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The curvature of the free surface of a thin layer of liquid helium II resting on the horizontal bottom of a
rotating cylindrical container (radius=1. 26 cm) was measured by a sensitive optical method. For a liquid
depth of k=5.0&10 ' cm and 7=1.11'K, the steady-state curvature was found to be indistinguishable
from that of an ordinary viscous liquid for rotational speeds down to co=0.29 rad/sec. Transient effects
were observed which differ qualitatively from those of a normal viscous liquid. These results are discussed
in relation to various theories of rotating helium and are compared with other measurements,

INTRODUCTION

~ ~

HEN we rotate a container of liquid helium II,
does the superQuid component rotate P To answer

this question, Osborne' observed the contour of the free
surface of helium II in a rotating container and con-
cluded that, at the rotational speeds used, the super-
Auid cRmc to R stcRdy rotatlonRl stRtc indistinguishable
from that of an ordinary viscous liquid. Although rota-
tion of the superQuid was not anticipated, perhaps, from
the hydrodynamic theories of Tisza' and Landau, ' the
experimental result was interpreted by London4 in the
following way: Adopting a suggestion of Onsager' that
the circulation was quantized in concentric cylindrical
regions separated by vortex sheets, London minimized
the free energy and concluded that in equilibrium the
superAuid should rotate practically as a solid body at
high velocities, but should not rotate at all below a
certain critical velocity. This critical angular velocity
is a&= hj2 ma, where tn is the mass of the helium atom
and u is the radius of the cylindrical container, so that
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for a= 1 cm, the critical angular velocity has the very
small value of about 10 ' rad/sec. Landau and Lif-
shitz, ' on the other hand, considered the energy of the
vortex sheets separating cylindrical regions of quantized
circulation and concluded that the superAuid velocity
field would approximate that of a rotating solid body
only at much higher angular velocities. Hall and Vinen~
have given a revised version of London's calculation,
assuming a regular array of vortex lines as suggested by
Onsager' and Feynman. ' In this vortex-line model the
energy associated with the velocity singularities is
assumed small, and the final result as given by Hall is
not greatly different from the London theory. In con-
trast to the above models, all of which predict a finite
critical velocity, Lin' has suggested that the supcrQuid
might have nonzero viscosity and would thus reach a
steady state of uniform rotation in which boundary slip
would cause the superQuid to rotate more slowly than
the normal Quid at low velocities.

Experimentally, no definite and reproducible critical
velocities have been observed in steady rotation. On the
one hand, Reppy and Lane'0 have shown that a con-
tainer of helium II can be rotated at a rather high speed

6 Landau and Lifshitz, Dokl. Akad. Nauk SSSR 1QO, 669 (1955).
H. E. Hall and W. F. Vlllenq Proc. Roy. Soc. (London)

A238, 215 (1956).
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science Publishers, Inc. , New Vork, 1955), Vol. I, p. 17.
9 C. C. Lin, Phys. Rev. Letters 2, 345 (1959).+ J. D. Reppy and C. T. Lane, I'roceedhlgs of the Snleeth

International Conference on Loso resnperatnre -Physics (The Uni-
versity of Toronto Press, Toronto, 1961),p. 443.
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(0.3 rad/sec for a 1.25 cm radius container) without the
superfluid aheays coming into rotation. This result is
dificult to explain on the basis of Lin's theory, and it
can only be explained in terms of the models of London
or Feynman as a metastability. On the other hand, the
fact that the superQuid usually comes into rotation,
even at much lower speeds, does not agree with the
prediction of Landau and Lifshitz.

