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Statistical Fluctuations in Nonlinear Optical Processes*
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The inQuence of partial coherence in a laser beam on nonlinear optical interactions is discussed. The
presence of several different modes with random amplitude and phases is shown to lead to Quctuations in
second-harmonic production and to an error in the measurement of the corresponding nonlinear constant.
Experiments have been carried out with a "Q-switched" ruby, which demonstrate the role of partial spatial
coherence in creating Quctuations in second-harmonic production. Mixing and higher harmonics generation
are also considered. Limitations in momentum space necessitate a separate discussion of the creation of
light beats at small difference frequencies.

I. INTRODUCTION

S INCE the 6rst observation of optical harmonics by
Franken et al.,' there has been much interest in

nonlinear interactions involving optical waves. ' Theo-
retical treatments have been given' 5 providing a quan-
titative analysis of experimental situations. Unfortu-
nately, these treatments fail to account for some
disturbing experimental features, among which one can
single out: the lack of one-to-one correspondence be-
tween the amplitude of fundamental and harmonic
pulses, "the discrepancies between various measured
values of the same nonlinear constants, and the null
result of some down conversion experiments. The dis-
crepancy between theory and experiment disappears if
the assumption is dropped that an optical maser is an
ideally coherent source giving rise to a held which can be
represented by a completely determined function of
time and space. High-power lasers usually operate in
more than one single mode and the lack of spatial and
temporal coherence in their output has been clearly
demonstrated. Solid-state lasers have been known to
yield a number of diRerent frequencies. Early measure-
ments of the spatial coherence of a ruby laser' have
given coherence areas substantially smaller than the
cross section of the crystal. Clark et al. ' have taken
time-resolved pictures of the front face of a ruby laser
and shown that the spatial distribution of the intensity
can be diRerent for different spikes. Correspondingly,
time resolved spectroscopy performed by Ridgway et al."

shows a change in the frequencies of oscillation from
spike to spike and sometimes within a spike.

The representation of a laser as a coherent source is
inadequate. Accordingly, the complex held of an optical
maser will be written in the form

E(r, t) = g a„, pu„; (pr) exp( —2+iv;pt),
n, j,k, rr

where the a„;I, are random coefficients.
The v, ~ are the frequencies of the optical modes

specified by the "quantum" numbers e, j, k, and the
polarization variable o. The wave functions u„;p(r) can
be constructed from the knowledge of the spatial and
temporal dependence of the field on the front face of the
laser. This field is expanded as a sum over a set of
orthogonal modes. These modes might coincide with the
normal modes defined by Fox and Li" or Boyd and
Gordon. " In any case they determine the correspond-
ing u;&(r) over all space. Due to the very small
divergence of the beam these u;~ can be written as
u, p(rp) exp(ik„, rs), where z designates the coordinate
along the direction of propagation, ro the position vector
in the cross section plane, and k„;~ is the wave number
of the plane wave in the s direction at the frequency
v, ~. The u;y(rp) are now independent of u and the ex-
pression for the field can be rewritten for one sense of
polarization:

E(r, t) =P a„,n.;(rp) exp(ik, s—2pr v„tt) .

To simplify the notation only one index j has been used
to label the transverse modes. Although the a„s are
random they are not necessarily statistically inde-
pendent, and the number of modes involved in the
representation of the 6eld is not automatically equal to
the number of independent parameters. Even modes
with different eigenfrequencies may have statistically
correlated amplitudes. The coupling between various
laser modes by the nonlinearity of the medium is an
example of this situation. In many other cases, however,
it can be justified to consider the a's belonging to diRer-
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ent modes as independent. One example is the case of a
ruby laser where different modes predominantly make
use of different ions.

When Eq. (1) is used for the field E of the source, the
fields and intensities at a given point in space resulting
from the nonlinear interaction will themselves be
random functions whose statistical properties will de-
pend on the properties of the a' s. In real experiments the
measured quantities will not be functions of the field at
a single point in space and time, but rather suitable
averages over space and time of such functions. A
simple example of this is the output current of a photo-
tube. Even after such averages are taken, the random-
ness of the a's will give rise to fluctuations in the
measurements and to some possibly large errors in the
estimates of the nonlinear constants. "' In Sec. II
second-harmonic generation is considered, and it is
shown that the presence of several incoherent modes in
the laser beam leads to a discrepancy between the real
and the measured nonlinear constant, and introduces a
certain amount of randomness in the ratio between the
square of the fundamental intensity and the second-
harmonic intensity. Experimental results with a single-

pulse ruby laser are described in Sec. III which demon-
strate the part played by the spatial modes in the
mechanism of fluctuations of second-harmonic produc-
tion. The theory of Auctuations in higher order nonlinear
processes is briefly discussed in Sec. IV. Section U is
devoted to down conversion and related experiments.
The case of microwave generation is given particular
attention, and it is shown how a reduction factor,
analogous to the one introduced by Forrester et a/. "for
the generation of beats in a photocathode, should be
taken into account in this experiment.

angular and frequency spreads are small enough, that:
dispersion will a6'ect equally the radiation of all terms
in the expression of P, (2v). This excludes a priori the
consideration of experiments in a "matched" direc-
tion."' Then the linearly polarized harmonic Geld in
free space can be written

E~'"& (rp, s, t)

= X Q a„,a„ru, (rp)uj. (rp)
+1+ t ltd

XexpiI k(v;+v„.,')s—2'(v„;+v„;)t], (2)

where X is the product of g and a factor depending on
the length / of the slab in the s direction and on the
dispersion of the dielectric,

4n sin(hkt/2)
X=x"L (kp„l)

(Akt/2)
'

where Ak= k2„—2k„.

