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We have performed spin-echo experiments on P-phase He' and have measured the exchange interaction
J between He' atoms in a consistent way, both by the "exchange narrowing" of the line (exchange lengthen-
ing of T&) and by the strong reduction of T& at low magnetic 6elds (vIIO=I). I is found to increase very
rapidly with Increase lg molar volume, ranging from less than 20 kc/sec at a lattice constant of 3.4 A to
90 kc/sec at 3.3 A, and to about 300 kc/sec at 3.6 A. These exchange interactions are much too small to
account for the "departure from the Curie law" found by Adams, Meyer, and Fairbank. It is shown that
the susceptibility is, in fact, "Curie law" (in their temperature range) and we believe that they were re-
porting —as a susceptibility anomaly —the effect of a long exchange bath-lattice relaxation time (observed
for the first time in the present experiment). This exchange-lattice relaxation time varies as T "(7&n&11)
and is =100 sec at 1'K for P-phase He of 3.5 A lattice constant. The results for the exchange-lattice re-
laxation time are compared with a modi6cation of a theory by QriQiths. A major mystery remains —the
exchange-bath heat capacity as measured by the spin-echo method exceeds the calculated value by &10'.
The exchange interaction is discussed and compared with the prediction of Saunders and others.

I. INTRODUCTION

'NUCLEAR-magnetic-resonance measurements on
He', both liquid and solid, have contributed

greatly to our knowledge of the behavior of a real Fermi
liquid. Equilibrium properties such as nuclear suscept-
ibility, and dynamical properties such as TI, T'2, and
the coeKcient for atomic diGusion D, have all been
measured by these techniques. ' Liquid He' has long
been known to exhibit large departures from the Curie
law at temperatures of the order of 0.6'K, at which it
becomes degenerate. ' At sufficiently low temperature, '

the atomic diffusion coefficient in degenerate liquid He'

goes as T ', as befits any true Fermi liquid.
Our understanding of the behavior of solid He' has

been much impeded by the following apparent paradox:
Since 1960 it has been believed that the nuclear suscept-
ibility of solid He' exhibits a departure from the
Curie law at temperatures below 0.3 K as evidenced4

by Fig. 1. Such deviations require, of course, an
exchange interaction J such that

J/27r (41sT./sh) 3000 MHz,

Io

FIG. 1. Bulk susceptibility of He'
versus 1/T, reported by E. D. Adams,
H. M eyer, and W. M. Fairbank
(Ref. 4).
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' R. L. Garwin and H. A. Reich, Phys. Rev. 11S, 1478 (1939).
'W. M. Fairbank, W. B. Ard, and G. K. Walters, Phys. Rev. 95, 567 (1954).
~A. C. Anderson, W. Reese, and J. C. Wheatley, Phys. Rev. 127, 671 (1962).
4 E. D. Adams, H. Meyer, and W. M. Fairbank, Helium Three (Ohio State University Press, 1960), p. 57.
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s being the number of nearest neighbors of a given atom.
On the other hand, solid He' has long been investigated
in both the u and P phases by the spin-echo method, and
perfectly reasonable values of T~ have been found. The
large exchange interactions inferred from the suscep-
tibility would have narrowed the line so much that T2
would have been lengthened to 10' sec or more, or rather,
would be limited only by T~, in contradiction to the
experimental values of the order of some milliseconds.
It has not been obvious how to reconcile this conflicting
evidence. 5

The experiments reported here, and their interpreta-
tion, form a continuation of the work published
previously, ' ' using for the most part the same appara-
tus, except as noted. In this paper we describe some
further measurements of spin relaxation l'~ and T2 as
well as nuclear susceptibility x, in P-phase He'. For the
most part, T2 is found to be very long compared with
the dipolar width, and we derive the nuclear exchange
interaction J from the measured exchange narrowing
of the line for the hexagonal close-packed (hcp) lattice
of P-phase He'. An independent estimate of J may also
be obtained, it turns out, from the low-field Zeeman-
exchange relaxation (cross relaxation), and these two
measurements of J are found to agree.

Speci6c-heat measurements down to~ 0.2'K failed to
show any increase in specific heat due to an exchange
interaction, thus setting 100 Mc/sec as an upper limit
for (J/2s) at a molar volume of 21.00 cm'.

At the lower temperatures (T&1'K) our observations
are still quantitatively interpretable by the model of
I"ig. 2. At sufficiently low temperatures the direct
relaxation from the Zeeman system to the lattice (TsL)
is quenched, since the most effective mechanism
(atomic diffusion) disappears with a large activation
energy. On the other hand, an appropriate choice of the

Tg, E =-—
Zs Z

ZEENAN
'

ZL
(dirfu~n)

Pro. 2. Schematic dia-
gram of the three-res-
ervoirs model for the
spin system and the
1Rttlce. Eg and Eg Rl e
the energies and Tg, TE,
and TL are the tempera-
tures. Cs/Ts and Cs/T'
are the heat capacities.
TEEs TEL, Rnd TZL Rre
the relaxation times.

ross-relaxation)
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(diff'union or phonons)

5 A preliminary report of the content of this paper was published
by the authors in Proceedings of the Eighth International Con-
ference on Low-Temperature Physics, London, 1962 (to be
published).' H. A. Reich, Phys. Rev. 129, 630 (1963).

7 D. O. Edwards, A. S, McWilliams, and J. G. Daunt, Phys.
Letters 1, 218 (1962). Cf. G. O. Zimmerman, H. A. Fairbank,
M. Strongin, and B. T. Bertman, Bull. Am. Phys. Soc. 8, 91
(1963). These limits on J cannot be taken at face value since,
according to our result for Tg, p, the exchange system at 0.05—0.5'K
is completely isolated from the lattice and thus does not exchange
energy with it. Exchange integrals much larger than the limiting
values claimed by these authors could thus exist and be undetected
by their speci6c-heat measurements (at least in hcp He3).

