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The method of long waves is used to show that the anharmonic contribution to the Helmholtz free energy
of crystals has a lowest order temperature dependence of 7% at low temperatures. The anharmonic correction
to the low-temperature Debye temperature is obtained in terms of the ratio of the anharmonic to harmonic
free energies at low temperature. Approximate expressions are developed for the anharmonic zero-point
energy for the case where all atoms in the crystal have the same mass. These expressions are shown to be
simply related to the corresponding anharmonic contributions to the high-temperature free energy. Numeri-
cal evaluation of these approximations is carried out for fcc and hep lattices for a model of two-body central
forces represented by a Lennard-Jones form. The various contributions to the zero-point energy are com-
pared for these two lattices, and an application to the inert gas crystals shows that the anharmonic con-
tribution is sufficient to make the fcc structure stable at 7=0 for Ne and Ar, but not for Kr and Xe. An
approximation is developed for the low-temperature anharmonic free energy for the case of one atom per unit
cell, and this approximation is evaluated for the fcc lattice for the Lennard-Jones model. The results of the
present paper are compared numerically with previously published calculations, and qualitative agreement
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is found in general.

I. INTRODUCTION

N a recent paper,! the anharmonic contributions to
the Helmholtz free energy and the specific heat at
constant volume of crystals at high temperatures have
been discussed. The present paper is concerned with the
anharmonic contributions to the zero-point energy of
crystals, and to the Helmholtz free energy and the
specific heat at constant volume of crystals at low
temperatures. The work is based on the standard
treatment of the lattice dynamics problem?? in which
the potential energy of the system of vibrating ions is
expanded in a Taylor series in the displacements of the
ions from their equilibrium positions. The terms of
third and fourth order in the displacements are treated
as perturbations, and give rise to the anharmonic
contributions to the Helmholtz free energy, Fs and F,
respectively. These contributions have been derived by
Ludwig* and also by Maradudin ef al.5:

F3= hd (h2/16NM63)Zkk’k",sa’s” IBks,k’s',k”s" 12
X (wkswir sk s ) (FscsTiaer s Forcs %)
X (wksFwir srFowrr e ) 4 (2ot o — s Tiaer

Fiixr o) (xetww s —wxre)?],  (1.1)
F4= (h2/8NMc2)Zkk’ .ss’Cka,—-ks,k’a' —k’s’
X (wkswk'a’)——l(ﬁks"*"%) (ﬁk’s’+%) y (1-2)
where
Browsr s =8kt K 4K S wm o o' Brapoat o st oo
X exp[ik ¢ l',.,-—l— 7:1{’ 13 o J';+ik” * rnnjn]
Xvk,pavk’,p'e’vk".p"s” ) (1.3)

* This work performed under the auspices of the U. S. Atomic
Energy Commission.
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Cks,—ks,k's’,—k’s’= Zn’n"n"’,p-~-p"’cnp,n'p’.n"p",n”'p”'

Xexp[ik- (rnj—‘rn'jl)""l:k, . (rn"j” —_ r,,mjm)]

Xvk,ps'v—k,p’svk',p",g'v...k',p'/lg' ’ (1.4)
5(K)=N- 5, exp(ik-r2), (1.5)
fis=[exp (hwes/ KT)— 1771, (1.6)

The notation used here is the same as in Ref. 1, with
some additions. The symbol # labels a unit cell in the
crystal, 7 labels an ion in the unit cell,  labels a Car-
tesian coordinate, and p stands for a.pair of indices,
(4,%). There are N unit cells in the crystal, J ions per
unit cell, M; is the mass of an ion of type 7, and M, is
the total mass of ions in one unit cell. The equilibrium
position of ion (#,7) is r,;=r,+r;. The normal coordi-
nates of the harmonic lattice dynamics problem are
enumerated by the wave vector k and the polarization
index s; the associated circular frequencies are wg,
and the eigenvector components are vy,,,. Finally,
Borpwor e and Crpont g nr e e o0 are coefficients of
terms of third and fourth order, respectively, in the
potential energy expansion.

In Sec. IT it is shown that F3 and F, are each propor-
tional to 7* in the limit of low temperatures. Approxi-
mate expressions for the zero-point and low-temperature
forms of F; and F, are developed in Sec. III. The zero-
point approximations are evaluated in Sec. IV for face-
centered cubic (fcc) and hexagonal close-packed (hcp)
lattices for the case of two-body central forces repre-
sented by a Lennard-Jones form. In addition, the
low-temperature approximations are evaluated for the
fcc lattice for the same model. In Sec. V, the results of
these calculations are applied to the inert gas crystals.

II. TEMPERATURE DEPENDENCE AT
LOW TEMPERATURES

It is desired to find the lowest order temperature
dependence of F; and F,4 at very low temperatures.
The terms in (1.1) and (1.2) which are independent of
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the occupation numbers 7y, etc., are zero-point
contributions to the free energy. The lowest order
temperature dependence arises from the terms which
are linear in the occupation numbers. In (1.2), these
linear terms contain the factor 3 (7ixs+#%y ). Since the
coefficient of each such factor is symmetric in the index
pairs k, s and K, s/, then % (7ix,+7ixs) can be replaced
by fiws. Similarly in (1.1) the factors linear in the
occupation numbers can be written

I YRR o ER G R Sy |

When (1.3)-(1.5) are inserted into (1.1) and (1.2),
and only terms linear in occupation numbers are kept,
the following low-temperature forms are obtained.

Fy=— (B/16N*M )3 neeeniv, peee o7 Bop,nt o7 ynr o7
X By, p1%,n %% 2 ks 557 €XpLiK- (Tpat1;—150) ]
X exp[ik’- (rn+ Ty jr— rn”’jiv)]vk,psv~k.p”’svk' 0’
X_ger,pver (s )L 2 wr, 50 €XPLIK" e (Cnd-Torrjrr
=) Jirr, prr st Ui prr e 00 (i)

X[ (wxstwrrsFwiprrs)™

+ (wks+wk's’_wk"s")‘1]; (21)
F,= (hZ/SNMcz)Zn/nunru’p_._plr/COp'n/p/‘nupl/'nrup/rr
sz,s exp[lk (rj—rn’j')]vk,psv—k,p’s(wks)_l
sz',s’ exp[ik/- (rn”j””rn”’j"')]
Xvwr, prrsrVir s i (i)™ (2.2)

Here the unit cell specified by #=0 is at the origin of
coordinates (r,=0).