A. Measured Quantities

In order to perform a measurement, the fundamental
and the harmonic thus generated will be detected sepa-
rately and compared. The detection will generally be
done by a photocathode normal to the beam. The
instantaneous current emitted by such a photosensitive
surface will be proportional to the integral of the square
of the amplitude of the optical field over the cross
section of the beam.

Ii,p(t)=ni, p IEi,p(ro, t)I'«o

II. MODE EFFECTS IN SECOND-HARMONIC
GENERATION

Consider a laser beam of small angular spread inci-
dent on a nonlinear dielectric slab. Take the funda-
mental 6eld and the induced harmonic polarization to
be linearly polarized. The latter can then be expressed

by means of Eq. (1) as,

P, '"(rp, s, t) =y"" P a.,a. pu;(rp)up (rp)
l all e7

)&expiL(k. ;"+k;")z 2m (v;+—v. ,) tj
Here k„;"is the wave number in the dielectric, corre-

sponding to frequency v„, close to the average laser
frequency v, and pNL the appropriate nonlinear con-

stant. ' This polarization is going to radiate and to give
rise to a 6eld at frequency 2v. We assume that both

"J. A. Armstrong, N, Bloembergen, J. Ducuing, and P. S.
Pershan, Bull. Am. Phys. Soc. 8, 233 (1963).
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"A.T. Forrester, R. A. Gudmundsen, and P. O. Johnson, Phys.
Rev. 99, 1961 (1955).

Ii,p=~i, p «'k(» —t') IEi,p(«, t') I'«o

where k(t —t') expresses the action of a linear filter. We
will make the simplifying assumption that this action
can be represented by an integration over a suitable
time interval T. In this case

«o
I Ei(ro t')

I

'

n2
I2=—&

T

t+ T/2

—T/2

Ct' «pIE, (rp, t') I',

'6 J. A. Giordmaine, Phys. Rev. Letters 8, 19 (1962)."P. D. Maker, R. %.Terhune, M. NisenoG, and C. M. Savage,
Phys. Rev. Letters 8, 21 (1962).

In fact as there is a spread in the transit time of the
photoelectrons, and as the associated circuitry has re-
active properties, the detected current I~, 2 will be
different from this.
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value of the nonlinearity. Introduce normalized vari-
ables

~ s ~ s7 e7

a a ~ ' u (r )u'*(rp)e' ' "" (3a)
gnj

=Q„j.
»/2

~ K2 t+F/2

I2 lA

-T/2

s s' s" n'"
~~ j~ll~/II

g &&g +z &'j g &«p t g t&i I I &'«j 8 2nihvt

The u„js satisfy Q„,jIn„jI'=1 and their statistical
properties can be determined from those of the g„s.
~=~ Q+&QrtjPQrt jig' Q+I j jgiI

)(b(Ppj+ P~l j P~ll jl P~ II

jlf/)hajj&jig

jill (7)

Xuj(«)uj (rp)uj *(rp)uj -*(rp) . (4a)

In practice, the time interval T, which will be called the
time constant of the detecting circuit, will be short
enough that any time dependence of the g„s can be
neglected when performing the integral.

Nevertheless, in most situa, tions it will be larger than
the period of any beat between various frequency com-
ponents, so that for our purpose

epx~kvt'jtt~ g(gy)
g—T/2

Using this property and the orthonormality of the
modes over the cross section of the beam, we obtain for
I» Rnd I2&

This expression can be split into a group of phase-
independent terms A and a group of phase-dependent
terms 8

Here and throughout the text the ' on Q indicates the
exclusion of terms for which two sets of indices (u,j) are
identical.

'D
Q+&Q+j pQ+j jpi Quilt p j j

)(5(ll+j+ p~l jl ll+tlj II Ilzlll jtll)cjjl jpl lljl

Here aud throughout the text the "on+ indicates the ex-
clusion of terms such that the product Q„;Q„.; Q~";"
gQ.«.p«* ls ldcntlcRlly lcRl. When thc phRscs of thc
g s and hence of the Q s are assumed to be random
and uniformly distributed over (0,2m.), the following
properties hold: (B)=0(AB)=0.Then

cv 2 V" 8 WrJ2= g2~ ~ g+&'g+jgg&IeP j g+«sg«c~ P Pr

)($(P+j+P&ip —P&ripi —P&lss&vii)
&

(Ifj)

where

Cjj'j"j"'= uj(«)uj'(rp)uj" (rp)uj"' («)drp

B. Relation between Measured Quantities

Equations (5) and (6) describe the random relation-
ship between I»2 and I2. When the fundamental field con-
sists of a homogeneous plane wave, the ratio gPIp/gpIP
is minimum and equal to x2. In an experiment per-
formed with a less than ideal beam this ratio will be
taken as dehning the measured nonlinearity X . From
the expressions (3) and (4) for Iq and Ip, it is irn-

mediately seen that X & X». This can easily be under-
stood by considering harmonic generation by an inter-
ference pattern. As the C6ect is quadratic the maxima
will overcompensate the minima. In the same way a
succession of light pulses will be more CScient in
generating second harmonic than a constant light beam
having the same average intensity.