A
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I'n. 3. Schema of low-temperature apparatus. Thc helium
Dewars are of conventional design and are not shown. {A) Liquid
He' for the refrigerator. (li) Capillary feed for throttling the liquid
He~ returning from the compressor. (C) Evaporator. (D) Carbon
resistance thermometers. (E) Heater. (F) Guard space. (G)
Copper rod insuring thermal contact between evaporator C and
(H) Sample cell (see Rcf. 6 for details of brass-nylon cell). (J)
Seals used for rf leads. (K) Seals used for resistance leads. (L)
Filling capillary for sample cell. (M) Pumping line for the Her
refrigerator. Not shown are the leads to the sample cell and
resistance thermometers.

magnetic field maintains the Zeeman-to-exchange cross
relaxation (Tsa) at a reasonable rate. ' In this case one
can use the Zeeman system as a thermometer for the
exchange bath, and we And it possible to measure
accurately and directly the exchange bath-lattice
relaxation time, TFL. This relaxation time which
varies as T " (7&rs&11), essentially cuts off the
cooling of the spin system as the lattice is cooled at
reasonable rates. %e believe that it is this effect which
in n-phase He' was mistaken by Adams, Meyer, and
Fairbank for a deviation from the Curie law. It must be
stated here, however, that the heat capacity of the
exchange bath of Fig. 2, as measured by the spin-echo
method, is orders of magnitude higher than it should be
(according to our measurements of J). In order to
display this puzzle as explicitly as possible, we describe
herein some of the details of the experiment which

might otherwise be superQuous.

IL EXPERIMENTAL APPARATUS

The experimental apparatus was mainly that of Refs.
6 and 1. Electronic temperature regulation was added,
using the circuit published by Sommers. In addition,
the He' refrigerator was modihed to use the small

liquid capillary described by Ambler. e These changes

H. S. Sommers, Jr., Rev. Sci. Instr. 25, 793 (1954}.
9 E. Ambler and R. B. Dove, Rev. Sci. Instr. 32, /37 (1961).
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facilitated the rapid achievement and stabilization of the
desired experimental temperature which was vital to
the measurements of the exchange-lattice relaxation
time. It was possible to change the temperature from
0.5 to 2'K in a few seconds, without overshoot, and to
return to a predetermined temperature below 1'K in
about ten sec. (It should be noted that the porous plug
used by Ambler is many orders of magnitude too coarse
and presumably was usable only because the machining
operation closed almost all the pores. We use powdered
lead compacted to a leak rate of 3X10 cc STP He'/sec
from 1 atm to vacuum at 300'K.)

The He' we used was obtained from Oak Ridge
National Laboratories; no He4 was detectable when anal-
yzing the gas on a mass spectrometer (He4/He'(10 ').

The cryogenics were somewhat simplified, as can be
seen on Fig. 3, showing the experimental apparatus
inserted within the He4 Dewar. In the He' refrigerating
system, the throttling of the returning liquid is accomp-
lished by means of the capillary feed (8). The pressure
across it increases with the increasing heat inQux to
the evaporator. The temperature in the evaporator (C)
is controlled by means of an electronic temperature
regulator, ' using the heater (E). The Constantan
leads to the temperature-sensing resistances (D) and
the above-mentioned heater are brought in through the
pumping line (M) and the seals (K). The rf leads are
brought in through the He4 bath, the seals (J) and the
guard space (F); in the region of this space which
experiences no strong magnetic field, the rf leads are
made of niobium, in order to minimize the heat leak to
the sample cell.

Data was taken at Zeeman frequencies from 400
kc/sec to 5.2 Mc/sec and at temperatures from 0.38

0 1 2 3 4 5 6 7 T('K)

FIG. 4. Phase diagram for He'.

to 4.5'K. The molar volume ranged from 16.56 to
19.32 cc, and the maximum pressure at which data was
taken with the nylon sample cell' was 340 atm.

The technique of preparation of a solid with a desired
molar volume differed somewhat from that of Reich.
To form the solid at a known density, we start with an
exchangeg as (either He' or He') in the guard space
(F); the pumping line (M) being under vacuum, which
insures thermal isolation of the upper part of the
capillary (L) from the He4 bath. We then compress
the liquid and cool it, by pumping on the He4 bath,
slowly enough to insure thermal equilibrium of the
sample cell. When the temperature reaches the freezing
temperature Tr (point a on the phase diagram of Fig. 4),
a plug of solid appears at the coldest point in the
capillary, presumably somewhere between the evap-
orator and the sample cell. On further cooling, the
material in the cell will freeze at constant volume,
along the track abc, and, provided the capillary volume
is negligible with respect to that of the sample cell, the
density of the solid will be that of the liquid in presence
of solid at the initial pressure. In order to verify this
understanding of the situation we check that the
temperatures T~ and T (at which solid appears and
liquid disappears)& agree with the freezing and melting
temperatures given by the phase diagram. ' "We take
advantage of the large difference in spin-lattice relaxa-
tion time Tj between the solid and the liquid. In the
liquid, T~ is of the order of one min, while in the solid,
at our usual magnetic fields and at the freezing temper-
ature, T, is always less than about 0.1 sec in the P phase.
To detect when the solid appears, we look at the He'
signal in a recurrent display, with a repetition time of
the order of the T» in the solid. To detect when the liquid
disappears, we use a sequence of three 90' rf pulses;
if the time interval between the second and the third
ones is long compared with the T~ in the solid, the
"stimulated echo, '" if any, is only due to the spins in
the liquid phase. In this manner, we often checked that
the freezing and melting temperatures agree with those
given by the phase diagram within about 0.01'.
Although in our opinion it was more convenient than
the technique used previously, ' this method still left
something to be desired, since the bath needed to be
warmed in order to change the molar volume of the
sample.

P-phase He' of the desired molar volume was prepared
as described above and the temperature regulated to
within a few millidegrees by the electronic regulator.
The apparatus was tuned, ' and measurements were
made of the longitudinal and transverse relaxation
times T~ and T2, as well as of the relative nuclear
susceptibility by comparison with a reference signal.
These data supplement those of Reich and are presented
below.

' R. L. Mills and E. R. Grilly, Phys. Rev. 99, 480 (&955)."K.R. Grilly and R. L. Mills, Ann. Phys. {N. Y.) 8, 1 (1959}.
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A ~ 19.32 crn~/mole
B 18,55
C, ~ 18,27
D 16;56

A

The thermal time constant of the solid He' is expected
to be only a few seconds even at low temperatures
where the major thermal inpedance will be the Kapitza
resistance between the copper axial tube and the sur-
rounding solid He' sample. In our temperature range,
for which the specific heat of the solid He'C, ~ T', this
thermal time constant is nearly independent of tempera-
ture and is observed to be less than 10 sec at 1.3'K.

