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bands. This may also have produced the differences in
the ordering of the conduction band states. These latter
differehees could also be due to limitations in the pertur-
bation approximation to the orthogonalized-plane-wave
method which was used by Knox and Sassani.

One interesting observation regarding the conduction
bands for argon is the similarity between these bands
and those obtained for face-centered cubic iron by
Wood' and for copper by Burdick" and also by Segall. "
Aside from minor changes in the ordering of states in the
4s-4p bands (which can be explained by differences in
lattice spacing), the bands are remarkably similar. This

"G. A. Burdick, Phys. Rev. 129, 138 (1963).» 3. Segaii, Phys. Rev. 125, 109 (1962).

may lend some support to the rigid band approximation,
a proposal which has enjoyed fair success in explaining
several aspects of the electronic properties of the
transition metals and their alloys.
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The conditions necessary for the occurrence of second sound in solids are examined in some generality.
The results indicate that second sound can propagate at frequencies greater than the reciprocal umklapp re-
laxation time and smaller than the reciprocal normal relaxation time. At frequencies less than the reciprocal
umklapp relaxation time, the solutions are the same as those for normal thermal conductivity. The frequency
range and damping of second sound at various temperatures is computed using relaxation times determined
for sodium fluoride.

I. INTRODUCTION

S ECOND sound in superAuid helium was first de-
scribed as a collective phonon wave by Landau. ' In

this description, the "phonon gas" was treated as a
particle gas in which harmonic phonon-density Quctua-
tions could be propagated. This explanation seemed to
describe a phenomenon so general that many authors'
have spec'ulated about the possibility of occurrence of
similar collective waves in solids. A collective wave of a
more restricted nature has been reported in CdS crystals
by Kroger, Prohofsky, and Damon. ' Their experiment
involved the use of electrons drifting faster than the
velocity of sound, which are therefore strongly coupled
to the phonons. This problem will be discussed in a
forthcoming paper.

This paper is limited (as were those by Ward and
Wilks, and by Dingle') to a discussion of an acoustic

* Supported by the Advanced Research Projects Agency.
t Presently at Sperry Rand Research Center, Sudbury,

Massachusetts,
' L D. Landau, J. Phys. Moscow 5, 71 (1941), 11, 91 (1947).
r (a) J. C. Ward and J. Wilks, Phil. Mag. 42, 314 (1951), 43,

48 (1952}.(b} R. B. Dingle, Proc. Phys. Soc. (London) A65, 374
(1952}.(c}M. Chester, Phys. Rev. 131, 2013 (1963).

'H. Krogr, E. %. Prohofsky, and R. W, Damon, Phys. Rev.
Letters 11, 246 (1963).

phonon system which does not interact strongy with
charged particles or optical phonons. We will place
emphasis on those aspects of phonon dynamics associ-
ated with the periodic structure of solids. This requires
that a distinction be made between normal collisions
and umklapp collisions. It should be kept in mind that
phonons undergo normal collisions in which the crystal
momentum of all the phonons is conserved, much like
the collisions of a particle gas. It is emphasized that this
conservation applies regardless of the number of
phonons or whether the collision involves phonons of the
same or different phonon branches. The major difference
between phonon and particle gases is that in addition
to normal collisions the phonons may undergo umklapp
collisions which have no counterpart in particle gases.
In this context this paper examines in detail the collec-
tive transport phenomena of a many-phonon system
and develops a description of a collective harmonic mode.

In Sec. II of this paper, the factors that determine
whether or not a system will respond to a density
fluctuation by diffusive or harmonic behavior are dis-
cussed qualitatively.

In Sec. III, energy and crystal-momentum conserva-
tion equations for phonons are derived from transport
equations. The moments of the equations are then
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evaluated, assuming that the distortion in the phonon
field can be described by using a net drift velocity and
a temperature Ructuation as parameters. The error in
this two-parameter description of the distribution func-
tion is expanded as a power series in the crystal mo-
mentum and shown to be small under certain conditions.
Use of a power series in this manner is one feature of
our present study.

