (U'be~'+ V') (dp~/de),

be~ = —Ubn'p'+$(U'bet'+ V') (dp~/d~) . (54)

Clearly be is at most of order V2 but one has to check
whether Ube is still small.

bVt= bV'= Ubd —V'/2Ud. (68)

Substituting in (45) one gets:

LE(V)—E(o)l.p= —(2V'/U) —U'(b~+ ~d)'p+
—U'(Sz —M)'p —2U(be' —bd') . (69)

The terms in bn and bd can be calculated from the self-

The situation is illustrated in Fig. 3. Now

d~(0)= —d~(0)=-,'(e+(0)—e (0))= —d (67)
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FIG. 3. Energy change for antiparallel moments.

consistency equations (40), i.e.,

(&~+cd) = U(sN —sd) p—
(50—5d)' dp V'

+U2 p
2 de 2Ud

(br& 5d) = —U(&—z+ hd) p+

U'(be+ M)' dp+ V'
+ p+

2 de 2Ud

(70)

An argument similar to that for the parallel case shows
that all correction terms are small as long as

V/~. &
—~~~&&1; 6/U&&1. (71)

Consequently,

P'(V) —&(0)j-~= —2V'/U (72)

This is of course just superexchange, as defined by
Anderson in Ref. 13 (called "kinetic exchange" in
Ref. 2).

Comparing (72) with (51) it is clear that a parallel
arrangement is favored when

2 U(p'(0)+ p'(0))&1 (73)

In a symmetric situation both virtual levels are far
from er(~f —c') and the left-hand side of the inequality
(73) is approximately 6/U Lsee (57)7. It is thus clear
that antiferromagnetic superexchange is favored. In
fact the Lorentzian model of the virtual state certainly
exaggerates the magnitude of p far from the center of
the virtual level, which makes the argument even
stronger.

For an asymmetric situation one virtual level is close
to the Fermi surface and has a large density of states
there, so that (73) can hold. If, in particular, the Fermi
level is well within the virtual state, the left-hand side
of (73) becomes of order U/6 and therefore large.

We have seen that the sign of the magnetic coupling
depends on the position of the Fermi level relative to
the impurity energy Eo. When ef is near E0 or near
ED+ U parallel spins are favored, whereas in the inter-
mediate region one finds antiferromagnetic "super-
exchange. " This results from a competition between
two coupling mechanisms. Clearly a siwgle electron,
distributed among the two d states, would have the
same spin direction at both sites. For exactly two
electrons (and large U) it is most favorable to have
opposite spins so that each electron can interact with
an empty (ionized) state of proper spin. Our virtual
states have nonintegral occupations and the position
of the Fermi level determines which mechanism is
dominant.

The ferromagnetic mechanism is very similar to the
Zener double-exchange mechanism. " It is likely that
the generalization of the above criterion for ferromag-
netism which will apply in more general situations is
the requirement of a high density of magnetic electrons
near the Fermi surface. We intend to study the more
realistic case of coupling between atoms with orbitally
degenerate d levels in the future.

V. THE CRITICAL BOUNDARY

The conditions for the validity of the approximations
of the last section are quite stringent and one would like
to know what happens near the critical boundary for
magnetism when they are no longer valid.

We have seen that the state with parallel moments is
favored in an asymmetric situation when one of the
virtual levels is very close to the Fermi surface. This
implies that these solutions are important mainly near
the critical boundary. It is therefore of particular
interest to investigate the stability of the solutions of
(35) near the boundary for the magnetism of a single
ion. This is best done by looking at the solutions of
(35) on this critical boundary. We still show that (35)
has no magnetic solutions on the boundary in a sym-
metric situation (x -,'). On the other hand, in an
asymmetric situation (x 0, 1), (35) does have such
solutions on the boundary and even beyond it.

Equations (35) always have a nonmagnetic solution

'3 P. W. Anderson, Solid State Phys. 14, 99 (1963).
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'Iv=0

where BNt/Btst = —1. It is thus clear that the magnetic
region is reduced in this vicinity. In fact one can fairly
easily do a little better. In the Appendix it is shown that
the slope of nt(n~) is decreased at the nonmagnetic
solution and, therefore,

0.5 y, (x,v))y, (x,O)

for all values of x, such that

(77)

(78)

C
Z$ a

This can be interpreted as a criterion for a range of
values of x for which the interaction has an unfavorable
eGect on the magnetic transition. Roughly this is the
range

0.2(x&0.8, (79)

as can be seen, e.g., in Fig. 5.
In the vicinity of x= 0 and x= 1 the slope of the curves

at the nonmagnetic solution is increased. It is shown in

f.0

}

2 3
tI(x-nf

Fto. 4. The density of states [(f—v)'+17 '+[(f+v)'+17 ' for
v=0, 0.5, 1, and 2 as a function of g=y(x —n). The level where
n =constant at constant slope is also marked.