III. RESULTS AND INTERPRETATION

A. Transverse Relaxation

The Q.rst observation to be made, in the whole range
of densities and temperatures we cover, is that the
transverse relaxation is exponential, an indication of
some kin;d of narrowing of the line. This enables us to
define a transverse relaxation time T2, equal to the
inverse half-width at half-intensity of the resonance
line observed in a cw method.

Measurements of the transverse relaxation time T2
as a function of temperature, for various densities of
the solid, give curves such as those of Fig. 5. In the
high-temperature region of these curves, T2 is diGusion-
narrowed and proportional to the inverse of the corre-
lation time r, for the diffusion [r, increases with
decreasing temperature like r,= re exp(Te/T) j. In the
low-temperature region, Tg does not depend on tempera-
ture, being exchange-narrowed when ~)r, '. These
exchange-narrowed relaxation times T2' are given in
Table I.

The computation of the moments of the line raises a problem as
to what is the magnetic dipole-dipole coupling of the spins when
these are not completely localized (large zero-point motion).
Strictly speaking, magnetic coupling between two given spins i

D

Q5 p r "/r ( &)

Fro. &. LogTM versus 1/T, for several different molar volumes.
The curves A and 8 were taken at 1.6 Mc/sec, the curve C at
0.88 Mc/sec and the curve D at 2.2 Mc/sec. In Figs. 5, 7, and 8,
the spin system is at the same temperature as the lattice for
1/TL &1.4. As may be seen from Table III, the spin system does
not cool below 0.7'K during these T~, T2, and TzE measure-
ments, and the relaxation times are simply plotted versus recip-
rocal lattice temperature on the abscissa. The curves are already
demonstrably flat below 1/T=1.4, and even in equilibrium will
probably run as shown.

and
Ms ——7.36I(I+1)(y45'/a')

MP= 8.67I(I+1)(y45'/a') (3)

c being in both cases the nearest-neighbor distance and

p the gyromagnetic ratio of the spins I. The reciprocal
square root of %~i' is of the order of 50 to 60 @sec for
the molar volumes given in Table I.

Comparison of the measured Ts' with (Ms) '~' from
Eq. (3) allows us then to compute an exchange interac-
tion. We assume the only nonvanishing exchange inter-
action is between nearest neighbors and we de6ne it
as 5JI I'. We assume the only spin-spin tensor coupling
is the magnetic dipole-dipole interaction.

We then compute the fourth moment M4 for a
powder, which gives for the two phases

354 =66 95[I(I+1)3'(y4k'I'/a')
and

cV4f'= 121.4[I (I+1)]'(pe'I'/a') .

TABLE I. The measured exchange-narrowed transverse relaxa-
tion time T2', and the exchange interaction J as a function of
molar volume V, in the P-phase solid He'. The alignment tempera-
ture T, is given by T 3(5/k) J. The nearest-neighbor distance
a is given by a=2'~ (V/N)'t, N being the Avogadro number.

V
(cm'/mole)

19.32
18.78
18.55
18.27
17.59
16.56

3.566
3.532
3.518
3.501
3.457
3.388

8

(msec)

5.5
3.7
2.7
2.0

&1.1
&0.3

J/2
(kc/sec)

205
150
iio
83

&50
&15

2'cX10'
('K)

3
2.2
1.6
1.2

&0.8
&0.3

"S.R. Hartmann, Phys. Rev. 133, A17 (1964).
"K.M. Saunget. 's, Phys. Rev, 136, 1724 (1962).

and j in the crystal is:
Krrri =v'll'(4'o(r" '{I'~ I& —3r;,~(I' ~ ry) (I' ~ ro) }~%), (1)

~
@0)being the total orbital wave function, assuming the separation

of spin and orbital coordinates to be valid, and y being the gyro-
magnetic ratio of He'. If i and j are remote from one another
(r;;))o, o being the nearest-neighbor distance), this dipole-dipole
coupling obviously reduces to

3!Isri=yVPa;; '{I' I7' —3a;) '(I' a;,){I& a;;)}f {2)

a;; being the vector joining the lattice sites around which are
spread the wave functions of atoms i and j. If i and j are neigh-
bors, in replacing (1) by (2) one makes an error which is bigger
the less localized are the individual wave functions of He; atoms.
This error, largest for two atoms which are 6rst neighbors, can
be seen'2 to be of the order of {Ba) ', 1/8 being a measure of the
width of individual wave functions (zero-point energy of the
crystal increases with 5 '). Theoretical computations" yield values
of the parameter which always make {ba) ' less than 4% in the
range of densities which has been explored. We shall therefore
neglect the correction for this error and use Eq. (2) for all the
terms in the dipole-dipole coupling.

The compuation of the second moment of the
resonance line 3f2 for a powder of crystallites in 0.

phase (body-centered cubic) and in P phase (hexagonal
close-packed) then gives [cf. Ref. 19, see Chap. IV,
Eq. (39')j:
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comparison, we show also on Fig. 6 two solid lines which
are results of numerical calculations making use of the
theory of Saunders" for the ground state of solid He'
in the n and the P phases. "We find the agreement with
the experimental results to be surprisingly good,
considering various criticisms of Saunders' theory and
the approximations made therein.

The measured exchange-narrowed T2' is related to the
computed second and forth moments by the equation"

(T a)—1—(r~)1/2(~ )e/s(~ )
—1/2

which leads to

and
(J/2or) = 17.35(Ts'/V') for the ot phase, (6a)

(J/2ir) = 13.926(Ts'/V') for the P phase, (6b)

where the molar volume t/' is in cm', T2' in milliseconds,
and (J/2or) in megacycles.

Table l gives the results of this computation of J as
a function of the molar volume t/'. The alignment
temperature T,= (z/4)(/rt/k)J, deduced from this com-

puted value of J is also shown as a function of the
nearest-neighbor distance a on Fig. 6, together with the
alignment temperature computed, according to Eq. (6),
from the T2 measurements'" of Reich. ' For the sake of

' P. W. Anderson and P. R. Weiss, Rev. Mod. Phys, 25, 169
(1953).