Harmonic solutions for temperature Ructuations and
net drift velocities are found in Sec. IV by simultaneous
solution of the conservation equations. "Second-vis-
cosity" damping for these harmonic solutions is
examined.

The harmonic solutions are shown in Sec. V to become
the usual thermal-conductivity solutions for very short
umklapp relaxation times. In Sec. VI, the feasibility of
an experimental observation of second sound is investi-
gated, using computed values of effective relaxation
times in Nap.

DISTANCE

Pre. 1. Schematic instantaneous phonon distributions. That in
the upper graph gives rise to a net phonon Qow through the dashed
vertical lines in the direction of the arrows. The resultant crystal
momentum distribution causes an "overshoot" to the situation
pictured in the lower graph, provided that the required transit
time is short, compared to momentum-destroying relaxation times.
The Qow is reversed when the distribution assumes the form shown
in the lower graph. The cyclic process is repetitive and gives rises
to propagation of harmonic density Quctuations.
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Equation (2.1) is simply a statement of continuity, and
the zero on the right-hand side indicates that there are
no particle sinks or generators. Equation (2.2) is pur-
posely written to include the force f, in addition to the
internal stress arising from the pressure gradient.

In particular, note that the left-hand side of Eq. (2.2)
is the time rate of change of the particle current. Only
if we neglect viscosity or inelastic impurity scattering
is f, zero. The usual undamped sound wave solutions
follow when f,=0. A useful generalization is to assume
a viscous damping f,= —(p,u /r) where r is a relaxation
time. Such a term is appropriate in the low-frequency
diffusion limit. In the absence of density gradients or
applied forces, a particle current will decay with a
typical relaxation time 7.

Equation (2.2) can then be rewritten

a(pou*) pou*
+

Bt

(ap'(api'
(ap, i ( ax~

(2.3)

expected for propagation of a wave. It is clear that a
spatial variation in the density of phonons will result
in a net drift from high-density to low-density regions.
However, it is not necessarily apparent that, under
certain circumstances, this Row can "overshoot" repeti-
tively, rather than simply "relaxing" to a uniform dis-
tribution. Wave propagation is familiar in the case of
particle-density Ructuations, whereas diffusion is the
common experience in "thermal-density" Ructuations.

We have sought to illuminate this point by consider-
ing ordinary sound propagation in a particle gas. We
employ the usual hydrodynamic equations and the usual
small-amplitude adiabatic assumption for plane-wave
sound propagation in the x direction. An equation of
state is also assumed to exist. The quantities of interest
are: the particle density po+pi(x, t) where po is the
equilibrium density and p, (x,t) is the (small) density
change in the sound wave; the velocity of an element of
the gas u =0+u„which is to say the gas is initially at
rest in the reference frame. There is also an equation
of state p= p(p, T) where p and T are the local pressure
and temperature, respectively.

The linearized hydrodynamic equations lead to

II. A QUALITATIVE DESCRIPTION OF SECOND
SOUND IN NONCONDUCTING SOLIDS

Ward and Wilks' first proposed that second sound
could be thought of as a density Ructuation in a
"phonon gas." We wish to discuss this idea in qualita««

tive physical terms, and by analogy with (first) sound
in an ordinary particle gas.

Figure 1 shows the density and Row situa, tion to be

and by elimination with Eq. (2.1) we have

(2.4)

Now the fundamental distinction between wave «w
and diffusive Rom becomes clear. For slow variations of
pox& with time, the viscous term dominates and any
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density fluctuation relaxes by diffusion. %hen the
viscous relaxation is slight and the relaxation time is

long, spatial variations of the particle density will

proceed in time as wavelike motions. Both diffusive and
wave descriptions may therefore apply to density
fluctuations in a particle gas. The choice is determined

by whether co7«1 or err&&1, respectively.
The "phonon density" fluctuations can be discussed

in the same way. The characteristic time v- for relaxation
of heat current is the umklapp or combined "umklapp-
plus-other-momentum-losing-process" relaxation time.
The common experience that heat-density fluctuations
obey the diffusive description is a consequence of the
low frequency at which they are conventionally studied.
The exception is in liquid helium where relaxation times
are very long, thereby permitting observation of the
periodic fluctuation at low frequency.

