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Energy bands have been calculated for solid argon using the augmented plane-wave method. The crystal
potential used in this calculation has been approximated by a superposition of atomic potentials and involves
the Slater free-electron exchange approximation. In order to estimate the error introduced by this approxi-
mation, a quantitative comparison has been made between the Hartree-Fock and free-electron exchange
potentials for atomic argon. The results indicate that the free-electron exchange approximation is most ac-
curate for the less tightly bound valence electrons, though errors of the order of 0.1 Ry remain. The
present energy bands are found to be in qualitative agreement with the earlier results of Knox and Bassani,
though there are important quantitative differences. The present calculation yields a band gap of 13.3 eV,
which is in fair agreement with the experimentally observed value of 14.3 eV.

I. INTRODUCTION

HE energy bands for solid argon have been calcu-
lated recently by Knox and Bassani' using a

perturbation approximation to the orthogonalized-
plane-wave (OPW) method developed by Bassani and
Celli. ' The 3s and 3p levels were calculated using the
tight binding approximation, and the OPW method was
modified to take into account the variation of these core
levels with wave vector. It seemed desirable to carry
out a similar calculation using the augmented-plane-
wave (APW) method'4 in order to determine whether
or not this method was practical when narrow valence
bands and nearly free-electron conduction bands were
involved.

It turns out that the APW method is capable of
handling without difhculty both the tightly bound
valence band and the excited conduction band states.
The general features of the 3s and 3p valence bands
obtained by the APW method are very similar to those
calculated by Knox and Bassani using the tight binding
approximation. However, the corresponding positions
of these bands on an absolute energy scale (relative to
electron at rest at infinity) differ significantly in the two
calculations. In the case of the conduction bands, there
are again differences in the absolute energies of the
various states, but more important, there are differences
in the relative ordering of states. These discrepancies
cannot be attributed to a difference in potential since
checks were made with the same potential which was
used by Knox and Bassani, and similar differences were
obtained.

The general method for constructing the crystal
potential which has been used in the present calculation
is described in Sec. II. Exchange has been introduced by
means of Slater's free-electron exchange approximation. '

*This work was supported by the National Science Foundation.
)Presently employed at Bell Telephone Laboratories, In-

corporated, Murray Hill, New Jersey.' R. S. Knox and P. Bassani, Phys. Rev. 124, 652 (1961).' F. Bassani and V. Celli, Phys. Chem. Solids 20, 64 (1961).' J. C. Slater, Phys. Rev. 51, 846 (1937).
4 J. H. %ood, Phys. Rev. 126, 517 (1962).' J. C. Slater, Quantum Theory of Atomic Structure (McGraw-

Hill Book Company, Inc. , New York, 1960).

Section III contains a quantitative discussion of this
approximation in its application to the argon atom. It is
found that the free-electron exchange approximation
does not always overestimate exchange, as is frequently
emphasized in the literature. '~ It is shown that the
changes in the one-electron energies of the various
electrons in going from the Hartree-I'ock to the free-
electron exchange approximation can be estimated
quite accurately by means of Qrst-order perturbation
theory. This provides one with a reasonable estimate of
the accuracy with which a given potential will represent
the relative positions of the different'. bands on an
absolute energy scale, at least in the case of narrow non-

overlapping bands. This information is particularly
important in the vicinity of the Fermi surface and in the
interpretation of such phenomena as optical absorption.
The results of the present APW calculations for solid

argon are presented in Sec. IV, while Sec. V contains a
brief discussion of these results and the accuracy of the
free-electron exchange approximation.

II. CRYSTAL POTENTIAL

Solid argon is face-centered cubic, with a lattice
constant of 10.03 au (5.31 A).s In the APW method, the
crystal potential is usually approximated by a so-called
"muon-tin" potential. Each atom is surrounded by a
sphere, inside of which the potential is spherically
symmetric. Between spheres, the potential is assumed
to be constant. This constant is usually chosen to be the
average value of the potential in the region between the
sphere and the boundaries of the %igner-Seitz cell. In
the present calculation, the radius of the inscribed
sphere was chosen so that the spheres surrounding
neighboring atoms just touched at the cell boundaries.