Thus none of these theories appears to be completely
adequate, and we must seek what empirical evidence
there is in the results of other types of Qow experiments
exhibiting critical velocities at which the Qow of the
superQuid apparently becomes rotational. Atkins" has
shown that for Qow in channels larger than 10 ' cm
many Qow experiments can be correlated with a
critical superQuid velocity given by the relation

(Vd)c =0.01 cm/sec, (1)

where d is the characteristic lateral dimension of the
channel. A phenomenological theory by the author
correlates various kinds of critical velocities and their
temperature dependence but does not differ in order of
magnitude from Eq. (1). This equation can perhaps be
derived from vortex mechanics, but here it is used
simply as an empirical relation which is approximately
valid for many experiments. In Osborne's experiment
the value of the product of the lowest peripheral
velocity and the container raduis was 24.5 cm'/sec. In
Andronikashvili and Kaverkin's" experiment the value
of this parameter was 5.7 cm'/sec. Donnelly et al
reached a value of 8.4 cm'/sec, and Donnelly, "using a
small capillary to reduce the characteristic distance,
achieved a value of 0.216 cm'/sec which, although much
smaller, still exceeded the value of the above critical
velocity criterion. Recently, Turkington, Brown, and
Osborne" reached about 0.3 cm'/sec. In all of these
experiments it was found that the superQuid was
entrained into rotation as would be predicted by Eq. (1).

The present experiment was designed to measure the
surface contour under conditions in which this critical
velocity parameter would not be exceeded. To achieve
this, a sensitive optical method was used to measure the
curvature of a thin layer of helium II on a horizontal
rotating substrate.

STEADY ROTATION OF LIQUID HELIUM II

Vsing the hydrodynamic equations essentially as
given by Landau' and also by Zilsel, "we derive the

"K. R. Atkins, Liquid Helium (Cambridge University Press,
Cambridge, England, 1959), Chap. 6.

' E. L. Andronikashvili and I. P. Kaverkin, Zh. Eksperim. i
Teor. I'iz. 28, 126 (1955) LEnglish transl. : Soviet Phys. —JETP
1, 174 (1955)j."R. J. Donnelly, G. V. Chester, R. H. Walmsley, and C. T.
Lane, Phys. Rev. 102, 3 (1956).

' R. J. Donnelly, Phys. Rev. 109, 1461 (1958).
'~ R. R. Turkington, J. B. Brown, and D. V. Osborne, Can. J.

Phys. 41, 820 (1963)."P.R. Zilsel, Phys. Rev. 79, 309 (1950); 92, 1106 (19&3).

The gravitational potential 0 will be taken as
Q=gs where s, the vertical coordinate, is measured
from a horizontal plane. We consider the following
special case.

(a) Steady state; no explicit dependence on time.
(b) V, =O; (this can be considered as the consequence

of a simply-connected container and the condition
g &( V, =0, inherent in the assumed equations of
motion).

(c) V„=@,~r, where Cr is the unit vector in the
azimuthal direction.
Adding Eqs. (2) and (3) and using the above assump-
tions we have

wp+pv&= —p.Lv'(V '/2) V XV'XV ]. (4)

Along the surface of the liquid VP=O and the slope of
the liquid surface is

dh p oPr

dS p g

After integrating, we obtain a parabolic surface,

(6)

whose maximum curvature is less than that of a normal
viscous liquid by the factor p„/p.

From Eqs. (2) and (4) we have

p'SqT= —(p./p) [p.& (V.'/2)
—p V XVXV ]—(p.p /2p)VIV —V. I',

which in this special case yields

qT=O. (7)

This result of uniform temperature is dependent on
the inclusion of the terms in the square of the relative
velocity and demonstrates that the solution with

V,=O is a possible one in thermodynamic equilibrium.

pressure and temperature fields and the surface contour
of liquid helium II in a cylinder which is closed at its
bottom and rotates about its (vertical) axis with an
angular velocity co. The resulting surface contour is well
known, but the derivation is given since it shows ex-
plicitly how the second-order velocity terms allow two
different steady-state solutions without entropy pro-
duction. The following equations of motion are assumed:

p,[r)V,/r)1+~ (V,'/2) j
(p./—p)&p P.&f—)+p.~&2'

+(p p /2p)&l V-—V. I', (2)

p $8V /81+ V (V '/2) VX (g X—V )j
(p /p)&p p-«~ —p~+2-

—(p.p-!2p)& I
V-—V. I'

9V XIXV.+—(4/3)qVV V.. (3)
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It is also apparent that these terms explain how the
superRuid, although motionless, is heM up in a para-
bolic shape, a point which has troubled the intuition
of many.