Bfs 1 Bfs Bee Bfs Bes dfs'l+-
Bt k Br; Bk; Bk, Br; Ct)..i

(3.1)

Here, fs is the number of phonons in the mode specified
by the wave vector k, r; is the ith component in con-
figuration space, es is the energy of mode k, k; is the ith
component in k space, and col refers to the effect of
collision processes. We will assume (i) there are no
external fields acting on the system, (ii) the system is
homogeneous, and (iii) renormalization effects due to
phonon interactions are small. It will be understood
throughout the remaining discussion that all quantities
are assumed to be (coarse-grained) local in space and
time. Under these conditions

III. MOMENT EQUATIONS

The applicability of the Boltzmann transport equa-
tions to phonon wave packets was discussed by Peierls. '
This application appears valid in most solids below O~n,

the Debye temperature.
Associated with the Boltzmann equation is a distribu-

tion function giving the density of particles in specific
modes. This distribution can be expressed as an equi-
librium distribution plus small perturbations when the
periods of the disturbances are long compared to the
normal relaxation time 7, and the mean free path for
these collisions is short compared to the wavelength of
the disturbances. It may have validity outside this
regime but that does not concern us here.

The full Boltzmann equation under the conditions
discussed rs

B(E)/Bt+diV(rtev) = Aeooi )I (3.6)

where (E) is the total energy, (nev) is the net energy
flow, and he„& is the energy gained in collisions. Multi-
plying (3.4) by Ak; and then summing over all k leads
to the equation

8 8—(x;)+P (v,orhk;) =Ax;„1.
R i 8$~

(3.7)

(s;) is the ith component of the net quasimomentum,
(v;rrhk;)=(vp. ;) is the quasimomentum flow, d,e,„i is
the change in quasimomentum through collisions. The
general distribution function is written as

fs= fsP+ fs', (3 g)

where fs' is assumed to be small comPared to fsP. The
two important departures from equilibrium in second
sound are assumed to be variations in temperature from
the ambient temperature, and net energy fluxes.
Landaus has shown that a steady net flow of phonons,
has a distribution function

f(v) = (exp((es —1 hk)/k&T j 1} ', —(3.9)

where X is the net drift velocity.
To account for slight temperature variations we set

2 p+~1 ~ (3.10)

Here, To is the ambient temperature, assumed constant
throughout the system, and T& is the small change in
temperature. If the temperature and the drift velocity
change in time, the system may have a slight distortion
from equilibrium which cannot be described in terms of
drifts and thermodynamic temperature changes. This
extra perturbation can be expressed as a power series
in k. The proposed form of the distribution function,
as then, is

where v; is the ith component of the group velocity, or
the velocity of the phonon packet. Equation (3.1) then
becomes

Bfs/Bt+div(v fs) = (Bf,/Bt),.i. (3.4)

If one now sums this equation over all values of k
one obtains

(B/Bt) (n)+ div(nv) =An,.1, (3.5)

where (n) is the local number of phonons, (rsv) is the
net local number current, and An„~ is the change, due
to collisions, in the local number of phonons. If both the
right and left sides of (3.4) are multiplied by es and then
summed over all k one obtains

and, by definition

Bes/Bre= 0 .