The crystal potential for solid argon has been
approximated by a superposition of spherically sym-

~ J. Callaway, Sogd-State Physics, edited by F, Seitx and D.
Turnbull (Academic Press, Inc. , New York, 1958), Vol. 2, p. 100.' J. E. Robinson, F, Bassani, R. S. Knox, and J, R. SchrieGer,
Phys. Rev. Letters 9, 215 (1962).

E. R. Dobbs and G. Q. Jones, in Reports oN Progress ge Physics,
edited by A. C. Stickland (The Physical Society, London, 1957},
Vol, 20, p. 516.
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Tmr. E I. The crystal potential for face-centered cubic argon.
The radial distance r is in atontic units and V(r) is in rydbergs.
The average potential in the region between the APW sphere and
the Wigner-Seitz cell is —0.3697 rydberg.
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metric atomic potentials, calculated from self-consistent
field Hartree-Fock solutions for the argon atom by
Watson and Freeman. ' Exchange has been treated by
means of Slater's free-electron exchange approximation,
In discussing the manner in which the crystal potential
has been approximated, it is convenient to consider the
Coulomb and exchange contributions separately.

The total Coulomb potential at a given lattice site
(which is taken to be at the origin of coordinates) has
been represented by the neutral atom Coulomb poten-
tial for argon, plus contributions from neighboring
Coulomb potentials. The effects of neighboring Coulomb
potentials have been introduced by expanding them
about the origin, using I owdin s alpha-function expan-
sion."To obtain a spherically symmetric crystal Cou-
lomb potential, it is necessary to include only the l=0
term from this expansion in spherical harmonics. In the
case of argon, the large lattice spacing required only
the inclusion of the effects from nearest-neighboring
Coulomb potentials.

An analogous method has been used to calculate an
approximation to the crystal exchange potential. Accord-

ing to Slater's free-electron exchange approximation, '
V"(r) = —6L3p(r)/Ss)'I'. (1)

In the atomic case, p(r) represents the charge density
of the occupied states. We have approximated the
crystal charge density by a superposition of atomic
charge densities, again using LNvdin s alpha-function

' R. E. Watson and A. J. Freeman, Phys. Rev. 125, 521 (1961).
's P. O. Lowdin, Advan. Phys. 5, 1 (1956).

expansion, and again keeping only the spherically sym-
metric terms. Then, Eq. (1) was applied, using for p(r),
the total charge density. As before, the large lattice
spacing for argon required only the effects of nearest
neighbors to be included in this calculation.

Clearly, such methods for constructing the Coulomb
and exchange potentials are not too important in argon,
where the occupied atomic functions are well localized
and neither the Coulomb potentials nor the charge
densities overlap appreciably. However, this approach
has been found to yield reasonable results when applied
to the elements of the iron-transition series, which follow
argon in the periodic table. The crystal potential for
argon used in the pr'esent calculations is tabulated in
Table I. This potential differs only slightly from the
corresponding atomic potential, the largest difference
being approximately 0.04 Ry near the APW sphere
radius.

In view of the statements that the free-electron
exchange approximation overestimates the exchange
effect, especially in the low-density tails of atomic func-
tions, ' it seems worthwhile to examine this situation in
more detail here. If this were the case, the method for
constructing the exchange potential which is described
here would only exaggerate this effect. The results of
such an investigation are presented in Sec. III.

III. COMPARISON OF HARTREE-FOCK AND
FREE-ELECTRON EXCHANGE POTENTIALS

A comparison of the Hartree-Fock and various ap-
proximate averaged exchange potentials for an atomic
system has been carried out previously by Herman,
Callaway, and Acton for germanium. "Since they used
self-consistent 6eld solutions for germanium computed
without exchange, it was felt that some of their results
might be misleading due to inaccurate wave functions.
We shall make a similar comparison for the argon atom
using accurate solutions to the Hartree-Fock equations.
Ke shall limit this discussion to a comparison of the
Hartree-Fock and free-electron exchange potentials.