The lack of spatial and temporal coherence of the
laser beam mill give rise to fluctuations in the measured

The last term (8') represents the fluctuations due to the
random phases; it can be considered as an interference
CGect and disappears when the modes do not overlap
(C;;;;-=0). The origin of this term can be found in
the fact that a given harmonic mode can in general be
created by the interaction of several diferent pairs of
fundamental Inodes, For instance all pairs I, e' such
that v„+v„. has a given value will give the same
harmonic frequency and will be detected together. In
the same way C;;,'; - can be diGerent from 0 when
gag", g"' and y'/g", g"'. These points will be dis-

d f th h p ti 1 c id d.
The expression &A') —(A)' represents amplitude fluc-

tuations. In the case of nonoverlapping modes there is
only one term,

The general expression for overlapping modes is morc
complicated and will not be reproduced. The general
theory will now be applied to some simple cases of
physical interest.
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l~ («) I'«o(1+2'l~. l'I~- I')

&X')—&X)'= I»(«) I'«o (4Z'l~-I'l~- I'l~--I'

xB(2v„—v„.—u„-)+-",P'ln„l'

x l~" I'l~-- I'l~-- I'

X&( -+ - —--—--)} (9a)

The relation P ln I'= 1 has been used in Eq. (Sa). As

I;(r) is known, J'lu;(r) I4 can be incorporated in x
and the relative error in the measurement is represented
by the term g'In„l'Iu ~ I'. If the tr„do not vary too
strongly with e, the order of magnitude of this term is
iV(1V 1)/1P and we—can write

&= (x„/x)'= 2—&- .

This relation has been derived by Ashkin eI al. '8 The
comments made earlier about phase fIuctuations are
here of special interest. As mentioned previously, their
existence is due to the fact that any pair, e, e' for which
v +r„ is equal to a given value, will generate the same
harmonic frequency. An immediate consequence of this
is that at least three different frequencies in the incident
beam are necessary to observe these Quctuations. The
Fourier coe6.cients of the harmonic 6eld will then appear
as sums of random variables and their amplitude will.

not be constant. Hence the detecting device measuring
the sum of the square of these coefficients, will, in

general, have a random output. In other words, the
harmonic 6eld will not exhibit the amplitude stabiliza-

' A. Ashkin, G. D. Boyd, and J. M. Dziedzic, Phys. Rev.
Letters 11, 14 (1963).

» N. I. Adams and P. $. Schoefer, Appl. Phys. Letters 2, 136
(1963)."S. L. McCall and I .W. Davis, J. Appl. Phys. B4, 292 j. (1963).

C. Second-Harmonic Generation with
a Gas Laser

The output of a gas laser can be represented by a
small number of modes. Second-harmonic power has
been generated with a gas laser oscillating simultane-
ously in a single transverse spatial mode. ""Due to the
nonlinearity essential to the mechanism of the oscillator,
the individual modes will have stabilized amplitudes
and hence very small intensity Auctuations. In this ap-
proximation Iy ls a constant and the statistical proper-
ties of X are those of I2. In this case it is not really
necessary to introduce normalized variables X and n.
The phases are random variables, but because of the
same nonlinearity, they will not necessarily be inde-
pendent. If independent uniformly distributed phases
are nevertheless assumed, Eqs. (8) and (9) become, for
the case of one spatial mode u, ,

&&)=~4E l~-I'+2 2'l~-I'l~- I'&

tion properties of the incident laser field. In this respect
it is interesting to note that amplitude correlations of
the type demonstrated by Brown and Twiss" for
incoherent light should also be present in harmonic
light generated by a multimode gas laser, although the
fundamental light intensity of the amplitude stabilized
laser oscillations does not show this eBect.""

If the a do not vary too rapidly with m, it is possible
to estimate the relative rms Quctuations in the meas-
urement

(8')—&&)')"'

SQ (SQ'—3Q—2)
for F=2Q+1 and

3 (2Q+1)'(4Q+1)'

SQ (SQ' —15Q+&) "'
for Ar = 2Q,

4Q'(4Q —1)'—

where X is the total number of modes. For /=3 and
%=4 these numbers are, respectively, 18% and 25 jo.
For large S, the relative root-mean-square fluctuations
of X are of order (2/3%)'Is.