(1/i'1) (Bas/Bk, )= v;,

(3 2)

(3.3)

((„—&.kk —,kreis —„yk
fs- eel

ks (2'p+ T1)

(3.11)
'R. E. Peierls, guoriRra Theory of Solids (Oxford University

Press, London, 1955), p. 45.
~L. D. Landau .and E. M. Lifshitz, S@tis~o/ Physics (Per-

gatnon Press, Ltd. , London, 1958), p. 204.
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for X, q, p, , and 'lj all very small, this can be expanded to

fe =Pe. xpe/ksTo —1] '
X Ak+ yA'k'+ pA'k'+ +es(T,/Te)

kgTp

exp(es/kgTp)
X — (3.12)

Lexp(es/k~Te) —1]'

2 Ak+ v A'k'+pA'k'+ +es(Tt/Ts)
f'(f—'+1)

= f'+~f'{f'+1)

Again the distribution function applies to cells within
the system which are small compared to the macro-
scopic distance measurements,

The role of T& is to increase the local number and thus
the average local energy in a symmetrical way which
corresponds to a locally higher temperature. The 1 term
gives rise to a distortion in velocity space, but does not
change the local number or average energy. The y term
distorts the distribution away from that expected in

thermal equilibrium. A positive p increases the number
of phonons at higher energies; a negative p decreases
that number. The terms of higher order allow further
generality, but are not important in establishing the
general features of second sound.

The moments can be written as a constant part and
a small variable part:

the e6ect of these higher order terms in the Chnsity is
negligible. This reasoning holds for all the moments
needed in the moment equations.

For the rest of this development the ter~s in the
distribution function with powers of k higher. than two
will therefore be neglected. The term pA'k'f'(f'+1)
will be an estimate of our ability to describe the system
as having temperature variations and net drift velocities.
If this term is large, the system can no longer be de-
scribed well in thermodynamic terms. The evaluation
of these moments is straightforward. For isotropic
materials, the results are

(n) t =. 2Tt+8„=A Tt+ (CTe/(v'), .)q, (3.15)

(nv), =m =-sATP„, (3.16)

(E)r CT,+——D(p, (3.17)

(nev)=NX= ,'CTe7„- (3.18)

(1I)= YX=~{CTo/(v'). )X, (3.19)

(v,~r)=yCT, +tv =sCTr+ sD(p.--(3.20)

Because normal collisions involve phonons of different
branches of the phonon spectrum, the constants in

Eqs. (3.15)—(3.20) must be appropriate averages over
the branches. For example,

Qo Ak cos8
As.k{s.cos8) f'{f'+1)k'dkdQ

p k~Tp

1 (O.=P —J4~, (3.21)
'U~ E TeS=SP'SJ,

(nv) = 0+(nv) „
(E)=(».+(E),

(nev) =0+(nev) „
(rr) =0+(D)„

(V s")= (Vpf )p+ (Upi ') g .

I Ak cos8
(3 13) F= -- p Ak cos8 f'(f'+1)k'dkdQ

Sm' g kgTp

t O~

. V.s ET),)

All the constant terms are to be associated with the fo
term in the distribution function. Since these moments
are only to be used in the differential Eqs. (3.5)-(3.7),
there will be no contribution from the constant terms
and they need not be considered further,

In macroscopic lattices the phonon level spacing is
small and the summation can be performed by integra-
tion. These integrals can be broken into a sum of terms,
one for each term in the expansion of the distribution
function:

(n) t ——(n) g+ (n) r,+(n),+ (n)„. (3.14)

An examination of the form of these moments shows

that every power of k inside the integral requires another

power of Tp to make the integral dimensionless, All

terms of higher power in k will be of correspondingly
higher powers of T/O~o. At low temperatures. Ts&&O~o,

In these equations, o is the phonon branch index, J4 is

the fourth-order Debye function, Q, is the maximum q
value of branch a., 0 is the total solid angle, and 0, is

the Debye temperature for branch 0.. The other con-
stants are functions of Tp, but not of Tj, X, etc. The
constant C is the speci6c heat. The simplihcations indi-
caded in Eqs. (3.5)-(3.22) are valid in the Debye ap-
proximation. Details of the integration have been de-
scribed by Prohofsky. '