For an atom with closed shells, the Hartree-Fock
exchange potential for an electron in a state with
quantum numbers n, l can be written:

2l +1 i P~ip(r) 2
Ys(ts'l', ll

~
r) -. (2)

2l+1 Pet(r) r

The sum is over all closed shells of the atom, the coeS.-
cients c"(10;l'0) are tabulated integrals over spherical
harmonics, the functions E„t(r) are the radial wave

"F. Herren, J. CaHaway, and F. S. Acton, Phys. Rev. 95, 371
(1954).
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Tanr z IL A comparison of P„p(r) V„pv(r) and P„p(r)"(r) as a function of r for atomic argon. r is in atomic units.
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functions, and Vs(e'f', lr/sr) represent the functions

1
Ts(eV, nl~r) =— P„r(r')P t(r')r'"dr'

r
"P„ t.(r')P. t(r')

+rs+1 dr~ (3)
r~ 0+1r

For purposes of comparing the Hartree-Fock and free-
electron exchange potentials, it is convenient to calcu-
late P P(r)V„P (r) and P„P(r)V"(r) The results of
such calculations for atomic argon are given in Table II.
From these results, it is clear that the free-electron
exchange approximation Nederestimutes exchange at
large values of the radial distance r for all occupied
atomic states. An earlier calculation by Hartree" on Cu+
produced similar results. Hartree plotted the various
Hartree-Fock exchange potentials as a function of the
radial distance r. According to his 6gures, the free-
electron exchange approximation underestimates ex-
change for all occupied states at a radial distance of 2 au.

It is interesting to take the difference between the
Hartree-Fock and free-electron exchange potentials,
use this as a perturbation, and apply first-order pertur-
bation theory to determine the erst-order corrections to
the one-electron energy levels. This involves either the
evaluation of the Fs(rsl; rsT) and Gs(rd; rsT) integrals, s

in addition to the integrals

P„P(r) V"(r)dr,

or the direct integration of the differences between
P P(r)V PF(r) and P„P(r)V"(r). The results of such
calculations for argon are given in Table III.

A good estimate of the accuracy of using perturbation
theory can be obtained by direct integration of the
radial Schrodinger equation, using the potential ob-
tained from the Hartree-Fock solutions and the free-
electron exchange approximation. This would represent
the first iteration in going from Hartree-Fock to self-
consistent solutions involving the free-electron exchange
approximation, usually designated Hartree-Fock-Slater
solutions. These energies are also given in Table III.
For comparison, the eigenvalues for the self-consistent
Hartree-Fock-Slater solutions, as obtained by Herman
and Skillman, " are also included. The differences be-
tween the Hartree-Fock eigenvalues and those obtained
from the first iteration compare well with the perturba-
tion theory results. Comparison with the Hartree-Fock-
Slater eigenvalues indicates that there are still signifi-
cant adjustments in the eigenvalues before self-con-
sistency is achieved, though these changes are not large
for the less tightly bound electrons.

Tmx, z III. The eigenvalues e„g( ) and e„g(') are the self-consistent Hartree-Fock and Hartree-Pock-Slater one-electron energies,
respectively, for atomic argon (in Ry). The energies e„&( ) represent eigenvalues for the radial Schrodinger equation involving a poten-
tial computed from the Hartree-Fock charge density and the free-electron exchange approximation.

p pfV" Vrrrrgdr-
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'~ D. R. Hartree, Phys. Rev. 109, 840 (1958).
» F. Herman (private communication).