Another solution in which there is no entropy pro-
duction can be obtained if we assume that (V XV,), 40
and if we add to the left side of Eq. (2) and acceleration
term —p,V,X(VXV,), . The average vorticity desig-
nates the circulation around a small but macroscopic
region divided by the area of the region and does not
necessarily imply that the Row must be microscopically
rotational. Thus, hollow vortex discontinuities could
make the region multiply connected and give large-
scale rotation of the superRuid without violating the
microscopic condition pXV, =O implicit in Eq. (2).
When we have (V,), = V„=e,~r ((V,), again being an
average over a small, but macroscopic, region), the
steady state has the same surface as a viscous liquid and
Eq. (7) is again valid;

h = ((a'r'/2g)+ hp.

FIG. 1. Schematic
diagram of the ap-
paratus used to
measure the curva-
ture of the liquid
surface.
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EXPERIMENTAL METHOD

Figure 1 shows the equipment schematically. The
thin layer of liquid helium to be studied was condensed
on a lightly ground Rat glass plate P, which formed the
bottom of the sealed chamber C. This chamber, which
had brass walls and a glass top, was filled with helium
gas under pressure at room temperature to give the
desired liquid depth. The glass top and bottom were
retained with brass Ranges and sealed with indium wire
0 rings. Chamber C rested on a rotating platform G and
was wrapped with a thin layer of soft iron, which,
coupling with rotating magnets outside the Dewars,
served to rotate the chamber. The top surface of the
rotating platform could be moved relative to its bottom
by adjusting screws, thereby allowing the axis of the
container C to be moved horizontally and tilted until it
coincided with the axis of rotation of the platform.

Parallel light from a collimator (after passing through
a heat-absorbing glass filter) was projected vertically
into the Dewar, and the beam reRected by the surface of
the liquid layer E was directed by beam splitter 8 into
an objective lens (focal length 26.2 cm) which formed
an image at P of the pinhole light source A. Since the
reflection from a liquid helium surface is about 0.5'Po

of that from glass, the glass substrate was lightly
ground until most of the light was scattered, just
enough of the original optical surface being left to give
an image in the focal plane equal in brightness to that
from the liquid surface. This substrate reRection pro-
vided a reference image at the principal focus corres-
ponding to zero curvature and allowed adjustment of
the substrate and liquid film until they were parallel
and their normals aligned with the axis of rotation.

The position of the image was determined by its
coincidence with the illuminated crosshair of a filar

eyepiece whose position was read on an optical-bench
scale. The curvature of the surface was calculated by
using the measured displacernent of the focal point from
the principal focus of the objective lens.

The main difficulty in determining the focus was the
eye's power of accommodation. The standard parallax
method of eliminating this diKculty was not useful in
rotation because the focal spot usually described a
small circular orbit in the focal plane corresponding to
a residual angle (of about 10 4 rad) between the axis of
rotation and the optical axis of the liquid surface. A
useful technique was to increase the illumination of
the crosshair until it was brighter than the focal spot,
thus tending to fix the focus of the eye at the crosshair.
It was also found that by placing a mask consisting of
three rather thick radial spokes over the aperture of the
collimator, the off-focus setting gave three small sector-
shaped light areas, which at focus merged into a single
spot. These techniques, plus the procudure of approach-
ing the focus from opposite directions on alternate
readings, made the determination of the focus reason-
ably objective.