Experimentally, these Quctuations would be observed,
if the time constant were small, but just larger than the
largest beat period between modes. '4 The power avail-
able from a gas laser is so low that very long time con-
stants are required to make the observation of har-
monics possible. There it is a time average of I2, rather
than I2 itself, which is measured. If the stochastic
properties of the n„'s are stationary (and this is a
reasonable assumption) this time average is equivalent
to the statistical average we have computed. This will

not be the case of the measured rms fI.uctuations which

might be drastically reduced by the integration process
Lroughly a factor (T/r)", where r is the correlation
time of the rr„'s]. If there is some amount of correlation
between phases, Eqs. (Sa) and (9a) do not, in general,

apply. They will retain an approximate validity if the
correlation is expressed by linear relations between the

phases, as it will be if this correlation is due to any
simple nonlinear process.

D. The Case of the Ruby Laser

Many different frequencies and spatial modes are
present in the output of an ordinary ruby laser. If we

2' R. Hanbury Brown and R. Q. Twiss, Nature 177, 28 (1956).
» R. J. Glauber, Proc. Third Conf. Quantum Electronics, Paris

(to be published)."L.Mandel in Progressin Op@'cs, edited by E. Wolf (North-
Holland Publishing Company, Amsterdam, 1963}, Vol. II, pp.
181 6.

~ For time constants much shorter than the beat periods be-
tween modes, the replacement of a time integration by a Kronecker
8 in Eqs. (5)—(7) is not allowed. The rms Quctuations measured
instantaneously would not decrease with Ã. The problem for very
short time constants would be similar to that of noise in nonlinear
devices at radiofrequencies and to the problem of radar echoes
from a rain cloud.
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assume as before that the amplitude fluctuations are
small the rms fluctuations in x will be of order CS '~',

where S is the number of modes taking part in the
interaction, C being a factor of order 1 depending on the
structure of the modes. For X of order 10' or larger
this will be very small. In fact, experimental observa-
tions" "make clear that in this case not only the phases
but the amplitudes of the various modes will fluctuate.
The amplitudes will even fluctuate to the point that
although a large number of modes might be available,
only a few wiH oscillate in one spike. The order of
magnitude of the Quctuations will then be given by
(n) "', where e is the average number of modes going
at the same time rather than the total number of modes.
This would account for substantial fluctuations and thus

. correspond to the experimental situation, as reported in
the following section. The average value of X would not
be affected by this particular mechanism, as long as the
average is taken on a large number of trials, i.e., of
individual spikes. Note that this might mean a very
large number (as is the number of possible con6gura-
tions) and that this requirement is not necessarily
satisfied for ordinary measurements. If it is, we will have
approximately

(&)= ((x-Ix)')=2

as given by Kq. (10) for large Ar.

When an ordinary ruby laser is used to generate
second harmonic, the ratio of individual harmonic
spikes to the square of the intensity of each spike at the
fundamental frequency shows large fluctuations, as
shown in Fig. 1.This can be accounted for by the above
mechanism where both spatial and temporal coherence
play a role."' When a large time constant is used in the
detecting circuits, i.e., when the envelope of the pulses
rather than the individual spikes are observed, it is very
often found that a perfect square law does not hold for
the correspondence I2 versus I~, but that the value of X
is still varying with time. The remark made above about
the large number of spikes necessary to get really the
average value of X applies probably here. The time
constant has a maximum value beyond which the pulse

Pro. 1. Two laser pulses of about equal intensity at the funda-
mental frequency (top line) produce pulses of quite diferent
relative intensity at the second-harmonic frequency (bottom line).

P. M.

INT. FILTER 694' K= Cu S04

P. M. A

INT. FILTER
S~7I A

LASER BEAM

BEAM SPLITTER
KDP SAMPLE

Cu SO4

Fro. 2. Experimental arrangement to determine the ratio be-
tween fundamental intensity f and the second-harmonic intensity
It in a giant pulse from a ruby laser.

envelope will be distorted and any hope of recording the
real correspondence will vanish. If T is made less than
this value, the number of spikes on which the time
average is performed might not be large enough and the
nonstationarity of the 0. s will account for the variation
of X with time.

III. EXPERIMENTS ON SECOND-HARMONIC
GENERATION

Second-harmonic generation by individual spikes from
a Q-switched ruby laser has been observed under fairly
reproducible circumstances. In a erst experiment the
fundamental and harmonic intensity were compared for
a large number of spikes. The time constants of the
detecting devices (phototubes plus associated circuitry)
were made as short as the available equipment per-
mitted. This resulted in resolution times between 10 and
15 mpsec for both tubes. The laser beam was unfocused
and the distances between the front face of the laser, the

sample and the surface of the photocathode were short
enough for the cross section of the beam to be constant.
A diagram of the experimental arrangement is shown in
Fig. 2. The results of a series of observations on more
than 70 pulses are reproduced in Fig. 3. For a given
value of the fundamental intensity, the corresponding
harmonic intensity might vary from 1 to 3. For this
experiment the rms ftuctuations were estimated to be
40%%u~. A standard ruby laser (not Q switched) gives
similar results.

The theory developed in the preceding section pro-
vides an explanation for these observations. Neverthe-
less, it could be argued that some of the time variations
of the envelope of the rather fast pulse (the duration is
about 40 nsec) could happen in a time shorter than the
response of our detecting circuit. If the time variations
were di6erent for the harmonic and the fundamenta1,
this would give rise to diferent responses for the
harmonic and the fundamental depending on the shape
of the pulses.

