
P H YS ICAL REVIEW VOLUME 133, NUMBER 6A 16 MARCH 1964

Helicon-Phonon Interaction in Metals*

JOHN J. QUI~
ECA t-uborutories, Princeton, Eem Jersey

AND

SERGIQ RoDRIGUEz

Depurtrlent of I'hysics, I'urdee Un& ersity, tufuyette, Indiunu

(Received 15 November 1963)

The purpose of this paper is twofold. I'irstly, we present an analysis of the transverse modes of oscillation
of an electron gas in the presence of a strong longitudinal magnetic 6eld. These modes have been called
helicons. %e exhibit the form of the dispersion equation of helicons of arbitrary wave vector. Secondly, we
study the interaction of helicons with transverse acoustic waves in metals. This interaction is particularly
strong when the frequencies and wavelengths of a helicon and a transverse phonon coincide. It is suggested
that this effect permits the excitation of transverse phonons by electromagnetic means. %e also discuss the
interaction of helicons and phonons in the long-wavelength limit, In this case we Qnd smaO corrections to
their frequencies.

I. INTRODUCTION

A N electron gas in a sufEciently strong longitudinal
magnetic 6eld possesses transverse modes of

oscillation, which may under certain circumstances of
low damping, be self-sustained. These normal modes
have been named "helicons" by Aigrain. ' They are also
known as "whistlers" in ionosphere physics. ' A helicon
mode is a transverse electromagnetic wave propagating
in an electron gas along the direction of the applied
magnetic 6cld Bs. Tllc clcctl'onlagllctlc 6clds RssoclR'tcd
with the wave are circularly polarized and perpendicular
to Ss. Only the helicon with left-hand polarization (as
viewed when we face the direction of propagation) can
propagate with velocity parallel to Ss. There is, of
course, also a mode propagating in the direction opposite
to So which when viewed along its direction of propaga-
tion, has right-hand polarization. For sufIlciently long
wavelengths, the frequency of a helicon of wave vector
Q ls

(VII =c g co /Ioo

where c is the speed of light, &o,=eBs/rrsc is the cyclotron
frequency of the electrons (the charge on the electron is
designated by —c), and coo is the electron plasma
frequency.

The object of this paper is twofold. Firstly, we study
the dispersion relation of helicon waves in a degenerate
electron gas with particular attention to phenomena
occurring at metallic densities. Secondly, we investigate
the interaction of these modes with the transverse

* Supported in part by the U. S. Army Research Once and by
the Advanced Research Projects Agency.' P. Aigrain, I'roceedings of the Internutionul Conference on Semi-
coadscctor Physics, Praqgc, f960 (Czechoslovak Academy of
Sciences, Prague, 1961), p. 224. Experimental evidence for the
existence of this waves in solids has been given in Refs. 5 and 6,
and also by F. E. Rose, M. T. Taylor, and R. Bowers, Phys. Rev.
127, 1122 (1962); M. T. Taylor, J. R. Merrill, and R. Bowers,
ibid. 129, 2525 (1963);A. Libchaber and R. Veilex, ibid. 127, 774
(1962).

'L. R. 0. Storey, Phil. Trans. Roy. Soc. (London) A246, 113
(1953). H. Bremmer, Hundbuch der I'bye, edited by S, FJijgge
(Springer-Verlag, Berlin, 1958), Vol. I6, p, 570,

acoustic waves in a metal. The first part of this program
is carried out in Sec. II and the second in Sec. III.

We assume that a metal consists of an electron gas
embedded in an isotropic background of positively
charged ions which are able to sustain both longitudinal
and shear acoustic waves. It is to be emphasized that the
present model differs slightly from that of Bohm and
Staver' in that the elastic properties of the continuum
of positive charges arise from the short-range forces
between the ion cores. The long-range Coulomb forces
are included in this work in terms of a self-consistent
electromagnetic Geld acting on the electrons and on the
positive ions. This model has been used by one of the
authors4 in the study of the behavior of the velocity of
acoustic waves in metals as a function of an applied
magnetic Geld. We shall assume that we have eo elec-
trons per unit volume and s conduction electrons per
atom. The mass of the atom will be designated by M.