The temperature dependence of the low-temperature
form of F, is determined by the sum over k', s’. This
sum is real, since for every k’ in the sum there is a —k’,
while in general vy, ,s*=v_x ,s and wk;=w_k,. Also, at
low temperatures it is only necessary to consider the
long-wavelength acoustic modes in the sum, because of
the factor 7. Furthermore, the method of long
waves? can be used to obtain an expansion of the
summand in powers of #'=|k’| when s’ is restricted to
acoustic modes; this leads to an expansion of Fy in
powers of 7. Thus the exponential is expanded for
K« (Cprrjor—Tnrr o0)K1, since k’ is small for long wave-
lengths, and since the coefficient Cop,nrpr,nrtpr7,n77 g7
tends to vanish for large |t,j»—1t,j|. The eigen-
vectors for the acoustic modes can be expanded as®

(2.3)

to order k2, where vo, v4, and v. depend on the direction
of k but not on the magnitude. In addition, vo,:; depends
on p only through the index 7, but is independent of j.
When the eigenvectors and the exponential are ex-
panded in the sum over k', 5" in (2.2), the zeroth order
term is 9o 4+5/00,s7+s». This term gives no contribution to
(2.2) since it is independent of #”/, »'”, ", 7'/, and a
sum such as 3_ 7,7/ Cop,n' 5 ,n7* o7 ,n'77 o> CaN be extracted.
But this sum vanishes identically.® In addition, the

- : 1
Vk,ps= 7)0.z's+ lkvl,ps_[_ §k2v2,ps y

6 Reference 1, Eq. (2.2).
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terms linear in &’ give no contribution to the sum since
these terms are imaginary while the sum is real. There
are six terms of order %2 in the expansion:

k201,050,000
BT ~ (tar o1 — T 307) Joos5r 01,7
—R'[K « (Cprrjor—Tprrr o) Jo1, prr 500,507 57

— 3K (v jrr—Tprrr o) Pog i 00,0000 57

(2.4)

7

1k 200,577 502,777
7

%k 21)2,‘),,8,1)0,1-”,3, .

The last two terms give no contribution to (2.2) for the
same reason that the zeroth order term gives no
contribution. The contributions of the first four terms
do not vanish in general, and they give rise to a 7
dependence for F, at low temperatures. This is shown
by writing

e =0y (0/,8)F (2.5)

for the acoustic phonons of small &', where the angles
©’ and ¢’ denote the direction of k. The sum over k’
is then transformed to an integral over all k' space,
and the integration on the magnitude of k’ is carried
out. In order to state the results, it is convenient to
make the following definitions.

G(Tn;) o =N 1 s exp(ike10,) Vi 55V i, prs (Wks) ™5 (2.6)
Ii(rnf)pp’ = (47r)~1 Z,s/dﬂ

Xh(125,0,8)s,00[cs(0,6) %5 (2.7)
where k2(t,ijir—Yprjirr, O, ¢')gr g e is the sum of
the first four terms listed in (2.4). In (2.7) the JSdQ
is over all angles (0,¢), and the prime on }_’; means
that the sum is restricted to acoustic modes only. G
and H are both real matrix functions. The leading
term in the expansion of F, in powers of 7 at low
temperatures is denoted by F; and is

F“-_— (NVC’}T'2/24OMC2)[(KT)4/;12:IZ"/ n''n  peep’!
XCOp.n'p',’n”p",n"'p"'G(rj—rn'j')pp'

SXH (Farr =T o) yryrrr s (2.8)

where V. is the volume of one unit cell.

The same procedure can be applied to the sum over
k”,s” in (2.1) to determine the temperature dependence
of F; at low temperatures. This sum is also real, with
the first contributing terms in the expansion of the
exponential and eigenvectors again of order k'’ for
the same reasons as above. The expansion of the
exponential for k”-(r,+r.r—r,v;9)<K1 is justified
as above, with the additional remark that when |r,|
becomes large, the other sums in F; tend to vanish
because of random phases among the terms. This
effect has been verified numerically in the high-temper-
ature calculations,!
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It is also possible to show that the frequency denomi-
nators in the sum over k”, s’ in (2.1) may be expanded
in a power series for wy/y<(wkstwis), without
introducing any error in the leading term in the low-
temperature expansion of F3.” When this is done the
factor [(wistwwstwrrs )4 (ks wirs — wirrgrr) ™)
is replaced by 2(wkstwiws)™ to obtain the leading
term in the expansion of the summand in powers of 2.
Finally, (2.5) is used for wys, and the sum is trans-
formed to an integral over all k” space. The leading
term in the low-temperature expansion of F; is denoted
by F3; and is

Fy=— (NV a*/480M B[ (KT)Y/ 1] neeen®, peerp”
XBOP,n’p’,n"p"BOp"',n"'piv,ni'p"
XK(rn-l-rj—rjm, rn+rn’j’ —_rn”’jiv)pp”’p’pi"

XH 4T jrr—15v57) prepr,  (2.9)
where the real matrix function K is given by
K(tnj, tarir) por o oo
=N"23 y s exp(iketn;+1k’-1n ;)
X'Ukps‘v—k,p’s‘vk',p”s"U—k’,p’”s'
X {Zl:wkswk’s’ (wks+wk’s’):|_l} . (2.10)

Ludwig! and Leibfried and Ludwig?® have approxi-
mated F; at low temperatures by taking (wiswi srwirr7)?
out of the denominator of (2.1), averaging this sepa-
rately, and putting (wgswxswis) back into the
numerator. A similar approximation was applied to Fq.
In this manner, they arrived at a 7* dependence for
F3 and F, at low temperatures. It is not certain in
advance, however, that this procedure will give the
correct temperature dependence, since the powers of w
in the integrals discussed above determine the temper-
ature dependence. Indeed, if this approximation were
made first and the method of long waves were applied
as above, a T® dependence would result for Fs; and Fs.