0.9

0.8

0,7

where nt=n~=n(v). This solution becomes unstable
when

(Btst (et)/Be') t s (—1 (74)

(see Fig. 1). This is therefore a sufficient condition for
magnetism. '4 Differentiating (35a) one has

y=—(Hy(*—~') —v)'+13 '
2'

+L(y(x —tv')+v)'+11-'} . (75)

The expression in curved brackets is plotted in Fig. 4
for several values of e. For the particular case x=-', we

know that as= ~. One then finds

(76)

where y, (x,v) is the value of y on the critical boundary

0.6
O

UJ

0.5
II
X

04

0.3

0.2

0.1

'4 When (74) does not hold the nonmagnetic solution is stable.
For small values of v this implies that there are no magnetic solu-
tions. However, when v'&-', , each of the curves (35) has three in-
flection points so that they can have Gve simultaneous solutions.
There is then a limited range of x and y in which both magnetic
and nonmagnetic solutions exist and are stable. This eGect results
from the splitting of the virtual level by v (Fig. 4) and is probably
fortuitous. Clearly (74) is still a sufhcient condition for magnetism
and it is at least necessary that the maximum slope of e~(e~) be
smaller than —1.

0
0 0.2 0.4 0.6

m mh,

U

0.8 1.0

FIG. 5. Critical boundaries for the existence of antiparallel
magnetic solutions for U/U=O, 0.1 and 0.3. The curves were
computed from Eq. (85).
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the Appendix that y, (x,s) is certainly larger than y, (x,0)
when

i.e., when
y, (x,0)/s &2, (80)

2'—= (2+m,/sin2mw, ) (cos2mm, —cos2s e) .
gc

(85)

The boundary for several values of m, is plotted in
Fig. 5.

VI. DISCUSSION

The above results are of course only a preliminary
approach to a very complicated problem. Even the
model itself is treated only in Hartree-Fock approxima-
tion; that this is rather primitive may be seen by realiz-
ing that the corresponding approximation for a pure
magnetic metal is the Stoner-Slater free-electron theory
of ferro- and antiferromagnetism. Nonetheless it ap-
pears that Hartree-Fock may be more accurate and is

x&0.09 and x&0.91. (81)

The transition from one region to the other takes
place somewhere between the ranges (81) and (79) and
is not really of interest. The numerical values of the
limits in the inequalities (78)—(81) are in any case
sensitive to the details of the model and cannot be
taken very seriously. In particular one would expect
the "favorable" regions to decrease with a more realistic
shape of the virtual level.

The discussion of the antiparallel case is quite
straightforward. If one considers (e+w) and (I—w) as
variables in Eqs. (40), these equations become formally
equivalent to the Anderson' equations for a single ion

e'=-,'+ (1/s) tan-'y(x —I—). (82)

The self-consistent value of w (w„) calculated from (40)
is therefore equal to half the magnitude of the localized
moment calculated from (82):

ie'(0) —e'(0)
i
=2u„ (83)

for the same values of x and y. The solutions of (40) are
however meaningful only when

m» V/U=w,

by definition (39).The actual magnetic region of (40) is
thus given by these values of x, y for which (82) would
give

~

nt —n&
~

& 2V/U and is therefore smaller than that
of a single ion. This may be connected with the relative
rarity of metallic antiferromagnets. In fact it is obvious
from the above arguments that the interaction always
tends to decrease the size of the moments.

The critical boundary of (40) is given by setting
m= m, in the equations. This gives parametric equations
for. x and y on the boundary in terms of e:

x,=e—(u,/sin2xw, ) sin2n. e,

certainly simpler and more transparent in the local
moment model than in the pure model.

Another very serious limitation is the use of only a
single nondegenerate orbital on each solute atom. It is
amazing and rather gratifying that the model is none-
theless subtle enough that a Zener-like mechanism
comes out. The criterion for this mechanism is trans-
parently generalizable to the more complex case, and
it will be interesting to see how this works out
quantitatively.

Physically, we can see that the antiferromagnetic
eGect is very like "kinetic exchange, ""in that it comes
about because energy is to be gained, by ~irtlul transfer
of electrons from the full spin-down level on one atom
to the empty spin-down level on the other and vice
versa. This, being a purely virtual process, requires no
level density at the Fermi surface and so is favored by
well-localized, symmetrically disposed virtual states.

The ferromagnetic e6ect, on the other hand, depends
on an energy gain coming from real transitions of
electrons of one spin back and forth between the two
virtual states, and therefore works well when one state
has a large density near the Fermi surface, precisely the
case in which the antiferromagnetic e6'ect is ineKciemt.