It is instructive to consider the physical reason for
the stability of helicon oscillations. Let us consider a
helicon wave propagating along the direction of Bs
which we choose as the 2, axis of a Cartesian coordinate
system (a,y,s). The electric 6eld associated with the
wave has components of the form

(2R)E.=Ep cos(cot—qz),

Eo=Es sin(cot —gz) .

Now the electrons moving in the presence of the 6elds
E and Ss acquire a drift velocity vn =cE x Bs/Bss, which
can in turn interact with Bs to give rise to a Lorentz
force that opposes the motion of the electrons in the
direction of —E. A quantitative discussion of this argu-
ment has been given by Bowers et al. ' and by Chambers

' D. Bohm and T. Staver, Phys. Rev. 84, 836 (1952};see also
J. Bardeen and D. Pines, ibid. 99-, 1140 (1955).'S. Rodriguez, Phys. Rev. 130, 1778 (1963). For a more de-
tailed derivation of some of the results needed see also, M. H.
Cohen, M. J. Harrison, and W. A. Harrison, ibid. 117, 937 (1960).' R. Qo~egy, C, I,cgendy, and F.Rose, Phys. Rev. Letters 7, 339
(1961),
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and Jones. ' A more complete treatment is presented in
Sec. II. The helicon wave is, in general, damped by the
collisions of the electrons with lattice imperfections and
with thermal phonons so that, in orde~ for the system to
exhibit helicon oscillations it is required that au,r» i,
i.e., the electrons should be able to complete at least
one orbit in their cyclotron motion before being scat-
tered. The quantity v designates the average time be-
tween two successive collisions of an electron. We shall
limit our consideration to a degenerate electron gas.
In particular we shall not concern ourselves with any
effects arising from the 6nite temperature of the speci-
men under study. Even though the condition co,~&&1 is
satisfied, it is possible for the helicon waves to be highly
damped if geo&~„where vo is the Fermi velocity of the
electron gas. Ke shall show in Sec. II that when this
condition is satisfied there is a strong absorption of
energy from the helicon by individual electrons.

In Sec. III we discuss the modi6cation of transverse
acoustic waves in metals which arise because of the
presence of helicons. A discussion of some aspects of
this work has been given elsewhere. ' In particular we
show that for acoustic waves having the same frequency
and wavelength as a helicon wave there is a large ad-
mixture of the two forms of motion. In fact, in that re-
gion the normal modes of motion of the system are ad-
mixtures of helicon-like and phonon-like waves each
carrying the same energy density.

IL HELICONS

We consider an electron gas in a metal or a semicon-
ductor in the presence of a magnetic field Bs such that
~,v.))1.It is our aim to study the forms of transverse
electromagnetic disturbances which can propagate
within the electron gas. For this purpose we assume that
the medium is nonmagnetic and consider a wave vary-
ing as exp(io&t —iq. r). The equations of electrodynamics
allow us to write the relations

Furthermore,

We obtain
fy = 6g~&l E~fl ~

(c'q' —&o'eg) Eg= 0,
and the frequencies of the helicons are determined by

~2 —gsqs/e (10)

The dielectric tensor is simply related to the magneto-
conductivity tensor o (q,a&). In fact, we can easily show
that

a(q, r0) =1+(4s/i(o)e(q, (e),

where I stands for the unit tensor. The tensor o can
be obtained using standard considerations of transport
theory. For example, one obtains'

0'y=0'gg+so'gs= 0'OGy )

where oe——~„'T/4' is the ordinary dc electrical conduc-
tivity and Gg is the function

3 sin'8d8
G~=—

4 0 1+$MT&rreqT slpeT cos8

The quantity eo is the velocity of an electron on the
surface of the Fermi sphere and we shall designate the

From (3) and (4) we can eliminate 8 and we obtain a
set of homogeneous algebraic equations for the com-
ponents of E. The determinant of the coefIIcients in
these equations is the secular equation giving the fre-
quency of oscillation co of the normal mode having
wave vector q. For transverse waves the result can be
expressed in the most convenient fashion by introducing
the notation

Ep =E,&l'E„,

cq~B= —(w E

connecting the electric and magnetic fields E and B
associated with the wave. Here a= s(q, co) is the Fourier
component of the dielectric tensor appropriate to a dis-

turbance of angular frequency eu and wave vector q. As

before we choose a Cartesian coordinate system whose

s axis points along the direction of the applied, magnetic
field Se and we restrict our consideration to the situa-
tion in which q= (0,0,q) is directed in the same fashion.