'4 Note added in proof. All the J/2e from our Table l used to
plot the points in Fig. 6 are obtained directly by the use of Eq. (6)
on experimental T2' measurements at such low temperatures that
thermally activated diffusion has ceased. It should be noted that
the values of J shown in Ref. 6, Table II are all in error by a factor

1.2&&2~ (see Ref. 23, note 6). This error has been corrected
roughly in the values of J derived from these data and plotted in
Figs. 2 and 3 of Ref. 12. Both these authors, however, have made
the gross error of obtaining the exchange-narrowed T2' from the
relation 1/T2=1/T2'+1/T, where Tq is the observed time con-
stant of the experimental decay of transverse magnetization (as
measured by the spin-echo method) and T1 is the time constant
of decay of longitudinal component. This procedure is completely
incorrect, since T~ and T~' are both due to precisely the same cause

Q P TTICK CONSYANr a (A)

3A LS 3.6. 3:ef

FIG. 6. Alignment temperature T,= (sAJ/4k) versus the lattice
constant u. We have calculated the solid lines according to the
theory of Saunders, as discussed in our footnote 14. The open
circles are given by our T~ measurements, the measurements made
for a(3.5 A giving only upper limits to T,. The solid circles are
given by Reich's measurements of T2.

B. Spin-Lattice Relaxation

The alignment temperatures given in the fifth
column of Table I being well below the lowest tempera-
ture reached in our experiments, the nuclear spin
system is then always paramagnetic. As far as spin-
lattice relaxation is concerned, we can regard the
system as an ensemble of three heat reservoirs (Fig. 2):
(1) the Zeeman energy of the He' spins in a dc magnetic
field H, (2) the exchange energy of the He' spins, and
(3) the lattice energy, containing all the spin-independ-
ent terms (lattice vibrations).

Zeemae-Lgtti ce Eelaxuti on

A Row of energy is expected to occur directly from the
Zeeman reservoir to the lattice with a time constant
TzL, through the thermally activated diffusion"
already exhibited by T2 measurements in the tempera-
ture range where r, ')&J. This mechanism, acting
alone, will give a relaxation time, determined by the
spectral amplitude of the local field at the frequency
co=+II:

TzL = r.(H/EIri)s, when r. '»(o.

IJ& is the field at a spin caused by its neighbors and is
of order of magnitude (/id's'/'/y). Figures 7 and 8, which
show the variation of the observed spin-lattice relaxa-
tion time Tj. with temperature for two different molar
volumes and various magnetic fields, exhibit the

(exchange-modulated dipolar interaction). We claim that the ob-
served T& is given by T2' of Eq. (6) for yIJ«J, and by —,', T2' for
yH«J. Since Ti = T2 for II ~ 0, the procedure used by Reich and
Hartmann would give J= ~ if computed from precise experi-
mental data taken at low fields! Thus, in addition to the numerical
errors, Reich's J from T2 is too large by a factor 6.3 at t/ =22.48
cm' mole ', 5.0 at 22.05 cm' mole ', 2.8 at 21.tp'0 cm3 mole ', etc.
The correct values of J from Reich's T2 data are plotted in our
Fig. 6. The good agreement exhibited by Reich and Hartmann for
J obtained from Ti and J obtained from T2 at V=20.1 cm'mole '
thus obtains throughout the density range.

"For those numerical calculations, using the notations of
Ref. 13, we first compute the single-particle density parameter P
with the appropriate coeKcients for each lattice PEq. (41) in
Ref. 13$, and then compute the exchange interaction J by means
of Eq. (59) in Ref. 13. The solid line for the a phase in our Fig. 6
is the analog of the solid line in Fig. 6 of Ref. 13.It is to be noted
that the fourth coefIicient inside the brackets of the right-hand
member of Eq. {42) in Ref. 13, defined as (28'C14/189CB) is
erroneous and equal to 2.098 rather than 4.44, for a bcc lattice.
Also, Eq. (62) in Ref. 13 should read e= —Z&,Ji/4, due to the
different way the author and we define the quantity J. Our
numerical calculations are made with the correct coeKcients.
Saunders' theory contains several major approximations and,
indeed, some nontrivial errors. We are preparing a detailed
criticism and extension of his theory, to be published soon.

'6 H. C. Torrey, Phys. Rev. 92, 962 (1953).
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the parameter m, being of the order of the exchange
interaction J. In the case of simultaneous exchange and
diffusion modulation of the dipolar Geld, we define the
folio@ring correlation function:

Fxo. 9. The Geld
dependence of the
Zeeman-exchange re-
laxation time Tg@
for different molar
volumes in P phase.
T~' is the exchange-
narrowed transverse
relaxation time.

e.M em~/ma}gg

18.78

G()=-'(7H )'exp( —! I/ ) exp( —l ' ') (14)

which obviously reduces to Eq. (9) or Eq. (13) when

either exchange or diffusion is negligible. The two
parameters BD and cv, which enter so far only pheno-
menologically, are yet to be defined precisely. The
Fourier transform's of Eq. (14) gives the spectral
density

18.55
18.2'I with

J(co)= er (2n)'l'(7'Hri'/co, ) ReW(x+iy),

x= /cocvo2, y=1/oo, r,V2,

(rH/J)'
I l l 1 1

2i g

W(z) =—exp( —z') 1+ exp(ls)dk

Making use of Eq. (11) one finds for the relaxation
by local fields of some other diffusing atoms of types
A and B. In this latter case one does have

2 1 (2 zLA) + (7 zLB)

A phenomenological theory in order to calculate Ti
in our case can be made as follows:

If one had no exchange interaction and only atomic
diffusion, the correlation function for the modulation
of the local Geld would be

T,—'=sr( 2s)r' l(p' Hpi/co, ){ReW(x+iy)
+4 ReW(2x+r'y) }, (15)

which is very close to Eq. (50) of Ref. 12.The previously
published version of this formula LEqs. (12) and {13)
of Ref. 61 contains several errors and shouM be ignored.