To show that the observed Auctuations are due to the
mechanism we have described, and not to imperfect
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log h

I

log f

I

.5

pulses required for operation of the laser at an ap-
proximately constant temperature. In any case the rms
fluctuations (4%) were found to be equal to the ones
observed when splitting a single harmonic beam or the
beam from a pulsed source of light.

According to our theory the correlation between the
harmonic signals could then be spoiled by changing the
relative phases and amplitudes (or alternatively the
structure of the modes in one of the fundamental beams)
but leaving the total intensity constant. This redistri-
bution of the energy and of the phases was performed in
three different and separate ways and led in all cases to a
significant increase in the rms fluctuations.

In the first case one of the fundamental beams was
superimposed on its mirror image (Fig. 5) by means of a
prism with two rejecting sides. This beam consisted of
two parts of nearly equal amplitude, one having suffered
an odd number of reflections, the other an even number.
This beam was thus replaced by half the sum of itself

TO FILTERING DEVICE AND PM-

+IG. 3. A scatter diagram from 70 giant pulses, showing the
random relationship between the fundamental and second-har-
monic intensity.

~~QUARTZ

P. M.

B.

P. M. A.

INT. FILTER 3471li~CuSO4

QUARTZ

~BEAM SPLITTER
INT. FILQER

347I A
CuSO4

FIG. 4. Experimental arrangement to determine the relative
yield of two second-harmonic generation processes with similar
geometry.

experimental conditions, we carried out a series of ex-
periments in which the fundamental beam was split in
two approximately equal parts which in turn generated
second harmonic in two identical crystals. The separate
harmonic pulses were detected and their amplitudes
compared. To avoid any spurious effects due to differ-
ences in the time constant of the two circuits, these
quantities were made much longer (1 @sec) than the
width of the observed pulses (40m@sec). The peak
amplitudes were thus very nearly proportional to the
time integral of the real pulses. The experimental setup
is shown in Fig. 4. %hen the beams were left unper-
turbed the correlation between pulse amplitudes was, as
expected, very good. The remaining fluctuations could
be ascribed to small variations in gain of the circuits and
were accentuated by the rather long interval between

COATED
CTIVITY ~ Q).

DIELECTRIC 8EAM SPLITTER .

(REFLECTIVITY ~ 5Q%)

TO FILTERING DEVICE AND P.M-

FIG. 5. The spatial similarity of the laser beams in the two
quartz samples is destroyed by a glass prism, which modi6es the
geometry of the modes in one of the beams.

and its mirror image. This operation modified the ex-
pression for E~ and E2 and hence the dependence of I2 on
the a„'s in Eqs. (4) and (6), although it left I~ un-

changed. Substantial fluctuations were in fact observed.
Figure 6 shows the corresponding scatter diagram to-
gether with the diagram for the unperturbed situation.
This operation increased the rms fluctuations from 4
to 14%.

Another kind of perturbation was provided by a piece
of frosted glass inserted in one of the beams. The glass
was put very close to the nonlinear crystal to avoid the
effects of the increase in cross section due to the acquired
divergence of the beam. The resulting scattering pro-
vided a convenient way to mix linearly the modes of the
fundamental beam, in a complicated although perfectly
deterministic way; this in turn had the effect of chang-
ing the dependency of I2 on the a„'s, Ij was, as before,
left constant. Here also a substantial increase in the
fluctuations was observed, which went. up with the
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amount of scattering provided by the frosted glass. The
corresponding results are summarized in I"ig. 7. Sinular
experiments were performed, in which one of the beams
was rejected from the uneven surface of a rough silver
mirror. The results were essentially the same as for the
ground glass, the amount of Quctuations depending on
the quality of the surface.

All these experiments consisted in the application of a
linear perturbation, changing the relative values of the
complex amplitudes, but not the total energy. If the
fundamental beam had been spatially coherent, this
would have modified the intensity of harmonic beam on
the perturbed side in a constant way and hence would
not have Rejected the correlation between the two
harmonic signals. Thus these experiments clearly dern-
onstrate the part played by partial spatial coherence in

-l0 0 +l0

tA)

-I "20 -l0 0 +I +20 +I

Fro. /. The scatter diagram (A) obtained with the arrangement
of I"ig. 4 is compared with a corresponding diagram (3},when a
frosted glass plate is inserted in front of one of the quartz plates.

where )( is a suitable nonlinear constant. Using Eq. (1)
for the 6elds E~E2, we 6nd for the corresponding de-
tected intensities:

-l0 0 +I0

(A)

-'50 -I -20 -l0 0 ~t0 +20 +I
(8)

0BIATt08 (%)

Is=r)s&'( z Ig 9'"I'I g k("I'~ k k.
n, j,~, k

+p g .(t)g„, , (t)eg s(s)g, s, (s)*

X&(v '"+v s(s) —v ~ '"'—v s(s))(= s's)
Fro. 6. A scatter diagram (A) of relative second-harmonic pro-

duction with the arrangement of Fig. 4 is compared with the
scatter diagram (8}with the arrangement of Pig. S. The abscissa
is proportional to the deviation from the average, the ordinate
gives the number of pulses in a certain deviation interval. Compari-
son of these experimental results and those in Fig. 3 demonstrates
the advantage of using a similar nonlinear process with a similar
geometry as a reference for calibration of the incident laser pulse.

creating fluctuations. They show also the need to know
the structure and the statistics of the laser beam before
the nonlinearity could be measured with a reasonable
Recur Rcy.