The effect of the viewing light on the behavior of the
liquid helium was investigated in a number of ways.
The total power in the light beam incident on the cell
was between 4X10 ' % and 4&(10 ' W, depending on
the size and intensity of the source used, and it is
estimated that perhaps one third of this was absorbed
in the cell. Since the light was uniform over the sub-
strate, the temperature difference between the center
and the edge was calculated to be at most, 2)&10 ' deg.
From other measurements on the Row of heat in thin
layers of helium II (to be published) it was known that
this temperature difference wouM not lead to Row
velocities exceeding the critical velocity. Actually, the
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effect of the light was never observed to change the
results in rotation, even when the beam intensity was
increased from the weakest one used to one 1000 times
as strong. Tests were also made by opening a shutter
on the light beam only after the steady rotational state
had been reached. No difference in the results were
found even though the liquid could not have changed
its contour in the time of observation.

An attempt was also made to measure the surface
contour by means of Fizeau fringes formed by the
interference of the reQections from the liquid surface
and the lightly ground substrate. With proper grinding
these reQections were of equal amplitude and resulted in
continuous saturated fringes by which a depth change of
about 5)&10 ' cm could be detected. Unfortunately
these fringes could only be obtained in the nonrotating
state since surface ripples introduced by rotation were
large enough (about 1 p, in height at low rotational
speeds) to blur the fringes and render them useless.

SURFACE CURVATURE IN STEADY ROTATION

It follows from Eq. (6) that, if the superfluid velocity
is zero, the maximum surface curvature (at r=0) is

(9)

When both Quids rotate together at a common angular
velocity co, Eq. (8) gives the curvature

7=~ /g~

which is the same as that of an ordinary liquid.
Figure 2 shows the measured curvature in steady

rotation as a function of angular velocity. The result is
that the surface curvature of the helium II in this thin
layer (average depth 5.0X10 ' cm) is very nearly given
by Eq. (10) and is certainly not that of Eq. (9); in
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short, heluim II behaved in steady rotation like a
viscous liquid.

The lowest angular velocity at which measurements
were practical was 0.29 rad/sec. Actually, the best fit
to the measured points is somewhat less than predicted
by Eq. (10);but since this divergence varies little with
the angular velocity, it cannot be explained on the basis
of a theory such as Landau's, in which the curvature is
velocity dependent, and it is probably a systematic
error in the curvature determination not connected with
the superQuid properties of helium II.

TRANSIENT EFFECTS

For comparison with helium II, we first consider the
angular acceleration of a thin layer of ordinary viscous
liquid. The liquid rests on the horizontal bottom of a
circular cylindrical container, and both the liquid and
the container are initially at rest. The container is then
rapidly accelerated to a constant angular velocity about
its vertical axis, and motion is transmitted to the liquid,
whose surface eventually reaches the parabolic shape of
steady-state rotation. The time required to approach
the steady state is determined, in a thin layer, by two
nearly independent processes. First, the velocity Geld
in the liquid is set up by the diffusion of vorticity from
the solid bottom upward in the liquid; and second, the
centrifugal force acting on the rotating liquid causes
radial Qow until the required equilibrium contour in the
gravitational field is reached.

For a very thin liquid layer, the 6rst process will be
completed before the second fairly begins. In this first
process the velocity field is determined by the diffusion
equation

BV/N= v(8'V/Bz'),

where v=g/p is the kinematic viscosity and z is the
vertical coordinate. For impulsive acceleration from
rest, Carslaw and Jaeger'~ give a series solution. When
we have vt/h')1 (where h is the liquid depth), the
series converges rapidly, and we can write the character-
istic time to set up the velocity field as

We de6.ne ~~ as the time to reach one-half the final
centrifugal pressure.

Assuming that the velocity 6eld discussed above
reaches its final value very rapidly, a measure of the
time for the liquid surface to deform to its final parabolic
shape is found, from a result given by Emslie et al. ,'
to be

1,0
ANGULAR VELOCITY (rod/Ioc)

I'IG. 2. The maximum measured curvature of liquid helium II
in steady rotation. The line ay2/g is the curvature expected of a
normal viscous liquid; the line (p„/p)(co'/g) is the curvature ex-
pected if the superQuid remains at rest.