Barron and Klein® have shown that the terms in
(1.1) and (1.2) which are linear in the occupation
numbers can be accounted for approximately by
introducing corrections to the normal mode frequencies.
Thus if the harmonic contribution to the Helmholtz
free energy, Fpg, is written as a sum of contributions
from each normal mode, fx(wxs), and if the anharmonic
effects are represented by the additive corrections 8wy,
to each wy,, then

Fu=3Y 1 fu(wxs);
FH+F3+F4=Zk,s fH(wks_*_awks) 5

(2.11)
(2.12)

7To show this, transform the sums over k and k’ in (2.1) to
integrals, expand the integrand for small %, %/, and integrate
over the range 0<wgs+wrrsr Swirrsr. The resulting contribution
to F; is found to contain terms proportional to 7% and higher
powers, by carrying out the integration over k'’

8 G. Leibfried and W. Ludwig, in Solid State Physics, edited
by F. Seitz and D. Turnbull (Academic Press Inc., New York,
1961), Vol. 12, p. 275.

9 T. H. K. Barron and M. L. Klein, Phys. Rev. 127, 1997 (1962).
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where
dwie= (Bwks)3+ (Owis) 4. (2.13)

Since dwy; is presumably small compared to ws, (2.12)
can be expanded:

Fut+Fst+Fi=3 ks fu(wke)

+3 ks dwis (0 fr/ dwgs) -+ -+ . (2.14)
Barron and Klein transformed the parts of F3 and F4
which are linear in the occupation numbers into the

form of the first correction term in (2.14). Their
results, in the present notation, are given by

(bwis)s= — (h/léATMcs)Zk'k”,s's” I Bys,ws xrrs ’2

X (wkswk’s’wk”s”)"l[(wk’s'+wk"3”+wks)*1

+ (@t —o) ], (2.15)
(6(01(3)4: (h/SNMc2)Zk’,s’Cks,—-ks,k's’,-—k'S’
X (wkswk:sf)_l . (216)

Now it is well known? that the leading term in the
low-temperature expansion of Fy is proportional to T*;
this temperature dependence results from the fact that
wxks 1s proportional to % for the long-wavelength acoustic
modes. Thus, if (wks+0wks) is proportional to % for the
long-wavelength acoustic modes, comparison of (2.11)
and (2.12) shows that each term in the expansion
(2.14) is proportional to T* at low temperatures. Hence
the work of Barron and Klein shows that F3 and F4 are
each proportional to 7* at low temperatures if (Swis)s
and (dwys)s, as given by (2.15) and (2.16), are each
proportional to % for the long-wavelength acoustic
modes. It is possible to show, by using the method of
long waves and a procedure equivalent to that used in
the discussion of (2.1) and (2.2) above, that (Swks)s
and (dwy;)s are proportional to & for the long-wavelength
acoustic modes.

To conclude this section, some low-temperature
thermodynamics are discussed. The leading term in
the low-temperature expansion of Fy is

Fre=—NJ)(@*/S)(KT)(T/6n)*,  (2.17)

where the harmonic low-temperature Debye tempera-
ture Oy is defined by

V.
7203w T

(KOu)3= 3 / dLc.©8) 3. (2.18)

The harmonic plus anharmonic contribution to the
low-temperature specific heat at constant volume is

Cyi=—12/T)(Fgi+Fay), (2.19)
where
FA¢=F3t+F4t. (220)

It is convenient to define a low-temperature Debye
temperature ©4, which includes the effect of anhar-
monicity, by an equation analogous to (2.17):

FurtFa=— (N]) (7r4/5) (KT) (T/8A>3- (2-21)
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Since F 4,&KF g is implied by the perturbation treatment
of the anharmonicity, (2.17) and (2.21) can be com-
bined to give

04=0y[1—F4,/3Fy],

to first order in (Fa./Fx).

III. ZERO-POINT AND LOW-TEMPERATURE
APPROXIMATIONS

(2.22)

In the zero-point form of F3; denoted by F3,, the
sums over ks, k’s’, k’’s’” are all coupled through the
frequency denominators. This fact makes it quite
difficult to carry out an accurate evaluation of Fj, for
a three-dimensional crystal, even with the aid of
present-day high-speed computers. The situation is
similar in the low-temperature form Fj, where the
sums over ks, k’s” are coupled through the frequency
denominators. It is therefore desirable to approximate
the zero-point and low-temperature expressions. Fur-
thermore, it is convenient to develop the approxi-
mations by methods similar to the high-temperature
approximation of Ref. 1, since this approximation
proved to be simple and yet reasonably accurate, and
also since the high-temperature work will be of some
help in estimating the errors of the zero-point and
low-temperature approximations.

Flinn and Maradudin!® have recently described a
different approximation for the zero-point and low-
temperature anharmonic free energy contributions for
a fcc lattice with nearest-neighbor interactions. Their
work, which includes a numerical evaluation of a
double sum over wave vectors and polarizations, is
compared with the present work in Appendix II.

For the case where all atoms of the crystal have the
same mass, the high-temperature approximation was
shown to be equivalent to replacing the frequency
denominators of the appropriate limiting forms of (1.1)
and (1.2) by their averages.! For simplicity, the work
of this section will be restricted to this case, although
this restriction is not essential. In addition, when all
M ;=M, it is convenient to normalize the eigenvectors
to unity:

3.1)
(3.2)
The zero-point forms are, when all masses are the same,
Fso=— (I*/48NM?) Y wwxrr 555 | Bis, kst xrrsrt |2
X [wxswir swir o (st wiersrFwirrerr) T,
F40= (ﬁ2/32NM2)Zkk’,ss' Cks.—ks.k's’,—-k’s'
X (wkswkrs')“l . (34)

These expressions are now approximated by replacing
the denominators by their averages and carrying out
the sums over the numerators. The sums of the numer-
ators are evaluated with the aid of (1.3)-(1.5) and

2 p Vk,ps¥—k,ps =05 (orthonormality),

D s Vk,psl—k,prs=0,, (completeness).

3.3)

0P, A. Flinn and A. A. Maradudin, Ann. Phys. 22, 223 (1963).
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(3.2), and the results are
fao=—(N#/144M QD)3 nn pp o' (Bop,np vwr o), (3.5)
f40= (Nh2/32M912)Zn,pp’ COp.Op,np',np’ . (3.6)

Here f30 denotes an approximation to F3o, and similarly
for fi, and
Q= (3IN) 2, s M 0. 3.7

Now the sums over B and C coefficients in (3.5) and
(3.6) are the same as those which appear in fsr and fur
[Egs. (4.3) and (4.4), respectively, of Ref. 1]. The
further simplification of f3 and fs for the cases of
two-body forces and central forces proceeds exactly as
in fsr and fir, and needs no further discussion here.
As a result of this similarity in the high-temperature

and the zero-point approximations, the following ratios
hold:

(fso/ far) =% (fao/ far) = W}/ 12MQ2 (KT)?.  (3.8)

Furthermore, on account of the similarity of the
approximations made in obtaining fsr and fir on the
one hand, and f3 and fio on the other hand, the ratios
between the zero-point and high-temperature contri-
butions should be given quite accurately by the right-
hand quantity in (3.8). Therefore it is convenient to
write the approximation as

F3o/Far=X, Fy/Fua=3X,
F30+F4ozX(F3T+3F4T) N
X= ﬁ2922/12M912(KT)2.