Although phonons behave like Bose particles, their
number is not necessarily conserved on collision. In
fact, one expects three-phonon collisions to be the
dominant type at low temperatures. The equation given

by Zimanr for the coQision rate of three-phonon colli-

e E. VF, Prohofsky, thesis, Cornell University, 1963 (un-
published),

~ I.M, Ziman, Electrons end I'bonnes (Clarendon Press, Oxford,
England, 1960), p. 275.
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sions is

Pap n—p n—p"jFp"'P "d'kd'k'd'k", (3.23)

where P&~'k" is the equilibrium probability of phonon k
splitting into phonons k' and k".PI,~'~" contains factors
which insure that the net change in the k vector is either
zero or a reciprocal-lattice vector, and that the total
energy is conserved. In our terminology,

substituting into Eqs. (3.30)-(3.32)

T o+(upB+(CT /&vz) ~r) jyo zq XoF=0, (4.4)

uoCT, o+uoD po iq.koN 0 (4 5)

iyqCTg' iraq—Dy'+ficuY+(CTp/(3v') r p))XP=0. (4.6)

From Eq. (4.6) it can be seen that q~~3P and the vectorial
notation may be dropped. For the plane wave to exist,
these equations must have a solution; i.e., the determi-
nant of the coeS.cient of the parameters T~', X', and q'
must equal zero. The solutions are

np ——(Z Ak+ ops/To+oh'k')
kggTp

(3.24)

One can assume that relaxation times involve aver-
ages weighted by the energy content of the modes.
Under these conditions, the collision terms are shown
in Appendix A to be

t op~
' yN &v')»

&q & Y+(CTo/3u rr (v'),)

iC'Tp

&vz) r(CB—AD)

(4.7)

(3.25)

(3.26)

Azrc. g
———(CTo/(v'), )(o)(1/r~)X, (3.27)

1/r = 1/r~+ 1/r p (3.28)

(B/Bt)(CTg+Dq)+divNX=O, (3.30)

(B/Bt) YX+y grad(CTz+Dq)
(CTo/3(vz) r v)&. (3 31)

The coeS.cients A, C, D, etc. are functions only of the
material and its ambient temperature Tp. The only
parameters to vary with time and space are T&, X,, and q.

IV. PROPAGATION SOLUTIONS

To find a solution which would be similar to a plane
wave of second sound, assume

Tg= T,' exp(z((ot —q r)$,
X=Xp expLi((ut —q r)j,
op= o

p expLi(cot —q r)j;

(4.1)

(4.2)

(4.3)

r~ is the relaxation time for all interactions which con-
serve crystal momentum within the phonon distribution.
rp is the relaxation time for all interactions in which
crystal momentum is lost by the phonon distribution.
We may generalize r & to include all crystal momentum
losing processes such as boundary and impurity scatter-
ing. It is emphasized that these relaxation times are
weighted averages over the phonon distribution.

If higher-order collisions are considered, the form of
the collision terms remains the same. The relaxation
times, of course, become more complicated functions.

The moments can be substituted into the moment
Eqs. (3.5)—(3.7) to give the "phonon gas equivalents"
of the linearized hydrodynamic equations

(B/Bt)(ATg+Bq)+divfX= —(CTp/(v'), r) v, (3.29)

) =0. (4.11)

Hence, solution (4.8) applies to temperature fluctuations
which have no associated transport. Where a net quasi-
momentum exists, only umklapp collisions LEq. (4.7)j
can cause relaxation.