IV. STOCHASTIC ASPECTS OF MIXING AND
HIGHER ORDER PROCESSES

Partial coherence mill also RBect other nonlinear
processes. Consider the situation in which two optical
beams mix to give their sum or difference frequency.
The case of a very small difference frequency will be
treated separately in the next section. If Et(r), Es(r),
Es(r) are the amplitudes of the linearly polarized 6elds
at frequency v~, v~, v3, respectively, where v3= v~&vg,

Es(r) =x(vs= vs+vs)E)(r)Es(r) for the sum,

Es(r) =x(vs= vs+ vs)E)(r) Es*(r) for the difference,

where I,'depends on the geometry of the nonlinear
me(Hum. I3 hRs tw'0 groups of terms: the 6rst summation
contains phase-independent terms, the second phase-
dependent terms. Comparison of Kq. (11) with the
corresponding expression for second harmonic, Eq. (6)
shows that there are nearly twice as many phase-
independent terms for second-harmonic generation than
for mixing. A given product a„;u„.;. occurs twice with
the same coeKcient in second-harmonic generation.
This degeneracy affects the average value of the de-
tected current. If the phases of the different modes are
independent and uniformly distributed, only the phase-
independent terms will remain after averaging

n, j,m, k

If the modes are homogeneous, (ss„;(x,y)=1) and all
Cjikk

(Is)= r)sXs(I))(Is).

This should be compared to (Is)= ))sos(2il)' —1/S) ((It))s,
obtained from second harmonic in the same situation.

The number of phase-dependent terms will be drasti-
cally reduced, if the two sets v;&') and v„,&" are differ-
ent. The condition v, (')+ v s(s)= v„r(')+ v s.(s) will, in
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general, be satisfied only when v„;"&=v„;."& and v ~")
= v q &@. The beat of two gas lasers oscillating in a
single transverse spatial mode" illustrates this com-
ment. In this case the presence of phase-dependent
terms in the detected second-harmonic intensity J2 is
caused by the even spacing of the longitudinal fre-
quencies. Although this condition is still necessary here,
it is no longer sufhcient. The two sets v„&'& and v '2) must
have spacings equal to within the bandwidth of the
detecting circuit. If the lengths of the two resonators
are not the same and the time constant of the detector
is long enough, this condition will not be fulfilled, and
the expression for I3 will have no phase-dependent term
(apart from accidental coincidences).

I3=»&'~~~~~ 2 I~.'"I'I~-"'I'=~IiI2

In this case there are no Quctuations. When the band-
width of the detector is made larger than the difference
between the two intermode spacings, Quctuations will

appear. As the bandwidth is made larger, these Quctu-
ations will become equal in the limit to Quctuations
observed for equal intermode spacing. They will depend
in a rather complicated way on the respective number of
modes X~ and X2 in the two beams. For large numbers,
the rms fluctuations will be of order (X&) '", where 1V&

designates the larger of E~ and X2.
The situation where two solid-state lasers beat to

generate their sum frequency" is complicated. In this
case most of the Quctuations will be due to the imperfect
spatial and temporal overlapping of the spikes. These
Quctuations which can be quite strong, will depend on
the characteristics (in particular the distribution of
energy over the cross section) of the lasers.

The case of a mercury line source beating with a solid-

state laser" is simpler. In practice the coherence time
and the coherence area of the mercury line will be much
smaller than the corresponding quantities for the laser.
The number of modes necessary to represent the field at
the mercury line frequency v«&vL, , in the detection
time T, and over the cross section of the beam, will be
very large. This will ensure very small Quctuations at
sum or difference frequencies v«+vz, . The equality
J3=C'I&I2 is closely satisfied.

High-Order Processes

The degeneracy which gives rise to the special features
of second-harmonic generation will be stronger for
higher harmonic processes. Consider, for instance, the
generation of the sth harmonic. The amplitudes of the
fields are connected by the relation,

Zg= K(pg= svy)Ey

"N. I. Adams and P. B. Schoefer, Proc. I.E.E.E. 10, 1366
(~963).

M. Bass, P. A. Franken, A. E. Hill, C. W. Peters, and G.
Weinreich, Phys. Rev. Letters 8, 18 (1962).

2'A. W. Smith and Ã. Braslau, IBM J. Res. Develop. 6, 361
(&962).

where X is a suitable nonlinear constant. 4 Vsing again
expression (1) for the 6eld Eq

Pi, Pu, PN
p&+' '+p& =$

st

~~'i'"' ' '~~NiN"

X 8' '''Q'
21

pi! p)r!