Symmetry considerations require that the components
e „e,, e„„and e,„of the dielectric tensor vanish.

' R. G. Chambers and B. K. Jones, Proc. Roy. Soc. (London)
A270, 417 (1962).' J. J. Quinn and S. Rodriguez, Phys. Rev. Letters 11, 552
(1963);see also D. N. Langenberg and J.Bok, st. 11,549 (1963).
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Fzo. i. Behavior of the function f(m) as a function of m.

s T. Kjeldaas, Jr., Phys. Rev. 113, 1473 (1959).
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mean free path vor of an electron by the symbol /.
Clearly, if tpo&(~, we can write

Gy (1+ipdT&zcdgT) (14)

then, assuming further, that pI,r))1 and pI((~,((pId'/pp
and using Eqs. (10) and (11) we obtain

%II=+c q Cd'/(dp .
ThIS ls tllc result glvcll III Eq. (1). HowcvcI' If qvp Is
comparable to or larger than ~, this derivation requires
some modifications which we presently discuss. Ke still
require that ~.r&&i and that ar(&~,. Under these condi-
tions we have (in the limit in which pI.r ~po),

' (1—8)oth
Gg= I'

4Ru, r q S+VO~

path and may (except for a small shift) be always in

phase with electric 6eld E if qo, = qvp cos8= pI, . Thus at
w=i we have an absorption edge (see for example,
Ref. 8). Therefore, strictly speaking Eq. (23) is valid
for m &1 only. The reason for this is that for m& 4 the
damping is suKciently strong that it modi6es the fre-

quency of the normal modes. In fact, making the same

approximations as before, we And for m )1 that

pI,'f(w) 3—pri w'-1

pop)z 4 'w f(w)-~

If we make use of the notation

we obtain—ipr (1—x')8(x+wp-I)oth (16)
—1

~2'~
GOB =&

pI,'f(w) (1+a')
(26)

W= Pp/pod.

After some transformations we Gnd

(18)

GOy
2

Im(opG~) =+ f(w~),
4w (pp. Wpp)

3 1 1—wP 1+w
f(u) =—— ln

m', 2 4m I—m

(20)

The symbol I' preceding the integral in Eq. (16) is
meant to imply that one must substitute for the integral
only its principal value and 8 (x) is the Dirac delta func-
tion of argument x. The quantities m~ are defined by

wg =w(1+ ((u/(o, ))-', (1'I)

(27)

Here pd= pdIr'+I'oIII" is the complex frequency of a helicon

wave. The imaginary part gives the absorption coef-
6cient of the wave. From Eqs. (26) and (2'/) we see that
pIII"=a( ppII'( so that the absorption coefBcient is pro-
portional to a. The amplitude of the helicon decreases
as exp (—aqs) as the wave propagates in the medium and
the coefBcient of energy absorption is &=2uq. It seems

necessary to emphasize the fact that Eq. (26) is valid
if w)1 while Eq. (23) gives the correct result when

m &1. For convenience in our discussion in Sec. III we

define the function

Ke also obtain

Re(opG~)=(3pI„'/16qpp)(1 —wg-') if wg&1,
=0 otherwise.

g(w) =f(w) if w&1,
=f(w) (1+a') if w) i.

This permits us to write

(28)

These results yield

p~=i+~, 'f(w~)/pI(pd, happ)+(4Ir/ipI)Re (opG~). (22)

Equation (22) permits us to obtain both the frequency
and the absorption coeScient for the helicon waves. The
function f(w) behaves as shown in Fig. 1.Iwe assume
pp((pp„w&1, and cod'f(w)))pxd, we obtain a real fre-
quency for the helicon waves, namely,

per' ac'q'a, /pd, 'f(w) .—— (23)

We expect, that in the vicinity of qop/pI, =1 there is a
small oscillation in ~~'. This arises from the fact that
when u~& 1 {or approximately w& 1) the electrons can
absorb energy from the helicon wave in a coherent
fashion. In fact, let us consider an electron having a
component of velocity v, =vo cos8 along the direction of
Bo.The motion of the electron takes place along a helical

CdII =+c q (4 /M g(W)

an equation that is valid over the whole range of values
of u. In Fig. 2 we show a graph of the function g(w)
and a plot of co~'. The graph is conveniently presented

by showing the ratio of pod'/QII as a function of W. We
have defined QII=c'pI, P/pp'pId'. It is interesting to note
that, if w))1, g(w) approaches 3Ir'/16 so that the dis-

persion of helicon waves is modi6ed by the reciprocal of
this factor. However, the absorption in this region is
extremely strong.