Thus, for example, if F3r is known, the approximate
F3o calculated from (3.9) should be more accurate than
the fo calculated from (3.5). Limits of error have been
estimated for the ratios (3.9) for the case of two-body
central forces for fcc and hcp lattices; these are dis-
cussed in Sec. IV. A further approximation may prove
useful, since @, is quite easy to calculate for any force
model, while the evaluation of @, is generally much
more difficult. Thus 2,2 may be replaced by Q5 without
seriously affecting the accuracy of (3.9). The error of
this replacement is also discussed in Sec. IV for the
case of two-body central forces.

By analogy with the high-temperature and zero-point
approximations, the following approximations are used
to simplify the low-temperature forms of F; and F, for
the case where all masses are the same:

(3.9)

MG (1) ppr =8 (1ns)8,07 (3.10)
M=K (X500 37) ppr o7 777
= (Q201) 76 (0n;)0 (X )80, 5. (3.11)

When there is more than one atom per unit cell, there
is a further difficulty in trying to approximate Fg and
Fy. This difficulty arises from the fact that the sum
over polarizations in H(r,;), Eq. (2.7), is restricted to
acoustic modes only, and hence it is not possible to
use an eigenvector completeness relation when there
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are optic modes. For this reason, the remaining discus-
sion of the low-temperature forms will be restricted to
the case of one atom per unit cell.

For one atom per unit cell, the index j is dropped,
and p becomes simply 4. In addition, since the dynamical
matrices are real, the eigenvectors are also real and
(2.7) becomes

H(l’n)iil = —%(4%”)_1 Zs/dﬂ (k'l’n)z'l!o,,'g'vo,ilscs—a , (312)

where £ is a unit vector in the direction of k. This
matrix function may be approximated by replacing
(ker,)? by its average over angles, namely %7,% re-
placing ¢,~® by its average over s and over angles, and
then carrying out the sum over s in the numerator with
the aid of

26 00,is00,i76= 0ir .

This procedure gives

H (tn)iv=—57."C_sdivr, (3.13)

where

Cp=%4m Zs/dﬂcxﬂ. (3.14)

This approximation to H(r,) gives the correct value of
Tr[H(r,)] for primitive cubic lattices. This may be
proved by noting that for a set of k vectors which are
related by cubic point group operations, the set of ¢,
are the same, while (k-r,)? averages exactly to 37,2 for
such a group of k vectors.

With the aid of (3.10), (3.11), and (3.13), the
approximations to F3 and Fy; are, respectively,

f3¢= (NV¢7I’2/2880M3/2)|:(KT)4C_5/h29192]
XZnn'n”,ii'i” BOi,m",n'i"

XB(li,ni’,'n"i"(rn’_rn")z) (315)
fu=— (NV x2/1440M32)[ (K T)*C_s/ 1]
X2 nnr i7Coi 0 it (l'n—rl‘n')z . (3.16)

If the restriction to two-body forces is made, these
expressions can be reduced further with the aid of the
symmetry properties of the B and C coefficients.! The
results are

fa=— (NV a®/1440M32)[ (K T)*C_s/ #2205 ]
XZ,n Zln’ Zﬁ’i" Boi,0i nir* Bos,0i7 ,m? it Tn T s

X[1+é(ra—1.)], (3.17)
o= (NV 2/ T20M32) [ (KT)*C_s/ 1?1
X2 w2 iwr Coijoirnir nir?n?,  (3.18)

where the prime on ) ', means to omit the term
n=0 (r,=0). A further simplification is afforded by the
fact that the contribution of each term in the »_’, of
(3.18) is the same for all points r, which are obtained
from one another by operations of the cubic point
group. The same is also true of the 2_', of (3.17) when
lattices with cubic symmetry are considered.

A157

RESULTS FOR CENTRAL FORCES

The approximations of Sec. IIT have been evaluated
for the case of two-body central potentials represented
by a Lennard-Jones form. Thus, the potential energy
between two ions a distance 7 apart is taken as

Y(r)=(da/r%)— (Bs/7") (4.1)

for all pairs of ions, where 4., Bg, o, and B are arbitrary
positive constants, and a>p. Calculations have been
carried out for several sets of  and 8 for fcc and hep
lattices. The nearest-neighbor distance e has been
chosen as that which minimizes U\, the crystal potential
energy when all ions are at rest and located at lattice
sites. For one or two atoms per unit cell, the minimi-
zation of U, leads to the relations

Uo(e)=—NJD, (4.2)
D= (a—B)A4Se/28e%*= (a—B)BsSs/2ce?, (4.3)

where ‘
Sa:zln'i(e/rnj)a- (4-4)

Additional relations for the Lennard-Jones model are
given in Ref. 1.

All calculations were carried out in terms of dimen-
sionless quantities, which are indicated by a superscript
bar. For example

le: (52/D)”/29m
Fao'—" (EZM/ﬁz)(Fm/N]) )
F4o= (62M/ﬁ2)(F40/NJ)

F3 and Fy are dimensionless anharmonic contri-
butions to the zero-point energy per atom of the crystal.
As a result of the transformation to dimensionless
quantities, it is seen that Fso and F4 depend on e and
M in the manner (&M)™), in contrast to the high-
temperature contributions which do not depend ex-
plicitly on these parameters.! In reduced form, (3.9)
becomes

(4.5)

Fgo/psqu X F40/F4T’—=3X, etc.;

X: Q22/12912 .

In the calculation of {};, the dynamical matrices
were diagonalized by the Jacobi method and the sum
of frequencies, appropriately weighted, was carried out
over a small part of the Brillouin zone!* The values
of §; and Q, for the fcc lattice are listed in Table I.
These values are in all cases slightly larger than the
correct values for the model, the error being no more
than 1 part in 10% Table I also lists the approximate
Fs and Fy, as obtained from (4.6) and the corre-
sponding accurate values of Fsr and Fur from Table
I of Ref. 1. The further approximation of replacing
0.2 by O, would lead to the simplification of replacing
X in (4.6) by

(4.6)

11 Reference 1, Sec. III.

4.7)
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TaBLE I. Anharmonic contributions to the zero-point free energy
for the face-centered cubic lattice.