In order to define HD, we shall fit Eq. (7) with the
formulas given by Torrey"" in the limit ~v&&1:

G(r) =-'(vH~)' exp( —Ir I/r')

where the spectral density of the local Geld is:

(9) 1 32sr p'O'I(I+1) X g

T 5 a' Vk' a)'7

(10)

This correlation function (9) is well known to lead for
the dipolar spin-lattice relaxation time for a system of
like spins to the formula of BPP:

1—cc J(M)+4J(2co),
T]

(12)

G(r) =-,'(yHi))' exp( ——,', co,sr'), (13)

In the long-correlation-time approximation (cor,)&1),
Eq. (12) reduces to Eq. (7).

In the limit when diffusion is negligible and one has
only exchange modulation of the dipolar field, the
correlation function is usually" '~ taken as Gaussian:

with k=0.743 and g=0.2857 for a fcc lattice and
4=0.763 and g=0.2808 for a bcc lattice. For a powder
of crystallites of these structures, the second moments
are MsP and Ms LEq. (3)j, since powder second
moments are the same in face-centered-cubic and
hexagonal-close-packed. lattices. For both fcc and bcc
lattices, numerical computation gives (yHii)'=2. 2 Ms.

In the limit of negligible diffusion Eq. (15) reduces to

Ti '———,
' (2sr)"'(y'HD'/co, ){exp {—cos/2co, s)

+4 exp( —2co'/&o, s)}, (16)

co,=-,s (PHD)'(Me'l'/Mssl') . (17)

TCMcs of Is$8gt'cl TfcssfoftÃsq edited by A. Erdelyl (MCGraw"
Hill Book Company, Inc. , New York, 1954), Vol. I, pp. 15 and 387.

"A. Ahragam, The Principles of Nnclear Magnelisnr (Oxford
University Press, New York, 1961), Chap. X.

'e H. A. Resing and H. C. Torrey, Phys. Rev. 131, 1102 (1963l.

which can be used to define the function f introduced
in Eq. (8). Setting f(0)= 10/3 and using Eq. (5), one
finds
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P«ting (yIIa)'=2. 23E2 and using Eq. (3) and (4),
oiic finds foi tllc n aIid p lattices

nI. =1."l6J tsI(I+1)J",
coae= 1.78J' LsI(I+1)$'", (18)

s being the number of nearest neighbors. As expected
one finds co, of the order of magnitude of J and rough1y
proportional to gs.

This simple derivation of Ti in the case of simul-
taneous relaxation of the Zeeman system to the lattice
and to the exchange bath wi11 prove useful for a
consistent discussion of our results and those of other
experimenters.

Exchange Bath-l.attice Relaxatioe

one would expect to satisfy condition (2) if one works

at a Geld such that T2;p varies rapidly with H, i.e, ,
~B&~~~&J.

One should then expect to see nonexponential
recovery after a 90' pulse (for a small range of Cz/Cs),
or at least a variation of "T1" with temperature as
TEI, varied itself with temperature. Down to the
lowest temperature available to us, however, we observe
a temperature-independent relaxation time Ti (Figs. 7
and 8) which we ascribe to the Zeeman-exchange
relaxation time Tsz (Table II).

b. As it might be epidenced by response time of the spin
system to change of lattice temperature. If the Zeeman

system and the exchange bath are closely coupled by
the choice of a small external magnetic 6eld, then the
time constant for approach of the Zeeman temperature
to the lattice temperature will be T„=TEL(CE+Cz)/Cz
If CE»C2, , TEL= T„can be measured directly in this
way. In order to investigate this possibility, we meas-

a. As it might be evidenced ie Tr. At a low enough
temperature, TgL '&&Tgg—', and energy Qow between
the Zeeman systeID and the lattice passes through the
exchange bath, which presents an opportunity to
measure T2;p. The exchange bath-lattice relaxation time
TFL will only manifest itself, for instance after a single
90' pulse, if the two following conditions are fulfiHed:

),
'

(1) TEL & TEE, else the exchange bath will always be
at lattice temperature and one wi11 measure on1y Tgp
unless the specific heat Cz/Tr of the exchange bath is
very small compared with that Cs/T' of the Zeeman
system.

(2) Cz &Cs. If the heat capacity of the exchange bath
(Cz/T') very much exceeds that of the Zeeman system
(Cs/T'), the exchange bath will remain at lattice
tcmpcratul c RDd ODc w'ill measul c only Tg F. Sllicc
in Fig. 2

Cs ——xi'(hyII)'h ',

Cp ———a', Xs(AJ)'h ',

TABLE III.The response time T, of the spin system to change of
lattice temperature as a function of the inverse temperature,
for constant molar volume V = 18.55 cm'/mole.

Tz, ' ('K ')

1
1.14
1.25
1.45
1,70
1,90
1.984

T„(min)

1
1.4

14
30

200
216

g2000

ured the susceptibility, i.e., the Zeeman temperature
Tg as a function of lattice temperature TL.

For a molar volume V=18.SS cm'/mole, we find the

susceptibility to obey Curie's law for lattice temperature
TL& I'K. If we cool the sample to a temperature below
5'K, wc initially measure a susceptibility that is well

below the value corresponding to Curie's law. At
constant lattice temperature, the susceptibility then

grows with time and. for TL&0.7'K, reaches within

10% the value corresponding to Curie's law with a
time constRlit Tp lncx'cRslng with dcclcaslDg tcnlpcx'R-

ture. Taking for granted then that the limiting suscepti-
bility is given by Curie's law for any temperature in

our range, we measure the time constant T„given by
Tab1e III.

We observed the saIne behavior of the susceptibility
for a molar volume V= 18.27 cm'/mole.

Appcndlx A sllows thRt oui results obtained ln this

way are not falsified by material thermal time constants.
c. Calculation of exchange bath lattice relaxa-tion time

TEL. Two mechanisms call bc ploposcd fol TEL:
(1) Atomic diffusion gives rise to a relaxation time

TEL which is of the order of the correlation time z„
a,s shown in Appendix B. It should be noted that
TEL~ (IIE/II) TsL, i.c., tllat tllc dlffuslon-1Ilduccd

exchange-lattice relaxation rate is 10'—108 times more

rapid than the diffusion-induced Zceman-lattice relaxa-

tion rate. A single atomic jump sufIices to bring a
spin into essential1y random orientation with respect
to the local exchange field. (at high temperatures) and

thus the exchange-lattice relaxation time is nearly that
for a single jump. Gn the other hand, a single atomic

jump into a random 6eld B~ in the presence of an
external 6CM H»H~ corresponds to a mean-square

angular departure from the external field 8' (IIz/II)',
requiring on the average (0') ' jumps for full relaxation.