X«p~P(pi~; p+ +p~~nzgN) &

2m(p—1pn'j'+ ' ' '+pN pn~j pp)$j.
The detected intensity I, can again be split into phase-
dependent and phase-independent terms. In the case of
independent and uniformly distributed phases the
phase-dependent terms average to zero. In this case,

(I,)=q, x'(v, =svi) (s!)'
P1P~ PN

p&+' ' '+p& =$

((I ))'=n '!
(I 2Wrl

! ~ &1'"JN21' '2N )

kpzlpzl .pzt)

g, ., 2@1.. . g . 2yN

P1P2 PN
p1+o ~ o +p+ $

where

X 7

pi!p2' p~ '

r, ,...,»,.-r~= I& (ro) I' I& (ro) I'«o.

In the case of a single mode,

Ig= 'gg/'gy K (vs=spy)Iy

In this case, multimoding results in an apparent relative
increase (s!)'"for the nonlinear constant. In a practical
situation (for instance, a ruby laser) the r's might differ

appreciably from unity, and the number of modes going
at the same time is not necessarily large, so that the
relation does not necessarily hold.

Fluctuations around the mean sth-harmonic produc-
tion can also be derived from the stochastic properties
of the fundamental modes. The phase Quctuations will

be subject to the same limitation as for second-harmonic

generation: i.e., even spacing of the frequencies. If this

condition is satisfied, the number of phase-dependent
terms will be of order of E" ', the number of phase-

independent terms being of order X', the rms Quctua-

tions due to phase will be of order S '".

If the F's are not too different from one and the number

of modes is very large so that the dominant contribu-
tions come from the terms where all p~= p2= . ——p~
=1, one finds

(I,)=g,/gi'm. "(v,=sr g)s!(I&)'.
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where p is the appropriate nonlinearity constant. ' This
polarization will in turn reradiate and give rise to a
field E„,. If we call V the finite domain where the
interaction takes place, the field at a point R, remote
from V will be expressed as

4 2 ~ik3R

E„,(R) = v22

C

P, (r)e '""dr,

where k2 is a vector of modulus 22r(22)'~2v2c ' in the
direction of R. For the sake of simplicity we have as-
sumed the dielectric constants of the nonlinear medium

V. PARTIAL COHERENCE AND DOWN
CONVERSION

The beat between two laser beams, or between two
modes in the same beam, to generate power at a small
difference frequency needs a separate discussion, be-
cause the number of modes available in wave-vector
space is limited at low frequencies. This includes in
particular microwave generation and rectification, i.e.,
the creation of a static polarization.

Consider first the inQuence of temporal coherence.
Assume that the output of each laser consists of S fre-
quency modes (or lines), with incoherent phases. Each
frequency will beat with the components of the other
beam. The bandwidth of the system detecting the beat
will determine how many of these components will be
effective in beating with the given one. Thus the number
of eKcient pairs might be less than lP and the energy
generated at the difference frequency smaller than in the
case of coherent beams. If the bandwidth of the de-
tector is less than the spacing between lines, as is the
case in microwave generation, only one component will
correspond to a given line in the other beam. Thus, if the
frequencies are equally spaced, the number of pairs will

be X, and the energy generated S times smaller than for
coherent beams. Note that this applies equally well to
the beats between different components of the same
beam, but does not hold for the creation of a static
polarization where each component beats with itself.
There is no reduction due to incoherence in the latter
situation.

The influence of spatial incoherence on the beat of
two monochromatic fields is similar in nature. A pair of
components from the two beams cannot contribute to
power generation at the difference frequency, if the
difference in transverse components of the wave vectors
is larger than the absolute value of the wave vector at
the difference frequency, or than the inverse of the
transverse dimension of the sample. This imposes
roughly, the condition

(klan k2~)2+(k12 k2v)2~k22 or a—2

More precisely, at a point r of the nonlinear dielectric
the two incident fields El and E2 at frequencies vl and v2

will interact to give rise to a polarization,

and the surrounding medium to be equal, their value at
frequency va being c3.

The total energy radiated by the nonlinear polariza-
tion will be given by

v34 15'= 16~4——
C

P„(r')P„*(r")

sink,
l
r"—r'l

dr'dr" . (13)
k2lr" —r

In the case of interest, k3((k2, kl, the directions of the
two optical beams will necessarily nearly coincide and
their cross sections will overlap completely. If a is the
common radius of these cross sections and 1 the
length of the volume in the direction of the optical
beams, we will assume that k3u, k31&1. In this case
sin k2 lr" r'

l
/(k—2 l

r" r'l ) is p—ractically 1 for r' and r"
in V and Eq. (13) reduces to:

W=162r4v24c 2E ' P(r)dr

In the case of monochromatic beams, El and E2 can be
written by means of Eq. (1) as

E~ Qa~;(r )2ex——p(ikgs),

J2
P2= g b,~, (r,) exp(ik, s) .

P,dr2 xp a;b;*. ——

Equation (14) can then be written in the form

v3
w2 ——167r'x'——(/la l'lb/i'+ P a,ap*b;*b2). (1&)

~~V

Thus the generated power depends on the relative
phases of the different modes. This will result in
fluctuations of the kind mentioned previously. Note
that they will be extremely large as (AW/(W))2
=1—J ', where J is the larger number of modes neces-
sary to represent any of the beams. The average power
generated is given by the first term on the right-hand
side of Eq. (15), it will be J times smaller than for
coherent beams, since

a,' Ig/J, b ' I2/J.