Approximation to

a B o 023 Fy Fy 80

12 10 8.745 82.69 —13.6 76.9 —0.081
12 8 7.880 67.31 —11.6 64.3 —0.084
12 6 6.917 52.10 — 9.88 53.2 —0.089
12 4 5.799 36.93 — 8.23 43.3 —0.098
10 8 7.245 57.05 — 9.89 51.9 —0.0865
10 6 6.378 44.45 — 8.32 41.6 —0.0925
8 6 5.794 36.89 — 6.95 31.5 —0.098;
6 4 4.398 21.76 — 477 15.7 —0.124;

The error of this replacement is listed in Table I in
the form of

6(21 = (012'— Qz)/ﬁ]_z .

It is seen that 0, overestimates Q2 by about 8-129%,.
The tabulated values of §Q,% are accurate to #0.001,
and these values are the same for the hcp lattice, for
each @ and B3, within this error.

It is quite difficult to make a quantitatively reliable
estimate of the error of the ratio Fso/Fsr as given by
(3.9) or by (4.6). A qualitative estimate has been made
by calculating approximately the ratio of an upper
limit to a lower limit of F3o for the simplified case
where wis=ck for all s, with the Brillouin zone taken
as a sphere. By comparing this ratio of limits to the
known errors in the approximate calculation of Fsp,!
it was concluded that the correct ratio F3o/F3r should
lie between 3X and £X for fcc and hcp lattices with
central forces. The error in the ratio Fyo/Fur, as given
by (3.9) or by (4.6), should not exceed 109, for fcc
and hcp lattices with central forces.

It is convenient to express the results for the hcp
lattice in terms of ratios to corresponding quantities
for the fcc lattice. With a given amount of labor, it is
generally possible to compute such ratios to greater
accuracy than the separate quantities for each lattice.
The parameters 4., Bg, a, 8, and M are assumed to be
the same for each lattice. The ratio of nearest-neighbor
distances is then obtained from (4.3) as

Cen/ €15 =[SanSps/SarSsn],

where subscripts % and f refer to hep and fec lattices,
respectively. The results are listed in Table II in the
form of A(e), where

e/ ;=14 (107%)A(e).

This calculation is based on highly accurate .S, which
have been computed in the present work. The limits of
error of A(e) are also given; these limits depend only
on the known limits of error of the S,. The ratio of
the static lattice binding energies is also obtained
from (4.3) and is

Dy/Dy= (Sgi/Sss)(es/ en)P=14 (1079 A(D).

(4.8)

(4.9)

(4.10)
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TasLe II. Comparison of nearest-neighbor distance and
contributions to the zero-point energy for hexagonal close-packed
and face-centered cubic lattices.

@ B A(e) A(D) F aon/F a0s
12 10 —9.37 +0.02 1.466 +0.002 1.044-0.02
12 8 —8.75 +0.01 1.3912-+0.0007 1.0440.02
12 6 —5.5744-0.006 1.0098+-0.0005 1.0540.02
12 4 0.43 40.05 0.289 4-0.003 1.0540.02
10 8 —8.13 +0.02 1.342 +0.001 1.0540.02
10 6 —3.68 40.01 0.8958+-0.0006 1.0540.02
10 4 3.70 4-0.06 0.158 4-0.004 oo

8 6 0.78 +0.02 0.628 4-0.001 1.054-0.02
8 4 9.62 +0.10 —0.079 40.005 cee

6 4 18.5 0.2 —0.432 +0.008 1.06+0.03

The last equality defines A(D); this is also listed in
Table II, along with limits of error. The harmonic
zero-point energy per atom of the crystal is defined as

Eg=(N)? Xk, hok,. (4.11)

With the aid of (4.5), the appropriate ratio can be
written

Eyw/Egs= (D1/D )2 (Qanes/Qusen). (4.12)
The result of this calculation is
Eg1/Eg;=14(241)(107Y), (4.13)

for all (,8) sets considered here. Finally the ratio of
F 40=F3+F4 for hcp to that for fcc has been com-
puted, based on the approximations (3.9) and the
accurate high-temperature calculations.! The results,
along with estimated limits of error, are listed in
Table II.

Certain of these results are comparable with the
findings of Barron and Domb.? These authors also
found that, at vanishing pressure, D) is greater than
Dy for all except very small values of @ and 3, and that
for =12, B=6, D;,>D; by 0.01%,. In addition, for
the (12,6) potential, they concluded that (Egy,— Eny)/
Epg is of the order of 107 and possibly of either sign.
Their analysis of Ex was based in part upon the
empirical relation Ex=(9/8)K0,. The present calcu-
lations allow an accurate numerical check of this
relation; this check is discussed in Appendix I.

The low-temperature approximations (3.17) and
(3.18) have been evaluated for the Lennard-Jones
models for the fcc lattice. The first step was to calculate
the long-wavelength dynamical matrices. A straight-
forward expansion of the dynamical matrix ax [Ref. 1,
Eq. (1.7)7, to order k2, leads to the following results
valid for any primitive cubic lattice?:

A(0,0)=ay/k? to order k?;

[2(0,0) Jii=M(0,6)+ £2\:(0,6),
[2(0,0)Jiir = kikins(0,0), 174",

(4.14)

: (4‘15)

2T, H. K. Barron and C. Domb, Proc. Roy. Soc. (London)
A227, 447 (1955).
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where the angles (0,¢) denote the direction of k and
k; is the ith Cartesian component of the unit vector k.
Also,

>\1= Z,n[‘ﬁ’()nrnzz_l_ 2¢”0n'rni27ni’2] ) i# 7:’ )
>\2= Zzln ¢”0nl:rni4_ 1’,”'27’7";'2] y 177 y
A= 4Z,n ¢”0nrnizrni»2 N 154,

Here ¢’ox is the first derivative of ¢(7?), with respect to
7%, evaluated at 7*=7,2, and ¢/o, is the second deriva-
tive. When e is chosen so as to minimize U, the sum
involving ¢'o, in A\; vanishes for a primitive cubic
lattice, and A3 becomes 2X\;. For the Lennard-Jones
model under consideration, the \ coefficients can be
obtained from the expressions