L. F ~ MATTH E I SS

0.5

0.4
0.3
0.2
0.1

tO 0
K -0.1E
O
&. —0.2
C

-0.3

U
&~ -1.25—
Z
& -1,26

-1,27

-1.28

-1.29~

P&s

-2.34—
—2,35

X) I( W( ~q~
h)

I;

The results of Table III indicate that the free-electron
exchange potential, averaged over all r, underestimates
exchange for the 1s, 2s, and 2p levels, and overestimates
it slightly for the 3p leveL However, the 3p eigenvalue
also rises above the Hartree-Fock value by the time
self-consistency is achieved.

I X Vl L f"

Fxo. 1.Energy bands for face-centered cubic argon. Calculations
were carried out only at the points 1', X, W, L, and E of the
Brillouin zone. The connecting lines represent reasonable guesses
to the actual shapes of the bands. Energies are given in Ry. Note
the change in scale between the valence 3s and 3p bands and the
conduction bands.

the conduction band lies at I', and has the symmetry F~.
The APW results indicate that the 3d band lies in the
middle of the 4s-4p conduction band, and that the
lowest states at the edges of the Brillouin zone are pre-
dominantly "d" like rather than "s"or "p" like, as pre-
dicted by Knox and Bassani. Again, the energy range
of the conduction bands differs considerably from that
of Knox and Bassani.

V. DISCUSSION

The present calculations predict an energy gap of
13.3 eV from the top of the 3p valence band (I'„-) to the
bottom of the conduction band (F~). This value com-
pares well with the experimental value of I4.3 eV
measured by Baldini" and the value of 12.4 eV ob-
tained in the calculations by Knox and Bassani.

These results indicate that quite reasonable energy
bands can be obtained using the free-electron exchange
approximation. Despite the fact that this approximation
causes changes in the one-electron atomic energy levels
from the Hartree-Fock values (and a corresponding
shift in the energies of the resultant bands), it appears
likely that this shift in energy can be estimated reason-
ably well by first-order perturbation theory. This will

give at least a rough estimate of the inaccuracy in the
relative positions of the different bands.

The source of the discrepancies between the present
results and the earlier calculations by Knox and Bassani
is uncertain. The fact that their Bs and 3p bands are
lower in energy is probably due to the fact that they
used the Hartree-Fock eigenvalues to position these

IV. RESULTS

The results of the APW calculations for solid argon
are listed in Table IV and sketched in Fig. 1. Con-
vergence tests indicate that these results are accurate
to approximately 0.001 Ry for the potential under
consideration. Actual calculations have been carried
out only at the points I", X, 5', I., and E in Brillouin
zone. The notation is that of Bouckaert, Smoluchowski,
and Wigner. "The lines connecting these points repre-
sent reasonable guesses to the actual shapes of the
various bands, consistent with the compatibility
relations.

The calculated widths of the Bs and 3p valence bands
compare favorably with those reported earlier by Knox
and Bassani. ' However, the present bands are located
at higher energies. From the results of Table III, it is
seen that the present Bs and 3p bands lie in the immedi-
ate vicinity of the corresponding atomic levels obtained
from the free-electron exchange calculations.

The APW results for the conduction bands diAer
significantly from those of Knox and Bassani. The two
calculations agree only in predicting that the bottom of

'4 L. P. Souckaert, R. Smoluchovrski, and K. Wigner, Phys. Rev.
50, 58 (1936).

State

~l
~so'
j'n
I'1S
X1
Xg
X3
X4.
Xg
Xf,.
W1
W1
W2
WB
L'1
L2
L3
L3
E]
E~)
I"3

E4

3s band

—2.351

—2.341

—2.341

—2.344

3P band

—1.294

—1.268

—1.269—1.281

—1.297

—1.258—1.278

—1.287—1.265

Conduction bands

—0.274
0.158
0.265
1.439—0.085
0.339—0.002
0.157
0.367
0.530
0.204
0.364—0.028
0.058—0.077
0.044
0.144
1.517—0.038
0.334
0.101
0.256

0.603 0.881

1.582
0.518

0.620 1.126
0.481 1.052
0.503

0.345

0.014 0.410

0.470
0.683 1.573

"G. Baldini, Phys. Rev. 128, 1562 (1962).