Equation (4.10) bears out the assumption that for
car&&1, p ~ 0. In this limit, the system can be described
as a temperature wave with very small higher-order
distortions. The dispersion relations for the second-
sound wave (Eq. (4.7)$ can be reduced to

q =(3-/(")..L.1+(-")-» (4.12)

for spherical symmetry. This can be solved for real and
imaginary parts:

qa' ——(3(0'/2&v')»{1/L1+(Nr p) q«'} (4.13)

qr ——(3~ /2&vz)») {L1+ ((gr p)
—zj«P —1}. (4.14)

The expected second-solution occurs when the damping
due to umklapp collisions is small, i.e, , cur p&&j.. In this
limit Eqs. (4.13) and (4.14) lead to

((")-&"', , &»)-
vzr =—=

~ ~
L1—(~xv)r-'+ j= (4.15)

qa &3& VS'

Equation (4.7) corresponds to forward and backward
propagation of second sound. In Eq. (4.8), s& is imagi-
nary, hence this solution corresponds to a pure decay
mode.

The relationships between X', q', and T~' can be
found from Eqs. (4.4)-(4.6).

(o CB AD+(C'Tp/i—cur&v'), )
xp= TP. (4.9)

q NB FD+(NCTo/—upr(vz), „)
A g —CIi

~p- TP. (4.10)
NB DF+ (CTp/icur—&v'). )

If the pure imaginary solution Eq. (4.8) is substituted
into Eq. (4.9)



E. W. PROHOFSKY AND J. A. KRUMHANSL

and Lifshitz. ' Their results, when applied to this situa-
tion, give an additional imaginary part ql' to the
second-sound wave vector:

(2 jT&)

qr = (—ce r/2»z )(» —»zs) = cos—r/»z. (4.20)

The total imaginary part of the wave vector in the
second-sound region (car rr))1) then becomes

qr =(—1/»z) t:(1/2r &)+~'r]. (4.21)

where
& (1/"')~4(e./To) "'

(»)-=I —
I =, (4 16)

I'i P.(1/v. )J4(e,/Ts)
and

qr = s1/»—zr zr . (4.17)

Applying the limit car rr«1 to Eq. (4.9) gives

Xs =ce/q(C/N) Tzs, (4.18)

and Eqs. (4.13) and (4.14) become

qrr'= qr'= 3ce/2(s') r v (4.19)

The limit given in Eq. (4.19) will be shown to be equiva-
lent to the usual equation of thermal conductivity in
Sec. V.

%hen the combined relaxation rate r-' is small, i.e.,
at very high frequencies, we would expect individual
phonons to travel unhindered from one region to the
next and any disturbance will propagate with the
velocity» rather than»z. As»z=(»), /v3, it is clear
that second-sound is a statistically collective propaga-
tion utilizing the phonons, and cannot be maintained
for o)7»1.

To the second-sound wave the lack of normal colli-
sions appears as a leaking of particles out of the co-
herent wave. We follow the treatments of related prob-
lems in liquid helium' and suggest that the eGects of
this loss can be described in terms of a "second vis-
cosity. "The wave propagation will be expected to have
velocity» in the "collision-free" situation (cdr))1) and
to have second-sound velocity ezz in the completely
satistical situation (cur«1) Large dispe.rsion due to
"second viscosity" will occur for cv7 =1

This situation is treated quite generally by Landau

I -l
7U

FIG. 2. Damping as a function of second-sound frequency. The
frequency "window" v.p '&co&a ' is the region of second-sound
propagation. In the cross-hatched area, the real and imaginary
parts of the wave vector for second sound are equal, hence no
harmonic propagation exists; it is the region of ordinary thermal
conductivity. In the region for which ~&v. ', second sound is
damped by "second viscosity"; thermal conductivity is limited by
boundary scattering.

The imaginary part of the wave vector is shown as a
function of ce in Fig. 2. It can be seen from Eqs. (4.14)
and (4.21) that the conditions for second-sound propa-
gation are

7 p
—'&(o&~ '. (4.22)

V. THERMAL CONDUCTIVITY AND
THE DIFFUSION LIMIT

The amount of thermal energy transferred by the
phonon system is the moment (nev) from Eq. (3.18):

Q= (ssev)=NZ,

Q= ,CsTpX. - (5.1)

In the case of phonons, this is equivalent to the product
of the total energy density and the drift velocity. This
formula is identical to that appearing in the expression
for superGuid heat transfer.