Bet(x,y, w) ,

'

Be

' Bet (x,y, v)

&- (0&

BN t (x,y,0)

n~ ~n(0)
(AS)

APPENDIX: EFFECT OF THE INTERACTION ON
THE CRITICAL BOUNDARY FOR

PARALLEL MOMENTS

In the parallel case we want to compare the stability
region of magnetic solutions of (35) with that of (82).
This can be done by investigating the derivative of (35)
at the nonmagnetic solution:

JtBet(n', x,y,v)/Bn~)„t „~ „(„) (A1)

for values of x and y on the critical boundary of (82).
This is sufhcient to see the direction in which e moves
the boundary for any value of x and y.

One first notes that

~x—N(v)
~
& ~x n()0~— , (A2)

as can be seen from (35) and (85), or e.g. , in Fig. 6.
We will 6rst investigate the conditions for a decrease

in the slope. It follows from (75) that

»'/B~')(~', x,r,~)
~
&

~

(B~t/»~)(+' x r 0)
~

(A

when
y'(x —e')'& (r'+ 1/3) . (A4)

Now for small s(n'& —', ) Bn&/Be&
~

is also a monotonic
decreasing function of x—e~~. It then follows from
(A2) snd (A3) that
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0.5—

Ke now want to show that there is a range of x near
x=0 (and near x= 1) where (35) has magnetic solutions
on the critical boundary of (82) so that

y, (x,v) &y, (x,O) .
For this it is sufIj.cient to show that

(A10)

h 03—

i(Be'/Be' )(e',v)i„t= ~ .(.)) i
(Be'/Be' )(e',0) i

t= t- (0) (A11)

For small v, (A11) will follow if

Bet (e&,x,y, v)

0,1— y' (x-nt)'= —'
3

I

X+0.1
I

X&0g
h&

I

X+0.3
I

X4 0.4

F&G. 6. Plot of

et(N&) =-', +(1/2g)Ltan '(y(g —g&) —v)+tan '(y(g —et)+s)j
for y = 10 and v =0, 0.5 and 2 as a function of x—n&. Only the lower
part of the curves (nt &0.5) are shown. The places where the slope
of Nt(s) becomes larger than that oi gt(0) at constant et Lthe
vertical lines (g n)s (—+ss1=)/3yjasnd at constant e Lthe hori-
zontal line SNt(v)/s|s&=constantj are shown. The position of the
nonmagnetic solutions n(v) depends on x. It can be seen from the
direction of the line n~ =n& that nt (v) always has a larger slope
when x is such that n(0) &4.

when (A4) holds at e(0). On the critical boundary for
v=O (75) becomes

Ly, (x,O)/s] —1=y,'(x,O)(x e,(x,O))—' (A6).

Substituting this in (A4), it then follows that (A5)
holds on the critical boundary for @=0, and therefore

nt (n~)-n(0)

871~

(e~,x,y, O)
nt n~ n(0) )

(A12)

x—n 1+v' —y'(x —n)s

x-P 1-ys(*-P)s

Differentiating (A14) gives

Bs~ 1

coss2s (et —z) Be& 1+v' —y'(x —et)s

(A15)

because the left-hand side (A12) is smaller than the lef t-
hand side of (A11) (see Fig. 6). We therefore want to
compare the slope of e (e,v) with that of e (e,O) when

(et(et, v)) s =(et(e~,O))„s s . (A13)

To do this it is convenient to invert (35), i.e.,

tan2s. (et —,') = 2y(x —e~)/L1+vs —y'(x —et)s] (A14)

Substitution of (A13) now gives

when
y, (x,v))y. (x,O) (A/)

y, (x,O)/vr & (4+v'/3) v'&-', . (A8)

y (v)/ &-'yv'&'. (A9)

This is approximately equivalent to (A8) as a condition
on the range of x for which (A7) holds. Roughly this is
the range:

0.2 &@&0.8.

For large v (v') -', ) the above argument no longer holds
because Bet/Be' has two separated maxima. The maxi-
mum of (75) is however smaller than 4s./3y for such
values of ~, and one has at least

2y(x —e)

L1+v' —y'(x —e~)']
(A16)

Using (A15) in (A16) it is seen that (A12) holds when

ysLx —e(0)]'& 1 (A17)

and the denominator of the first term on the right-hand
side of (A16) is therefore negative. On the critical
boundary (for v= 0) we can now use (A6) to get

y, (x,O)/s &2. (A18)

For large v(v') -', ) (A11) does not follow from (A12). It
can however be shown that (A18) is still a sufhcient
condition.