TABLE IV. Energies of various states for solid argon at the
center and boundaries of the erst Brillouin zone. All values are in
Ry and are relative to zero potential in the vacuum outside the
boundaries of the crystal.
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bands. This may also have produced the differences in
the ordering of the conduction band states. These latter
differehees could also be due to limitations in the pertur-
bation approximation to the orthogonalized-plane-wave
method which was used by Knox and Sassani.

One interesting observation regarding the conduction
bands for argon is the similarity between these bands
and those obtained for face-centered cubic iron by
Wood' and for copper by Burdick" and also by Segall. "
Aside from minor changes in the ordering of states in the
4s-4p bands (which can be explained by differences in
lattice spacing), the bands are remarkably similar. This

"G. A. Burdick, Phys. Rev. 129, 138 (1963).» 3. Segaii, Phys. Rev. 125, 109 (1962).

may lend some support to the rigid band approximation,
a proposal which has enjoyed fair success in explaining
several aspects of the electronic properties of the
transition metals and their alloys.
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Second-Sound Propagation in Dielectric Solids*
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The conditions necessary for the occurrence of second sound in solids are examined in some generality.
The results indicate that second sound can propagate at frequencies greater than the reciprocal umklapp re-
laxation time and smaller than the reciprocal normal relaxation time. At frequencies less than the reciprocal
umklapp relaxation time, the solutions are the same as those for normal thermal conductivity. The frequency
range and damping of second sound at various temperatures is computed using relaxation times determined
for sodium fluoride.

I. INTRODUCTION

S ECOND sound in superAuid helium was first de-
scribed as a collective phonon wave by Landau. ' In

this description, the "phonon gas" was treated as a
particle gas in which harmonic phonon-density Quctua-
tions could be propagated. This explanation seemed to
describe a phenomenon so general that many authors'
have spec'ulated about the possibility of occurrence of
similar collective waves in solids. A collective wave of a
more restricted nature has been reported in CdS crystals
by Kroger, Prohofsky, and Damon. ' Their experiment
involved the use of electrons drifting faster than the
velocity of sound, which are therefore strongly coupled
to the phonons. This problem will be discussed in a
forthcoming paper.

This paper is limited (as were those by Ward and
Wilks, and by Dingle') to a discussion of an acoustic

* Supported by the Advanced Research Projects Agency.
t Presently at Sperry Rand Research Center, Sudbury,

Massachusetts,
' L D. Landau, J. Phys. Moscow 5, 71 (1941), 11, 91 (1947).
r (a) J. C. Ward and J. Wilks, Phil. Mag. 42, 314 (1951), 43,

48 (1952}.(b} R. B. Dingle, Proc. Phys. Soc. (London) A65, 374
(1952}.(c}M. Chester, Phys. Rev. 131, 2013 (1963).

'H. Krogr, E. %. Prohofsky, and R. W, Damon, Phys. Rev.
Letters 11, 246 (1963).

phonon system which does not interact strongy with
charged particles or optical phonons. We will place
emphasis on those aspects of phonon dynamics associ-
ated with the periodic structure of solids. This requires
that a distinction be made between normal collisions
and umklapp collisions. It should be kept in mind that
phonons undergo normal collisions in which the crystal
momentum of all the phonons is conserved, much like
the collisions of a particle gas. It is emphasized that this
conservation applies regardless of the number of
phonons or whether the collision involves phonons of the
same or different phonon branches. The major difference
between phonon and particle gases is that in addition
to normal collisions the phonons may undergo umklapp
collisions which have no counterpart in particle gases.
In this context this paper examines in detail the collec-
tive transport phenomena of a many-phonon system
and develops a description of a collective harmonic mode.

In Sec. II of this paper, the factors that determine
whether or not a system will respond to a density
fluctuation by diffusive or harmonic behavior are dis-
cussed qualitatively.

In Sec. III, energy and crystal-momentum conserva-
tion equations for phonons are derived from transport
equations. The moments of the equations are then