If one now substitutes Eq. (4.18) into Eq. (5.1),

Q= N(os/q) (C//N) Tz CTz(os//q), ——(5 2)

and for co~ &&1

whence

and

pe=0;

cd/q ce/qrz = vzz

Q =CTz»z .

(5.3)

(5 4)

(5.5)

Equations (5.1) and (5.5) both describe heat transfer.
Equation (5.1) applies to the transfer of energy by a
fiuid flow, whereas Eq. (5.5) describes propagation of
the energy by a wavelike mechanism.

Equation (5.2) can be written in the znore usual form
involving a temperature gradient, as

whence

Tz Tzs exPi(cot —zi r)——

gradT= Tzs(—iq) t expi(est —
zf r)g;

Q=C(cc/ iq') gradT—z,

(4.1)

(5.6)

(5 't)

where E is related to the total energy density of the
system. From Eq. (3.9), 2 is seen to be a net drift
velocity of the excitations when the assumptions about
the distribution function hold. In the spherically sym-
metric approximation

s C. T. Lane, SNPerftrscd Physics (McGraw-Hill Book Company, s L. D. Landau and E. M. Lifshitz, Ftrcsd Mechanics (Pergamon
Inc. , ¹wYork, 1962), p. 67. Press& Ltd. , London, 1959), p. 304.
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VI. FEASIBILITY OF EXPERIMENTAL OBSERVATION

In order for second sound to be possible in solids,
there must exist an appreciable difference between the
reciprocal normal and reciprocal umklapp relaxation
times. At low temperatures, the normal relaxation time
varies as some power of Tp, while the umklapp relaxation
time varies exponentially with Tp. It therefore seems
reasonable that, below some temperature, a window"
will appear in the frequency spectrum wherein the
propagation of second-sound becomes possible.

A rough experimental evaluation of the relaxation
times can be obtained from thermal conductivity meas-
urements. The relaxation times shown in Table I are
average relaxation times as defined in Eqs. (3.25),(3.27),
(3.28), computed by us and based on data by Walker. "
At about 10'K, the calculated 7.~ and v~ differ by more
than a factor of 104, indicating that a frequency in the
range 10'—10' sec ' should satisfy the inequalities of
Eq. (4.22).

In Table I, v, represents the frequency at which heat
conduction becomes more like Quid Qow than diffusion.
Above 15'K, no second-sound effects would be seen for
frequencies below 1 Mc/sec. Below 9'K, second sound
could be present for frequencies above one cycle/sec,
were it not for the decreased probability of normal
collisions.

The column v,,/2 in Table I represents the damping of
the second-sound wave by umklapp pj.ocesses; ~o&'vN

shows the damping due to second viscosity; and ~z
which is the total damping given by &ur

——gr/err. All these
6gures are for co= 10' sec '. The smallest total damping
occurs at 10'K, at which temperature the dissipation
is not so large as to rule out experimental observation

TABLE I. Computed relaxation times and damping coefBcients as
a function of temperature in sodium fluoride.