(2) Thermal vibrations are well known to be a
negligible relaxation mechanism for nuclear Zeeman

energy, essentially because they modulate relatively

little the dipolar interactions between the nuclei.

The situation is diGerent for exchange energy because

the exchange integral which depends on the overlap

of the nucleax wave functions varies much more

rapidly with the interatomic distance than the dipolar
interaction. Exchange-lattice relaxation through ther-



mal vibrations was studied by GriKths. " As usual,
two processes can be considered: In the first one (direct
process) a single phonon is absorbed or emitted, the
frequency being J, and Tgi,—' being proportional to
the small fraction of the phonon spectra around the
frequency J; in the second one (Raman process), one
phonon is absorbed and one phonon is emitted, the
difference of their frequencies being J. Since the whole
phonon spectrum is covered in the Raman process, this
can be seen to be overwhelmingly more important and
leads to":

3 Ãu' 4~' LJ'O' T'
Ss(s—1)zr""6'" — —W, (20)

128 V / m'coo' 8~

8= (lz&uo/k) is the Debye temperature, m is the atomic
mass of He', and

sec for T=0.5'K, V=18.78 cm'/mole. As for the
exchange heat capacity, Eq. (19) gives CE((Cs, taking
into account the value of J given in Table I.

On the other hand, our T„measurements could be
explained by a large exchange heat capacity, the time
constant T„being identified with the exchange-lattice
relaxation-time TEL. We tried, without success, to heat
the exchange reservoir and thus decrease the suscepti-
bility at constant lattice temperature (Tz, '=1.984),
by applying 90' pulses every second ( Tz) for one
minute, at a Larmor frequency (~/2m. )=1.6 Mc/sec.
This gives us a lower limit for the ratio of the heat
capacity of the exchange system to that of the Zeeman
system Cn/Cs&10 . This limit is still compatible with
the fact that no anomaly in the speci6c heat of solid
He' has been observed down to 0.3'K, ~ 22 suggesting an
exchange interaction smaller than 60 Mc/sec.

The law of temperature dependence of our meas-
ured values of T„(Table III) cannot definitely be
ascertained. T„could vary with temperature as T—"
(7(n&11), but our zneasurements could as well be
explained by a diffusion-induced exchange-lattice re-
laxation due to an entity present in concentration c,
diffusing according to

J' and J"being the first and second derivatives of the
exchange integral, supposed isotropic, with respect to
the interatomic distance. For an hexagonal close-packed
lattice, Eq. (19) and (20) give

Tpz,
—' ——530PPI/zu'F03) (T'/0") W. (21)

In the limit T&&8, 8' 1464 T'. Since J varies very
rapidly with c, in a small interval around some equilib-
rium value u, J can be written, for instance, as"

It is then easy to see that

so that I can be taken as (J")'. Since the Debye
temperature is known from specific-heat measurements"
and J" can be taken from Fig. 6, the exchange-lattice
relaxation time induced by thermal vibrations can bc
calculated from Eq. (21).

d. Interpretation of our exPerimemtal results. The fact
that the exchange-lattice bottleneck was not observed
in T~ measurements can be accounted for either by a
short TEL or by a large exchange heat capacity CE. For
T=0.5'K, V=18.78 cm'/mole, and taking (J"/2p)

10 Mc/sec/A' from Fig. 6, Eq. (21) gives TEL——10'
sec, which is longer than Ti by a factor 10'. Diffusion-
induced TEI, is much longer if the only diffusion is
that of the 23'K activation energy we measure above
O'K; such diffusion would lead to a TEL=2&10'9

2' R. B. GriKths, Phys. Rev. 124, 1023 (1961)."E. C, Heltemes and C. A. Swenson, Phys. Rev. 128, 1512
(1962).

DE=B()e ~al&

with To 7'K which would give T~L (a'/6oDE). If
this entity is not very different from ordinary atoms,
Do 5&10 ' crn' sec ', which then gives c 10 " It
would be possible to assume the presence of substitu-
tional He' which would diffuse with a low activation
energy and distort the wave functions of its neighboring
He' nuclei, possibly increasing the local He' —He'
exchange interactions. This He4 could then increase the
gobal exchange heat capacity and act as an exchange-
lattice relaxation process. Still it is hard to see how such
a low concentration of He' could be suScient to increase
so much the global exchange heat capacity. One is then
led to assume some crystal defects present in the crystal
and able to distort it enough to lncI'ease by a large
amount the exchange interactions of two He' in their
neighborhood.

Thomson, Meyer, and Dheer (henceforth referred to
as TMD) have recently published" susceptibility
measurements which do not exhibit the very high
temperature (0.3'K) deviations from Curie law which
had previously appeared. 4 TMD attribute the previous
results to the fact that the measurements had been
done on a 1% He' in He' solid, whereas their new work
was with He' of purity better than 99.97oro.

The new results of TMD, which exhibit a Curie-
Weiss law with a Curie temperature varying with
molar volume, are in contradiction with specific-heat
measurcmcnts as well as with oui IncasurcIncnts of J.

"A. L. Thomson, H. Meyer, and P. ¹ Dheer, Phys. Rev.
132, 1455 (1963}. (Also private communication„ fog which we
are grateful. )
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On the other hand, they find at a Larmor frequency
~/2m =3.3 Mc/sec for V= 19.5 cm'/mole in the P phase,
Ty varying rapidly with temperature below 1'K as

Ti ' ——28 '~ (sec '). (23)

Our T~ measurements never exhibited such a low
activation energy; presumably our sample is quite
different from that of Ref. 23.