III. HELICON-PHONON INTERACTION

In the previous section wc discussed the properties of
helicon waves propagating in a degenerate electron gas.
Ke saw that these modes are self-sustained in a suf-
Gciently strong magnetic 6eld. In a metal, the positive
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LO

as

as

is the diffusion tensor D=e/e'gp(fp) (1+in&r), gp(t'p)

being the density of electron states per unit volume and
per unit energy range at the Fermi level. Here we are
studying an acoustic wave whose frequency is u and
whose wave vector is q. No confusion need arise because
we have the same symbols to describe a helicon wave.
The quantity V'n is the gradient of the electron density.
If we consider only transverse waves then &m=0 be-
cause during the passage of a shear wave the electron
density e is not disturbed from its equilibrium value eo.
To discuss transverse waves we introduce, as before,
parameters which describe circularly polarized disturb-
ances. Thus, using

Og

04 l;5

$g= f +i)„,
and similarly de6ned quantities we find

(32)

Fto. 2. Functions g(w) and cuir'/Qrr=ws/g(w) as a function of w.

j&'&=a $E—(mu/er) j+eD ~rt. (31)

Here e(tl, o&) is the magnetoconductivity tensor and D

ions are capable of propagating transverse acoustic
modes whose velocity we shall designate by s. It is clear
that when the frequencies and wave lengths of a helicon
and an acoustic wave coincide we do not expect the
normal modes of the system to be purely acoustic or
purely electromagnetic. Under these conditions there is
a strong coupling between these two forms of motion.
The model used to describe the interaction has already
been described in the introduction and is identical to
that of Ref. 4.

The equation of motion of the positive ions of charge
ze and mass M can be written down in the form

MB'g/Bts =Ct~ (~ g) —C,V x (y x ()
+zem+ (se/c)u x Bp+F. (30)

Here g(r, t) is the displacement at time t of an atom
whose position of stable equilibrium is r, and C~ and
C~=M$' are elastic constants describing the interaction
of the ion cores but excluding the long-range Coulomb
repulsion. As in Ref. 4, u= c&(/@=so&g, where we have
assumed a disturbance that varies in space and time in
the form exp(io&t —itI r). The collision force F arises
from the fact that a conduction electron with velocity
v upon colliding with the lattice transfers to it the mo-
mentum m(v —u). This assumes that the scattering is
diffuse in the system of coordinates in which the lattice
is locally at rest. Naturally, the electron retains a
velocity u when observed in the laboratory system. This
transfer of momentum gives rise to an average force
acting on each atom and having magnitude (sm/r)
((v)—u). The factor z arises from the fact that there
are z conduction electrons per atom. The quantity
(v) = —jo&/ttpe is the average velocity of the electrons
and j (') the electron current density. This latter quantity
can be obtained using the result4

(o&P —s'q'aQ, p&) &~= —(ze/M)R~ F~/M. —(33)

We can eliminate E+ and F~ using the constitutive equa-
tion (31) together with Maxwell's equations and the
value of F. Maxwell's equations relate the total electric
current density

j=j"&+ttpeu (34)

C02 $2$2~Q CO

smio& (1—iP) (opR~ —1) 4=o (36)
Mr 1—iPopRp

In this equation R~= 1/o+. The frequencies of the nor-

mal modes are to be found by setting the coeKcients
of 4. equal to zero. We shall assume that P(&1 which is
usually satisfied for pure materials at low temperature.
Making use of the equations for the components of the
conductivity tensor developed in Sec. II and using the
approximations co,~))1 and ~&(or, we find the following

results
0'pRy= a$so&,r/g(w) j(1~ia) . (37)

Here we have redehned a to mean a(w) =0 if w& 1 and

a(w) given by Eq. (25) if w) 1. In the region in which

a&&1 we obtain the relations

R+(w) =w'~ (w'/g) (w~+II. (1—g) )
—(eV+(II /g))~(~V /g) =0 (38)