MNe=[aBD/2(a—B) I (a+2)SasSa™

(4.16)

— (8+2)SpsSs71],  (4.17)
T1‘3u= 3>\1+)\2= Da,3/3 )
)\3 = 2)\1 s
where
Sat=2""n(rni/ *(e/rn)*™, anyi. (4.18)

The S«4 have also been calculated in the present
work. The eigenvalues of the matrix X(0,¢) are
M[c,(6,6)>. The dimensionless matrices A=D1
were calculated as a function of (0,¢), the matrices
were diagonalized by the Jacobi method, and the
averages over angles were carried out by numerical
integration. Some values of the dimensionless quantities
C.=(M/D)#2C, are listed in Table III; these are
accurate to 1 part in 10%. In addition, the approximation
(3.13) for the H(r,) matrices was checked numerically
for all the (@,8) sets and for several lattice vectors r,.
The approximation was found to be quite good; for
example, for =12, =6, and r,=(¢/v2)(1,1,0), the
dimensionless matrix H (r,)= e2(M/D)~52H(r,) is

_ —0.00379 0.00187 0
H(r,)=| 0.00187 —0.00379 0 ,
0 0 —0.00350

while the approximation (3.13) gives [H(r.)]is
= —0.003695;;» for r, a nearest-neighbor vector.

The sums over lattice points in (3.17) and (3.18)
converge rapidly with increasing distance from the
origin, and for the range of forces considered here
these sums can be restricted to nearest neighbors only.
The relative contribution of further distant neighbors
is about 29, for the fcc lattice. After carrying out the
indicated sums over nearest neighbors, the results for
fcc are

fou=—[N(KT)*V cen®/ 157 M**](C_s/0e)

X[150(¢")2+120€%" 6"+ 28¢(¢")?],  (4.19)
Fu=[N(KT)*V .e&x2/155:M*2](C_s/)
X[15¢"+20€%" '+ 4eid™"], (4.20)
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TaBLE III. Anharmonic contributions to the low-temperature
free energy for the face-centered cubic lattice.

a B C_s Cs Fae Fae AB4
12 10 0.03785 0.005533 —0.52 0.86 8.9
12 8 0.05393 0.01012 —0.72 1.17 8.6
12 6 0.08536 0.02216 —1.10 1.84 8.8
12 4 0.1630 0.06691 —2.10 3.68 9.8
10 8 0.07239 0.01676 —0.89 144 7.6
10 6 0.1152 0.03723 —1.37 2.22 7.5
10 4 0.2219 0.1145 e

8 6 0.1672 0.07100 —1.84 2.89 6.3

8 4 0.3255 0.2241 e e e

6 4 0.5363 0.5387 ~5.2 7.6 4.7

where the derivatives ¢/, ¢, and ¢”” are evaluated
at r?=¢%. The function of these derivatives in fy is
the same as that which appears in the approximations
far and fi for the fcc lattice. Equations (4.19) and
(4.20) may be transformed by the introduction of
dimensionless quantities, as defined above and in Ref.
1, and the dimensionless free energy contributions may
be defined as

Ju=[ D/ MV (KT)*](fa/N),

and similarly for fi. These contributions are listed in
Table III. It is estimated that the correct Fj lies
within 509, of f, while the correct Fy lies within
30% of fu.

The correction to the harmonic Debye temperature,
due to anharmonicity, is defined by (2.22). If A, is
defined as

(4.21)

AO4=(04—Ox)/O, (4.22)

then with the aid of (2.17) and (2.18), the appropriate
dimensionless quantity is

A6 4= A0 [ e(DM)2/ 1] = (10/7°C_3) (Fast+ fur) . (4.23)

This quantity is also listed in Table IIT for the fcc
lattice. It is interesting to note that, despite the large
variation of C_s, fi, and fi with varying « and B,
AO, is not very sensitive to the range of forces. In
addition, the transformation to dimensionless quantities
shows that A©, is proportional to M2,

The zero-point and low-temperature approximations
of Leibfried and Ludwig'® can be conveniently compared
to the present results. With the aid of the definitions
(2.18) and (3.14), and after transforming to dimension-
less quantities, their expressions for the fcc lattice can
be written

Fso=— (81/256) (3n2/C_5)?*DP, (4.24)
Fio=(81/256) (372/C_3)*2DQ, (4.25)
Fae=— (817%/320V2) (C_s/372)ADP,  (4.26)
Far= (8174/480V2) (C_3/3x2)23DQ. (4.27)

13 Reference 8, Egs. (12.8) and (12.9).
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TaBLE IV. Anharmonic contributions to the zero-point and
low-temperature free energy for the face-centered cubic lattice,
according to the approximation of Leibfried and Ludwig® as
represented by (4.24)-(4.27).

o B Fo f40 Fae Fae
12 6 —10.8 53.9 —0.24 0.81
10 6 — 84 39.8 —0.28 0.89

These authors have tabulated the dimensionless
quantities DP and DQ (their Table XIV) for several
Lennard-Jones potentials. With the aid of these tabu-
lated values, (4.24)-(4.27) have been evaluated for the
sets of & and B which correspond to those used in the
present work; the results are listed in Table IV. By
comparison with Table I, it is seen that the zero-point
approximations of Leibfried and Ludwig agree well
with the zero-point approximations of the present work.
The low-temperature approximations as given by
(4.26) and (4.27), however, do not agree with the
present results (Table ITI) within the estimated limits
of error of the latter. Nevertheless, the sum fa;+ fu,
according to the approximation of Leibfried and
Ludwig, differs no more than 309, from the present
results for the same sum. This may be considered
satisfactory agreement for the two different calculations.

V. APPLICATION TO INERT GAS CRYSTALS

The results of Sec. IV have been applied to the
solidified inert gases. The constants 4, and Bg, of (4.1),
have been computed for the (12,6) potential from the
data in Appendix IT of the article of Dobbs and Jones.™*
The nearest-neighbor distance e and the several
contributions to the energy at absolute zero, are listed
in Table V for Ne, Ar, Kr, and Xe in the fcc structure.
Table V also lists the observed nearest-neighbor
distance ao/VZ, where a, is the cubic lattice parameter.!s
The calculated e agrees with the measured, within
experimental error, except for Ar. In spite of this
agreement, the calculated e appears to show a trend
of being smaller than the observed, the more so the
smaller the mass. Such a trend is expected to result
from the determination of € by minimizing U, alone,
instead of U¢+NJEy. This point is being checked by
further calculations.