For V=19.5 cm'/mole, in the P phase, TMD find a
Curie-Weiss constant (called 0 in Ref. 23) T,=0.12'K;
their exchange interaction would then be J/2ir
= (kT,/3h) =700 Me/sec. At their Larmor frequency
(&o/2~) =3.3 Mc/sec, (thus small compared with j/2w),
it would be impossible to observe a relaxation rate
smaller than (10/3)(T2') ', which according to Eq. (6),
is equal to 6.5 sec. Actually we can consider the plateau
in the Ti(T) curve of TMD (in fact only deaned by
two points) to be due to Zeeman exchange relaxation:
Tzz=140 sec. Solving then Eq. (16) for J, noting
that exp( —&o'/2~ 2)))exp( —2&v'/&oP) and taking into ac-
count Eqs. (6), (17), and (18), we find (J/2n. )=150
kc/sec. Interpolation of the dashed curve of Fig. 6 for

P phase would predict (J/2~) = 250 kc/sec. We consider
the agreement as acceptable considering the large num-
ber of assumptions which led us to Eqs. (15) to (18).We
conclude that the sample of TMD had a J in good
agreement with ours —their 700 Mc/sec figure we

believe to be in error.
As for the temperature variation of T& exhibited by

Eq. (23), it can be accounted for by the presence of
some impurity (even He') diffusing according to Eq.
(22) with TO=2'K and Do 5X10 ' cm' sec '. If the
impurity is present in fractional concentration c with
respect to the He', it will give the He' atoms (if they
are otherwise frozen) an effective diffusion coefficient
D= cDE (ca'/6rE) and ——a correlation time T,= (rn/c).
If we then fit Eq. (23) with

Ti '= (yHii/~)'(6cDO/a')exp( —To/T),

taking (yHii/2n) =5.8 kc/sec, we find c~3&&10—'.
This would explain why TMD did not observe our
response time T„; it is shown in Appendix B to be of
the order of v, which would reach TEL=140 sec only
at 0.14'K.

The real difhculty is to understand how our sample
could be so pure that T„10' sec at 0.5'K, whereas
T~ in TMD's sample at 0.5'K was 10' sec. An
alternative is to imagine that somehow the sample of
TMD does not have the excess exchange specific heat
that ours has, so that TEL can be observed as T~.

All of these effects must eventually be explained and
these rather tentative and mutually exclusive hypo-
theses of the previous 7 paragraphs are advanced here in
order to make plain the magnitude of the dilemma.
Further work with purer He' and with doped He' will

be required to solve the puzzle.

IV. CONCLUSION

These experimental results for T~, T2, and J are in
good agreement with the data of Reich who used
largely the same apparatus but a different sample. The
magnitude of J is consistent with the lack of a measur-
able contribution to the heat capacity at low tempera-
ture "and the very long response time T„would in any
case prevent the Qow of energy between exchange
bath and lattice at low temperatures and thus the
thermal measurement of the heat capacity of the
exchange bath at 0.1 0.3'K. The only internal incon-
sistency in our point of view is the source of theunknown
large heat capacity of the exchange bath. We have been
unable to imagine a contribution to the exchange speci6c
heat which would not also lead to an exchange-lattice
relaxation time shorter than T„.

We have previously pointed out' that this T,(T)
would offer a ready explanation to the apparent
departure of susceptibility' (Fig. 1) from the Curie
law at temperatures many orders of magnitude greater
than (AJ/k). The susceptibility, although Curie law in
this entire range, would appear to fall below the Curie
law at low temperatures because the spins do not
actually come to the temperature of the lattice in a
finite time.

We are unable to reconcile the low-temperature
susceptibility measurements of TMD" with their
relaxation measurements or with our own results. Their
T& results, on the other hand, are internally consistent,
although incompatible with our own. It seems probable
that the difference between our Ti (temperature-
independent below 1'K) and their Ti (thermally
activated with a 2'K activation energy below 1'K)
arises from the different defect structure of our samples.
Further work is necessary to determine the nature of
the important defects and their mode of inQuence.
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APPENDIX A: DISCUSSION OF THE SPIN-SYSTEM
RESPONSE TIME TO CHANGE OF

LATTICE TEMPERATURE

Before explaining our measured T, as a lattice-
temperature-dependent rate of energy Qow from
exchange bath to lattice, we considered the possibility
T„might be simply a manifestation of a long thermal-
equilibrium time constant between the He' and the
metallic portions of the sample cell, to which the
thermometers were attached. It is well known that such

purely thermal time constants do become long at low

temperature. The following argument shows that no

part of the temperature dependence of T„can be
ascribed to such a thermal resistance, and if there were

such a resistance it would mean that the true T„varies
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even more rapidly than the variation exhibited by
Table III.

Recall the way in which T„is measured: The magnetic
Geld H is maintained at a value such that T~ 1 sec.
The Zeeman system thus serves as a convenient
thermometer for the exchange bath, to which it is
coupled supposedly much more strongly than to the
lattice. The sample is brought to thermal equilibrium
at some temperature TO~1'K, such that T„ is neither
very long nor very short (T„10'sec). The sample cell
is then cooled suddenly to a low temperature and the
rate of change of Zeeman temperature is measured as
(dTz/dt), for Tz= Tp. It is this rate of change of Zeeman
temperature (and thus exchange bath temperature)
which is a strongly decreasing function of the lower
temperature of the sample cell, to which the heat is
Qowing, i.e., the Qow of heat from our thermometer at
fixed high-temperature To decreases rapidly as the
temperature T8 of the sink is reduced. Not only does
this behavior violate the laws of physics in systems in
which heat Qow is governed by a diffusion equation with
arbitrary temperature dependence of the conductivity, '4

but it is also inconsistent with the studies on thermal
contact below 1'K,"all of which show results for the
heat Qow from constant source temperature T~ to a
sink at temperature Tq which can be put in the form

Q=r~ r;, 1&p&—4. (A1)

This heat Qow never decreases with decreasing Tg.
Therefore, we consider it established that we are not
measuring by Tz the temperature of the lattice, but
have exhibited in fact a true relaxation phenomenon
between the exchange bath and the lattice.

the temperature of the exchange bath being Tp = (kP) '.
The exchange-lattice relaxation rate can then be

written":

5' „ is the transition probability between two eigen-
states m and n of the Hamiltonian 3C, having energies
E and E induced by the perturbation Xi(i) which
arises from the diffusion modulation of X, and will now
be defined precisely. $V „ is given" by the spectral
density J(a& „) related by Eq. (10) to the correlation
function G„„(r)defined as:

when

2G „(0)J .(~p)- J .(p~)dpi,
X'& &c

Then
o)7,'))i.