&U'K (sec)
ve =1/7 U

(sec ')
7'N

(sec)
ve/2

(sec ')
)ATTN
(sec ')

C0$

(sec 1)

20 2.2 X10 & 4.9 X10e
15 5.2 X10 e 1.9 X10e
12 1.1 X10 4 9.5 X10e
11 3.8 X10 4 2.7 X10e
10 1.9 X10 e 5.4 X10&
9 1.1 X10 2 8.8 X101
7 2.2 4.6X10 &

5 7.9 X10~ 1.3 X10 4

1.6X10 e

7.0X10 e

2.1 X10 &

4.3 X10 &

5.3 Xio-&
9.0X10 &

3.2 X10 e

1.7X10 e

2.4 X10e
9.1 X104
4.7 X10e
1.3 X10e
2.7 X10&
4.4 X10
2.3 X10 1

6.3 X10 e

S.S X10&
2.3 X10~
7.1 Xi(P
1.4 X103
1.8 X10&
3.0 X103
1.0 X104
5.7 X104

2 4X10e
9.1 X104
5.4 X10e
2.8 X10&
2.0 X103
3,0 X10$
1.0 X104
5.7 X10'

and in the limit, where eve ~(&1,

= gr =3(d/2(v )g~r p (4.19)

Q= C-,'(v').~r p gradT. (5.8)

This is the equation found in the usual derivation of
thermal conductivity if the heat-current relaxation is
very rapid. The region of ore U(&1, then, is the usual
diffusive thermal conductivity region, as noted in the
qualitative discussion in Sec. II.

of second sound. It should be emphasized that the fore-

going statements in this section apply only in an infinite,
pure crystal. In a real experiment, allowances must be
made for boundary and i'mpurity scattering.

In either a pulse experiment or a standing-wave
experiment, it is essential that a major fraction of a
wavelength be contained within the crystal. With the
usual size of pure crystals ( 1 cm), frequencies of the
order of 10' sec ' are necessary because of the large
velocity of sound (10' cm/sec). The generation and
detection of these high frequencies make the observation
of second sound in solids more dificult than is the case
in liquid helium (where vr 10' cm/sec), where lower

frequencies can be used. An additional consequence of
the use of higher frequencies is the increased damping
due to second viscosity.

It may therefore be necessary to use much larger
crystals in order to observe the effect. A larger crystal
would permit the use of lower frequencies and would

thereby reduce the effect of second viscosity. The ex-
periment could then be performed at lower temperatures,
where damping by umklapp processes is diminished.

The ease with which second sound can be propagated
in a given material can qualitatively be determined from
curves showing thermal conductivity as a function of
temperature. A large value of the maximum low-tem-

perature thermal conductivity indicates a long umklapp
relaxation time, which, in turn, suggests small amounts
of umklapp damping of second-sound waves. The size
of the crystal used in the measurement of the thermal
conductivity determines the minimum wavelength for
which a collective wave may be propagated in that
crystal at the temperature of the conductivity peak.
Therefore, for a crystal and frequency appropriately
matched, the optimum temperature for observation of
second sound will be slightly higher than that of the
conductivity peak.
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APPENDIX A

We wish to show and de6ne the relevant moment
transfer via collision terms listed in Eqs. (3.25)—(3.27).
Let 6@3~ be associated with the contribution to Des
from the X term in nq of Eq. (3.12).Let heap be associ-
ated with the 21 term, etc.

X cos8
(k k' k")Py~'~"d'k. —(A1—)

kgb

For normal processes,
1o C, T. Vilalker I'private Co~mpnicationf. keg, =0. (A2)
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A3)
' 1ofG h".f-., E,each magnitude o

Dt.„l=0. (A10)

in . (3.2) can be found yd b multi-Th h„i term' q.
plying ea H

cl olli i . TllThis factor will be zero or
ll times.energy is conserve data

b multi-rm simi ar y crrn
' '1 1 can be found yThe hn;„i term

plying Eq. (3.23) by A k k ——

(k —k' —k")

co — —aq Pq~'""dek (A11)Xcos&(aa —ay —aa")Py

Tl -jPk"'d'k =0, (A4)
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—e - ~
~=0 for all collisions.as 61c CION 67„- = ol

n2 A~i coi=+i k dak (AS)(k' —k"—k"')Pi,Ae3„=

sin le mode ise c
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=0 for normal processes,
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8 symmetry argr uments,

~&Tcol ~~geol =0. (A15)