The total (positive) binding energy of the crystal at
T=0is

Ly=NJ(D—Eg)—F 40;

this quantity is listed in Table V, along with limits of
error due to the possible errors in the calculation of Ey
and F 4o, but with no consideration of possible errors
in the experimentally determined 4, and Bg. The
calculated Lo values deviate from the measured values'®

(1;5}73). R. Dobbs and G. O. Jones, Rept. Progr. Phys. 20, 516
R 1; I\I/Ifasured values of @o and L, are taken from Appendix I of
ef. 14.
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in an apparently unsystematic way; the difference
varies from ~29%, of the observed value for Ar up to
~119, for Ne. The calculated differences between L,
for the fcc lattice and Lo for the hcp lattice are also
listed in Table V, along with error limits which reflect
only the possible errors in the calculation. The anhar-
monic contribution to the zero-point energy is sufficient
to make the fcc lattice stable at 7=0 for Ne and Ar,
but not for Kr and Xe. Finally, the anharmonic
corrections to the low-temperature Debye temperatures
are also listed in Table V, in the form of A®,4. These
corrections are quite large, mainly as a result of the
small binding energies of these crystals. However, an
additional correction of the opposite sign should result
if € is made larger, by minimizing U+ NJEg instead
of U, alone.

In connection with the question of the relative
stability of the fcc and hcp structures at absolute zero,
Jansen and Zimering!® have concluded that the stabil-
ization of the fcc for Ne, Ar, Kr, and Xe may be
explained by two and three atom exchange energies,
as calculated in second-order perturbation.

VI. DISCUSSION

Several qualitative features of the approximate
calculations of Sec. IV are of interest. Firstly it should
be noted that, according to (1.1), F; is negative at all
temperatures for any force model for any lattice. It is
not possible to determine the sign of F, from the
general expression (1.2). For the models for which
calculations were carried out, the zero-point, low-
temperature, and high-temperature contributions to
F, are all positive and greater in magnitude than the
corresponding contributions to Fj, so that F3+Fy is
positive in all cases. This leads to a negative anharmonic
specific heat at constant volume in all cases studied.

The dimensionless quantity F 4o decreases markedly
with increasing range of forces; this reflects the fact
that the F4o contribution dominates 7 40. The quantity
faet fur increases with increasing range of forces, in
contrast to the zero-point and high-temperature limits.

In the zero-point anharmonic free energy, the
approximations (3.9) show that F; contributes propor-
tionately only one-third as much as in the high-
temperature limit. This allows the possibility that the
total zero-point and high-temperature contributions
could have opposite sign. Since Fi4r>0 and F3r<0, the
approximate condition for this to occur is, according to
(3.9), Fur<|Fsr|<3Fs. On the basis of the calcu-
lations of Ref. 1, however, it appears quite unlikely
that this condition will be fulfilled, at least for fcc and
hcp lattices.

The present treatment of the low-temperature limit,
Sec. I, is quite different from the treatment of Leibfried
and Ludwig.8 Although the contributions f3; and fu,
as calculated by the present approximations (Table

16 1., Jansen and S. Zimering, Phys. Letters 4, 95 (1963).
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TaBLE V. Applications to the inert gas crystals. Dimensions are as follows: 4, is Al erg, Bg is AS erg,
e and ao/VZ are A, and all energy contributions are in cal/mole.

Ele- Lo Lo
ment Aa Bg € ao/V2 D En Fao Calculated  Observed Loy— Loy AO4
Ne 3.68(10®  8.51(10™2) 3.00 3.08+-0.11 610 187  23.0 40046 450410 —1.2 £0.8 0.258
Ar  1.63(1077)  1.05(1071) 371  3.75+0.01 2097 199 7.59 18902 185012  —0.23+0.27  0.080
Kr 5.67(1077)  2.28(107) 401  4.0240.02 2841 148 3.10 26901 259050 0.10£0.12  0.044
Xe 2.57(107%)  5.65(107%0) 444 43 0.1 3848 124 1.61  37224+0.5 383050 0.28+0.07  0.027

III), are several times larger in magnitude than the
corresponding results of Leibfried and Ludwig, the two
methods give reasonable agreement for the sum f
+ 74 This is not entirely an accident, since the
treatment of Leibfried and Ludwig may be expected
to underestimate each contribution, and to under-
estimate F3; by a larger factor than Fy.

Barron and Klein® have pointed out that the low-
temperature Debye temperature as obtained from the
specific heat is the same as that which is calculated from
the elastic constants at absolute zero. This is correct
to the lowest order in anharmonic perturbation, since
the higher order terms in the expansion (2.14) are of
higher order in anharmonicity, even though these
terms are each proportional to 7* at low temperatures.
It is therefore not possible to separate the harmonic and
first-order-anharmonic contributions to the low-temper-
ature free energy by comparing the Debye temperatures
as determined from specific heat and from elastic
constants. However, as it was shown in Sec. IV, the
anharmonic correction to the low-temperature Debye
temperature is proportional to M—* for one atom per
unit cell. It is therefore possible, at least in principle,
to separate the low-temperature harmonic and anhar-
monic contributions by measuring the specific heats of
different isotopes of the same element.

In a recent article, Overton!” proposed an empirical
expression for the anharmonic specific heat at constant
volume, Cy4, which was assumed to be valid at all
temperatures:

Cya=Cyu[ AT+ higher order terms],  (6.1)

where Cyy is the harmonic lattice specific heat and 4
is a constant to be determined. Overton used (6.1) to
investigate Cy4 for Na and Cu, by comparing this
equation with the appropriately corrected measured
values of Cp at temperatures near and below the
Debye temperature. Although (6.1) is correct to order
T at high temperatures,! by virtue of the fact that Cvy
approaches a constant at high temperatures, there is
no basis for supposing that Cy4 has a leading term
which is proportional to 7Cyy at intermediate temper-
atures. Indeed, at low temperatures, (6.1) is incorrect
because it predicts that Cys goes as 7% when Cyy
goes as T, while in fact Cy4 goes as T° at low tempera-

17W. C. Overton, Jr., J. Chem. Phys. 37, 2975 (1962).

tures. At intermediate temperatures, the form of Cy4
is quite complicated.