Here, g is the acceleration of gravity, h is the average
depth, and r is the radius of the container. If we con-

"H. S. Carslaw and J. C. Jaeger, Conduction of Beet in Solids
(Clarendon Press, Oxford, 1947), 1st ed. , p. 83.

"A. G. Emslie, F. T. Bonner, and L. G. Peck, J. Appl. Phys.
29, 858 (1958).
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sider both of these processes, a reasonably upper bound
for the time for the liquid surface to approach its 6nal
parabolic contour is

r r1+T2 ~

For liquid helium in a layer 5)&10 ' cm deep, the
time calculated for the curvature to reach 0.7 of its
final value is about one second, if we use the total Quid

density and the normal Quid viscosity. Although the
time resolution and the precision of these curvature
measurements were not very good, it was found that the
time to accelerate the liquid was of the order of 10
sec, and that at the lowest speeds the steady-state
curvature was reached only after about 40 sec. Thus,
we can conclude that for speeds up to 1 rad/sec, liquid
helium accelerates considerably slower than an ordinary
viscous liquid. In stopping, the characteristic time to
reach one-half of the steady-state curvature was 2 sec
or less, a time not far from that expected for a viscous
liquid with kinematic viscosity I/p. This slow accelera-
tion and rapid deceleration have previously been re-
ported by Hall. "

DISCUSSION

For a value of peripheral velocity times liquid depth
greater than Vh=1.8X10 ' cm'/sec, the superQuid
rotates with the container. Previous measurements of
other types can be interpreted as predicting a critical
velocity condition Vd= 10 ' cm'/sec, below which the
superAuid should remain stationary, d being the char-
acteristic lateral dimension. Are these two results
incompatible?

Certainly, on the basis of a simple vortex theory we

might expect the pertinent characteristic dimension to
be the radius of the container rather than the liquid
depth (that is, essentially the longest distance per-
pendicular to the superfluid flow). In the present case
this would lead to a critical velocity perhaps 50 times
smaller than the lowest velocity attained, and is con-
sistent with the experimental result.

However, such a simple vortex model does not predict
the measured critical velocities in other experiments. In
Row through slits, it has been shown that the pertinent
characteristic distance is the shortest distance perpendi-
cular to the Row, not the lorrgest. In oscillating boun, dary
experiments, the pertinent distance is the viscous pene-

"H, F.. Hall, Phil. Trans. Roy. Soc. London A250, 359 (i957).

tration depth, not the radius of the containing vessel.
Even in steady rotation the superQuid can apparently
remain at rest in a container rotating at about 3000
times the velocity corresponding to one vortex line. '
Thus, neither a simple vortex model nor Eq. (1) is
adequate to explain all these results.

It seems probable that the metastable nonrotating
state sometimes observed by Reppy and Lane was not
observed in the present experiment because of the
roughness of the boundaries in the present case as
compared with the microscopically smooth blown-glass
container used in their experiment. In this regard one is
reminded that the metastability reported by Brewer,
Edwards, and Mendelssohn"" in heat conduction was
observed in a smooth glass capillary. It is also possible
that the free surface is of primary importance since
surface ripples, which were always present to some
extent, would presumably be unfavorable to the occur-
ence of metastability.

We may conclude that a stable rotating state of the
superAuid with the present boundary conditions exists
down to so=0.29 rad/sec. A question, which is still
unanswered, is to what minimum velocity this will

remain true. Is it necessary to go to the very low
rotational speeds predicted by a simple vortex-line
theory, or does a surface energy associated with velocity
discontinuities, as suggested by Landau and Lifshitz'
and by Mott, " lead to a stable nonrotating state at
higher speeds' Such a surface energy could perhaps
exclude vorticity from the bulk of the superRuid in a
manner analogous to the Meissner e6ect in which the
exclusion of the magnetic field from a superconductor
can be attributed to a surface energy. The present
technique could, with more attention to vibration
isolation, be used to investigate this question to rota-
tional speeds down to about 0.1 rad/sec.
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