Inspection of Eq. (38) reveals that

R+(—w) = —R-(w) . (39)

This result implies that it is su%cient to solve Eq. (38)

to the self-consistent electric field E. For transverse
waves we are led to the result

j+o&+epeipp$~= iPo pE+ ——(ic'q'/4'&) E~, (35)

where we have made the assumption co&(cg and the
second equality defines p. This approximation is equival-
ent to neglecting the displacement current. Ke are
thus investigating the propagation of waves whose

phase velocity is much smaller than the velocity of light.
After some transformations we obtain
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2,0

0.$

0.0

-O.e

The three waves obtained are, of course, left-hand cir-
cularly polarized. The branches (43) and (44) corres-

pond to acoustic waves propagating in opposite direc-
tions and (45) is a helicon. We notice that the electron-
phonon interaction gives rise to small corrections to
both the speed of sound c, and to the frequency ~II of
a helicon on long wavelength. These corrections are
small; in particular, for sodium in a magnetic field of
5X10' 6 the quantity in the square bracket of Eq. (48)
di6ers from unity by about 4&10 '. It is interesting to
notice that the change in the velocity of sound c, is the
same as that obtained in Ref. 4.

A second region of interest is that in which, in the
absence of the electron-phonon interaction the fre-
quencies and wave vectors of a helicon and a transverse
phonon coincide. This occurs at the wave vector qd de-
6ned by the transcendental equation'

L6

FIo. 3. Frequencies of the three roots of the equation E'+(ce) =0 for
mq ——0.9 using the parameters appropriate to sodium.

span = c rI&Ppp~/pps g(ws) ~

toy= gasp/pic ~

This equation can be transformed into

g(res) = (c'tp, s/sspp~„')roy.

(49)

(50)

%1%2(ds S g AH/g ~ (42)

Wc obtRln solutions of thcsc equations ln the limit lIl
which esp/tp, ((1.This allows us to expand g(w) =f(w)
in a power series and we 6nd

for one polarization only. Ke consider the left-hand
polarlzRtlon to 6x thc ldcas. This corresponds to the
upper sign in Eq. (38) and to a helicon wavepropagating
along the direction of the magnetic field Bp. The first
question we study is the long-wavelength limit of the
frequency spectrum of phonons and helicons. This re-
sult is obtained most simply as follows. If ui, ~2, and
~p are the roots of E+(pp) =0 we must have

~t+~s+~p= (~~ a/) +(f1./r) (1 g) (4—o)

oiipip+Mpo&p+ %poli = s g (Q~tplr/g) ~ (41)

Given the applied magnetic 6eld 80 we are in a position
to obtain res at the cross over by solving Eq. (51)
graphically. For example, if we take the constants for
sodium (s=2.25X10s cm/sec, ep ——1.07X10s cm/sec,
&p =8 92X10" sec ') we find that the crossover for a
magnetic 6eld of about 10' 6 occurs at m~=0.9. The
crossover frequency turns out to be cog=3.29Xi0'. A
plot of the solutions of the cubic equation (38) is given
in Fig. 3 taking this value of m~. The solution for the
splitting of the two branches that cross at mq and ~q
can be carried out analytically as well if we assume that
the third branch is not appreciably altered by the inter-
action. In fact, let us designate oi/pps by r, gs/g=y,
w/w& ——q/q&=g. Then we obtain

r=-', (s+x'y) &stL($—x'y)'+4(D. /cps) P(r))'", (52)

where

(Oi =. C~g+Pg

&sg+IJg y

ma=a g .
The quantities involved in these relations are

(43)

(44)

(45)

&()=u'/g)(1 —g)+ *'»(+*) '.
These equations allow us to obtain the frequency as a
function of q for the two branches in the vicinity of the
degeneracy frequency ~g. Clearly the result is to be ob-
tained by iteration regarding the term (40./o&s)P(r) as
a small perturbation. %hen g

= qq the frequencies of the
two branches are

(46) tp =ppgf1 + (0,/2gsp~d)'~s j. (54)

un&02 C2cvc S~ Cc 2

p= 1+
I03f~, 2(u„' M sM„

(48)