The same set of orthonormal modes have been chosen to
represent the two beams. Statistical independence of the
u; will be assumed. More specihcally, the amplitude
fluctuations of the a; will be neglected and their phases
are assumed to have a uniform distribution over (0,22r).
No special assumptions are then necessary for the b;.

The orthogonality of the modes over the cross section
gives

P, =x g a;b; *N,~; *,
2 ~ 2
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The reduction factor is determined only by the less
coherent beam, and the use of one coherent beam will
not improve the efficiency of the process.

When the restriction k3E&1 is lifted the above con-
clusions still hold. The expression for the radiated
energy takes the form

P3 1
W=16ir4x'——{Qa„b„*}'F(l),

C3 g2
where

F(l)= 1/k„{SiL2l(k3+ki—kg) j+SiL21(k3+ks—ki)j}
describes the influence of k~, k2, ka and the length of the
rod. For large k3l, the energy will be radiated direc-
tionally in a cone having the direction of propagation of
the optical beams for its axis.

The same kind of considerations would apply equally
well to the case where the nonlinear dielectric is
placed inside a wave guide or a microwave cavity. "
There the generated power would be proportional to
Lj'drP, (r) Ea(r) j', where Ea(r) is the normalized field
of the excited mode. When the fundamental mode of a
rectangular guide has its axis along the optical beams,
F,(r) is exactly integrated along the cross section and
once more S' takes the form

W= {p~u.b~*}'G(l, ka, ki —k2),

with the same result for the average energy and its rms
Quctuations.

The results obtained in these various cases are quite
general; they apply to all experimental situations where
the beats of two optical beams generate a difference
frequency v3 by a quadratic process, such that k3a&1.
The reduction of the eKciency due to the lack of spatial
coherence had in fact been pointed out by Forrester
et al."for the case of photoelectric beats. The maximum
eKciency in microwave generation will be obtained
when two spatially coherent sources are used. If an
experiment with only partially coherent or incoherent
beams is not properly analyzed, a value of the nonlinear
constant much smaller than the real value would result.
This is probably the reason why most of the experiments
performed so far have been given an apparent dis-
crepancy in the relation4

Xgy (p3 vgl v2) Xyzg(pl v2+v3) &

equating the previously defined nonlinear constant to
the linear electro-optic coefBcient. This statement finds
supplementary strength in the fact that this relation has
been verified by the experiments of Bass eI al."for the
static polarization produced by a laser beam in a non-
linear dielectric. Here we are dealing with the beat of a
beam with itself, the a's and b's are the same. In this
case the last term in Eq. (15) does not average to zero.
In fact the term between curly brackets becomes

{g~

a
~

'}'.There is no reduction factor coming from the

"K.E. Niebuhr, Appl. Phys. Letters 2, 136 (1963).
"M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, Phys.

Rev. Letters 9, 446 (1962).

lack of spatial or temporal coherence in the case of
rectification. This fact is obviously used every time the
intensity of an incoherent light beam is measured by the
direct photoelectric current.

When the wave number k3 becomes larger than a ',
the beats between neighboring modes will start making
a contribution to the radiated energy. When k3 becomes
larger than Ok~, 2, where 0 is the widest aperture of the
incident beams, all beats will contribute to the radia-
tion. When this condition is largely satisfied, the beat
frequency will be radiated in a narrow beam, similar to
the incident waves. The radiated energy can be com-
puted as in the case of second harmonic. There is no
reduction factor due to the spatial incoherence of the
source in this case, which applies, e.g., to the generation
of far-infrared radiation by beating two ruby lasers. It
is also the case for microwave modulation of light. The
light waves at the sum and difference frequencies will
have wave vectors, obtained by adding or subtracting
the microwave vector k to the wave vectors of the
incident light beam. Hence in this respect microwave
modulation of light and optical-beat generation of
microwave beats are not equivalent situations. In the
former phase space does not impose restrictions on the
waves to be created, i.e., on the final states, whereas in
the latter case it does.

VI. CONCLUSION

The stochastic properties of nonlinear optical experi-
ments give information about the coherence functions
of the light field. Conversely, a precise absolute de-
termination of nonlinear optical susceptibilities is pos-
sible only, if the correlation between the various excited
optical modes is known. Phase correlations between
different laser modes can, in principle, be determined.
The interpretation of experimental results depends
critically on the relative magnitude of the frequency
spacing between modes and the bandwidth of the
photoelectric detector circuit. Relative values of non-
linear susceptibilities should be measured by calibrating
the laser beam or beams with a known material under-

going the same nonlinear process. Care should be
exercised that the geometries of the laser beams in
sample and monitor are the same.

The classical description of the electromagnetic field
which has been used in this paper should give an ade-
quate description of the fields produced by a relatively
small number of highly excited laser modes. It would be
of theoretical interest to extend Glauber's quantum
mechanical description of the coherence properties of
the light field to nonlinear interactions.
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