I.et us now consider two specifIc nuclei i and j diffus-
ing through the crystal. We write the exchange interac-
tion between these nuclei

G .(r)=@ '{(~[Xi(~—~) [~)(~]Xi(&)(m)).. (Il4)

The reciprocal correlation time (r,') ' of G(r) being
small compared with the frequencies pp „(which is
reasonable since r,' is a priori of the same order of
magnitude as 7,), we can assume the spectral density
J„„(p&)of G (r) to satisfy:

APPENDIX 3: CALCULATION OF THE DIFFUSION-
INDUCED EXCHANGE-LATTICE

RELAXATION TIME

As usual we neglect the exchange interaction between
nuclei which are not 6rst neighbors. The exchange
Hamiltonian can then be written

x =-'5J p' I*' I,i'
P' being restricted to spins i and j which are first
neighbors. Any given nucleus actually jumps from one
crystalline site to another, thus modulating the ex-
change Hamiltonian BC,. If we assume the temperature
to be low enough for the resonance line to be exchange-
narrowed rather than di6'usion-narrowed, the jumping
frequency r. ' is small compared with J, which makes
it meaningful to ascribe a temperature to the exchange
bath and write its density matrix:

x,,=hei' I b,;, (B6)

8;; being a function, of the distance
~

r' —r'~ between the
two nuclei: 5;; is 1 when they are first neighbors (of
which each atom has z) and 0 otherwise. Since, because
of atomic diffusion, two spins which at a given time do
not interact may later become neighbors, 6,, is a function
of time.

We then write the perturbation Xi(t) of the exchange
interaction due to the diffusion:

x, (&) =-,'kX p I' ~ Il,;(t),

P not being a restricted sum as P'.
Assuming (8,,8;, ), =0 when iNi, j&j, it is readily

seen that:
Trx, ' Tr(Xi'),»

x p,(s,,),
[1]—px.

Tr[1]
(82) 1 1 P,(8, ).

TEL 7'c
'4 R. L. Garstin, Rev. Sci. Instr. 27, 826 (1956)."J.C. Wheatley, D. F. Griping, and T. L Estle, Rev. Sci.

Instr. 27, 1070 (1956).
"L.C. Hebel and C. P. Slichter, Phys. Rev. 113, 1504 (1959).
27 See Ref. 19, p. 273.



In order to calculate r,', we may as vrell calculate the
correlation time of

which we shall deQne by the condition that

S(a)) (2/tosr. ')E(0) for ter, '))1,

E(v)s ''dr. —

E(0)
TEL-' —— ——(2s)

—' hmLtu'S(a)) j.
8jo 4o-Dao

This can be computed using the theory of random
Kghts in thc same wRy Rs Tolrcy used 1t to treat thc
nuclear spin relaxation by translational diffusion. " It
is easily found that for a hexagonal close-packed lattice
(P-phase He'), in the limit (»—+~, S(es) (32/cu'r. ),
which gives for the exchange-lattice relaxation time

=3~EL 4&c ~

Approximately the same result will hold for any
lattice.
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Second-Order Hyyerfine Structure in Hydrogenic Atoms*
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A calculation of the hyper6ne split tings in the 1s and 2s levels of hydrogenic atoms is made. Second-order
terms in the nuclear magnetic dipole moment and terms of comparable magnitude arising from nuclear
structure sects are calculated. Also included is a term derived by the use of "uncrossed" and "crossed"
photon diagrams; this term is necessary because the one-electron Dirac Hamiltonian which is used evidently
does not properly take certain quantum electrodynamic effects into account. In order to compare with ex-
periment the ratio of the hyperhne splitting in the 2s state to the splitting in the 1s state is taken and evalu-
ated for the case of the hydrogen atom; this result is combined with a previous result and the 6nal theoreti-
cal value of $(1.00003445&0.00000002) is in agreement with the experimental value of $(1.000034495
+0.000000060). Complete agreement has not yet been reached with respect to the splittings themselves.
The calculation consists in solving the separated radial equations arising from the Dirac Hamiltonian in
which the. nuclear magnetic moment and the Gnite size of the nucleus are considered as perturbations.
An iteration scheme is devised which uses certain properties of the unperturbed solution; this method
may well have applications elsewhere.

I. INTRODUCTION

I ~HE present paper is concerned with an attempt
at a relativistic calculation of contributions to

the shift and splitting of energy levels in the s states of
hydrogenic atoms arising from hyperfine structure (hfs)
interaction in second order. The consideration of this
problem was prompted originally by the existence of
two apparent discrepancies between experiment' and

*This work was supported in part by the U. S. Atomic Energy
Commission, the Corning Glassworks Foundation, and by
Battelle Memorial Institute.

t Based on this author's dissertation submitted to Case Institute
of Technology in partial ful6llment of the requirements for the
degree of Doctor of Philosophy, June 1960.

f Present address: Department of Physics, Kenyon College,
Gambier, Ohio.

' P. Kusch, Phys. Rev. 100, 1188 (1955); and J. W. Heberle,
H. A. Reich, and P. Kusch, Phys. Rev. 101, 612 (1956).

6rst-order hfs calculation. ' ' More recent experimental
values' do not remove the discrepancies. The erst was
in respect to the ratio of hfs splittings in the 2s and is
states of hydrogen. Since that time some errors in the
original calculations have been uncovered by Zwanziger'
and their correction has eliminated the discrepancy. A
recent calculation by Sternheim' gives additional terms
to the ratio; the agreement between theory and experi-

' M. Mittleman, Phys. Rev. 107, 1170 (1957).
3 For a review of the subject see G. VV. Series, Spectrlm of Atorlic

Hydrogen (Oxford University Press, London, 1957), especially
Chap. XI.

4 F. M. Pipkin and R. H. Lambert, Phys. Rev. 127, 787 (1962).
J. Gruenebaum and P. Kusch, Columbia Radiation Laboratory
Quarterly Report, 14 September 1960 (unpublished); their result
is Av (2s) = 1'l7 556.842+0.010 kc/sec for Ii'.

~ D. E. Zwanziger, Phys. Rev. 121, 1128 (1961).
o M. M. Sternheim, Phys. Rev. 130, 211 (1963).