' The discussion of this point given in Ref. 7 neglected the eftect
of the strong damping when m»1. However, for a sufBciently
pure sample, the absorption experiences large quantum oscilla-
tion Lace J. J. Quinn, Phys. Letters 7, 233 (1963)g so that there
are ranges of values of m &1 for which the absorption is zero.
The results of Ref. 7 are strictly valid only in those regions. If
this is not the case, the analysis given in Sec. II of this work must
be used.
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The relation between the amplitudes of the electric
field and of the acoustic displacement is found using the
result

mio) 1—osRg 4.
er 1 i—PosRg

(55)

ego ( 0, )'"
&+=+

I I E+,
tl$hlsM~ E2geMe)

(57)

where the + sign correspond to the two branches in
Kq. (54). A simple calculation shows that at the cross-

For the left-hand polarization we obtain (after making
the same approximations that were made in Sec. II)

$~= —Le(~g —co~)/mco'a), jE+. (56)

In particular, for the crossing branches at the frequency
coq we find the relation

over the elastic energy density is equal to the electro-
magnetic energy density as expected.

The strong coupling between helicon and transverse
acoustic waves in the region of the crossover suggests
the possibility of exciting the latter modes by electro-
magnetic means. It is, of course, also possible to use this
e8ect for the detection of transverse acoustic modes.
Finally, it is interesting to notice that for some values
of the magnetic fteld Eq. (51) can have up to three solu-
tions for mz while ordinarily it only has one.

ACKNOWLEDGMENTS

The authors would like to thank J. Bok and D. N.
Langenberg for communicating their results prior to
publication. Conversations with M. Lampert, G. S.
Newell, A. K. Ramdas, and R. Bray contributed to the
clarification of the physical ideas. K. M. Brown has
kindly assisted with the numerical calculations.

PH YS ICAL REVI EW VOLUME i33, NUMBER 6A 16 MARCH $964

Interaction Between Localized States in Metals

S. ALEXANDER*

The 8'eismunn Institute of Science, Rehovoth, Isruel

P. W. ANDERSON

Bell Telephone Luborutories, Murruy Hill, Sew Jersey

(Received 30 September 1963l

The theory of localized magnetic states of solute atoms in metals is extended to the case of a pair of
neighboring magnetic atoms. It is found that the simpli6ed model based on the idea that the important
interaction is the diagonal exchange integral in the localized state, which is exactly soluble in Hartree-Fock
theory for isolated ions, is still soluble, and the solutions show both ferromagnetic and antiferromagnetic
exchange mechanisms.

I. INTRODUCTION

HE nature of the localized magnetic impurity
states observed in metals' was investigated in a

number of recent papers. ' 4 Following the ideas of Mott'
and Friedel' on the nature of the magnetic state, it was
shown that such states can be described as virtual
localized states in the conduction band. Their magnetic
behavior is dominated by the Coulomb repulsion be-
tween electrons of opposite spin in the same atomic

*Part of this work was done while at Bell Telephone Labora-
tories, Murray Hill, New Jersey.

'B. T. Matthias, M. Peter, H. J. Williams, A. M. Clogston,
E. Corenzwit, and R. J. Sherwood, Phys. Rev. Letters 5, 542
(1960); Phys. Rev. 125, 541 (1962).

~ P. W. Anderson, Phys. Rev. 124, 41 (1961).' P. A. WolG, Phys. Rev. 124, 1030 (1961).' A. M. Clogston, Phys. Rev. 125, 439 (1962).' N. F. Mott, Proc. Phys. Soc. (London) A62, 416 (1949).
6 J. Friedel, Suppl. Nuovo Cimento 7, 287 (1958); A. Blandin

and J. Friedel, J. Phys. Radium 20, 160 (1958l.

state. ' The magnetism is therefore basically of atomic
origin and in this sense resembles the truly localized
magnetic moments in insulators. ' The situation in
metals divers from that in insulators because the
localized states are virtual, i.e., spread out in energy
because of s—d interactions, and can therefore contain
a nonintegral number of electrons. As a result they
describe something intermediate between a localized and
an itinerant situation. The magnetic properties are
essentially those of localized states whereas the eBects
on the electronic specific heat are similar to those of an
itinerant density of states at the Fermi level.

The purpose of the present paper is to try to calculate
the interaction between two similar magnetic impurities
near to each other in an otherwise completely non-
magnetic material. Like the cases of a single impurity

7 For a discussion of these ideas see, e.g., Ref. 13.