ACKNOWLEDGMENT

The author wishes to express his appreciation to
J. L. Patrick for preparing and executing all of the
computer programs required in the numerical work.

APPENDIX I. ERRORS IN THE EMPIRICAL
RELATION Ex=(9/8)K®.,

Domb and Salter!® have tested the empirical relation
Ex=(9/8)K0,, for some simple models for the three
primitive cubic lattices. They concluded that the
approximation can be used to calculate Ex to an
accuracy of 19, for reasonable force models. The
present work allows an accurate calculation of the error
of this approximation for fcc and hcp lattices for the
Lennard- Jones models which have been studied. From
the definitions

E1{= (]N)_l Zk,s %hwks )
KO6,= (5/3)1/2ﬁ[ (SJN)_I Z Kk,s wk32:|1/2 )

the error in the approximation may be written

8Eg=[En— (9/8)K0.,)/Ex
= (Q1—096825921/2)/Q1 .

This error is listed in Table VI, is accurate to #=0.001,
and is the same for fcc and hcp within this accuracy.
It is seen that 6Eyx is negative for the Lennard-Jones
models considered, and is greater than 19, for the
long-range forces.

TasLE VI. Errors in the empirical relation Ey=(9/8)K0, for
face-centered cubic and hexagonal close-packed lattices.

a B8 8En
12 10 —0.007
12 8 —0.008
12 6 —0.010
12 4 —0.015
10 8 —0.009
10 6 —0.012
8 6 —0.015
6 4 —0.027

18 C. Domb and L. Salter, Phil. Mag. 43, 1083 (1952).
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APPENDIX II. FURTHER COMPARISONS WITH
THE LITERATURE

After the present manuscript was completed, the
author’s attention was drawn to a recent paper by
Flinn and Maradudin.® They have obtained approxi-
mate expressions for the zero-point and low-tempera-
ture anharmonic free energy contributions for a fcc
lattice with nearest-neighbor interactions through an
arbitrary central potential. Their expressions have
been translated into the language of the present paper,
exactly as in Ref. 1 where a similar comparison was
made of the high-temperature approximations. The
results of Flinn and Maradudin can be written

fao=— (N72€9:2/ M3 (0.001037)

X[9(¢“)2+ 1262¢II¢III+464(¢//1)2] , (IIl)
Fro= (N720.2/ M3?) (3/256)
X[3¢"+12e¢""+4et”"], (I12)

fa=—[N(KT)*V .ex*/64072M1/27(0.2997C_52,/P%)

XLO("f+1266/¢" +4(" 1], (I13)
Fu=[N(KT)*V x%/ 64072 M2 ](C_50:/P?)
X[3¢"+12e2""+4€'0"""], (114)
where
d=1¢"+ 2" . (I15)

There is a basic difference between the method of
approximation which was used in Ref. 10 and that
which has been used in the present work. Flinn and
Maradudin have approximated appropriate limiting
forms of (1.1) and (1.2) by omitting certain small terms
in the coefficients B,/ p,nrprr A0 Crp,nspr,nr7 o7 nrt7 oo,
while the present method has been to replace certain
frequency denominators in these limiting forms by
their averages. Just as in the high-temperature approxi-
mations, the two methods give very similar results for
the zero-point contributions. With the aid of (3.8)
and of Egs. (4.7) and (4.8) of Ref. 1, the present
approximations for the fcc lattice can be written

f30= - (4Nﬁ262/M91292)
X158 +1284"¢ " +46(8")],  (I16)
Fio= N7/ MO [15¢"+208¢" +4eg""].  (II7)

The similarity of (II1) and (II6), and of (II2) and
(I17), is brought out by noting that, for nearest
neighbors only for the fcc lattice,

Qu=16[(3/2)¢'+ &¢'"].

Also Q2=Q,, and since the ¢’ terms give relatively
small contributions to Q; and ®, then Q,~16®.

(118)
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TaBLE VII. Anharmonic contributions to the zero-point and
low-temperature free energy for the face-centered cubic lattice,
according to the approximations of Flinn and Maradudin®® as
represented by (II1)-(II5).

a a fa0 Jao fa fae
12 10 —8.58 80.7 —0.17 0.46
12 8 —6.81 65.9 —0.21 0.59
12 6 —35.06 51.5 —0.28 0.84
12 4 —3.32 37.2 —0.42 1.38
10 8 —5.37 52.6 —0.24 0.69
10 6 —3.85 39.7 —0.31 0.94
8 6 —2.76 29.1 —0.36 1.10
6 4 —1.02 17.2 —0.56 1.96

Equations (II1) and (II2) have been evaluated for
the Lennard-Jones models of the present paper, and
the results are listed in Table VIL. The values for fs
are 35-809, smaller than the approximate values of
F3 of Table I. This discrepancy is attributed largely
to the fact that the approximate F3, were calculated
from (4.6) with the aid of the accurate high-temperature
results, rather than from (II6). The fi as given by
(I12) are generally in good agreement with the approxi-
mate Fyg of Table I. Finally, since the total zero-point
anharmonic free energy is dominated by the Fyo
contribution, the approximation to Fa+Fy as given
by Ref. 10 is generally in agreement with the results
of Table I within the estimated error of the latter.

The low-temperature contributions (II3) and (I14)
are to be compared with the expressions (4.19) and
(4.20). It is difficult to make an analytic comparison,
but the numerical results for (II3) and (II4) are listed
in Table VII. The discrepancy between these values
and the corresponding values in Table III is quite
large, being a factor of ~2-3 for fi and a factor of
~3-10 for fi. This discrepancy may result from the
basic difference between the two methods of approxi-
mation, in the following way. In the development of
Sec. I above, when the exponentials and eigenvectors
were expanded in powers of %, the two leading terms in
the expansion gave no contribution on account of
certain vanishing sums of B and C coefficients. If the
B and C coefficients are approximated at this stage,
however, these particular sums need not vanish.

The sum f3+ fu, according to the approximation
of Flinn and Maradudin, agrees qualitatively with the
present results (Table IIT). For each @ and B, this sum
is smaller than the corresponding quantity computed
from the values of Table ITI, varying from 129, smaller
for a=12, =10, to 449, for a=6, f=4. In addition,
the approximation of Flinn and Maradudin shows the
trend of increasing fs.+ fi: with increasing range of
forces, just as does the approximation of the present

paper.



