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ticular equilibrium position. The effective local ani-
sotropy thus contains in addition to hidden canting
contributions also contributions from anisotropic ex-
change and higher-order terms of the single-ion ani-
sotropy. This can result in. a complicated temperature
dependence and considerable caution is required in

applying a physical interpretation to the data.

V. CONCLUSION

A complete derivation of the resonances and sus-
ceptibilities has been presented, for the various possible
magnetic ground states in orthoferrites. The results
show a dependence not only on overt canting but also gn
the hidden canting mechanism. %hen the anisotropy
energy is small compared to the antisymmetric ex-
change, it is possible to describe the low-frequency be-
havior on the basis of a formal 2-sublattice model,
employing an effective anisotropy energy which includes
hidden contributions of an exchange character. At low

frequencies hidden canting cannot be observed directly,
at its indirect effect may be noticed in the temperature
dependence of measured parameters.

The chief observable effects associated with hidden
canting is the susceptibility of the exchange resonances.
In a purely antiferromagnetic configuration these modes
would be optically inactive. Hidden canting introduces
a coupling between exchange modes and antiferromag-
netic modes, which result in optical activity of the
former.

In general, one may conclude, that out of the large
number of coefBcients which play a role in the inter-
actions among the four magnetic sublattices, onlyxela-
tively few are susceptible to macroscopic observation.
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A detailed description of the ground state of a face-centered cubic antiferromagnetic system with Ising
interactions is followed by an investigation of the low temperature thermodynamic properties by means of
a power series expansion of the partition function about T O'K. This expansion has been found to be
possible even though the ground state is degenerate because of the existence of a substantial amount of
"partial long-range order. "Expressions for the zero-field magnetic susceptibility and the specific heat are
derived.

INTRODUCTION

'HE low-temperature thermodynamic properties of
magnetic spin systems with Ising interactions

have been investigated by means of series expansions
(for a review, see Ref. 1).The general principle is that
at low temperatures the partition function can be ex-
panded in terms of successive deviations ('excited
states') from an ordered ground state. This has not
hitherto been possible in the case of a face-centered cubic
system, because it does not have an ordered ground.
state when nearest-neighbor interactions only are pres-
ent. In a previous communication, ' the present author
determined the degeneracy of the ground state of such
a system and gave a complete classi6cation of the
ground-state con6gurations. As a result it is found that,
although the ground state is degenerate, there exists a

*Present address: Department of Physics, University of
Toronto, Toronto, Ontario, Canada,' C. Doinb, Phil. Nag. 9, SuppL 34, 149 (1960).' A. Daniefian, Phys. Rev. Letters 6, 670 (1961).

substantial amount of "partial long-range order" which
makes it possible for the partition function to be ex-

panded in the usual manner to a limited number of
terms. In the following section the ground state of the
face-centered cubic system is discussed further; sub-

sequently some of the excited states are evaluated and
expressions for the zero-field magnetic susceptibility and
speci6c heat derived.

II. THE GROID STATE

Ke 6rst give a summary of the results reported in
Ref. 2 concerning the ground state of a face-centered
cubic antiferromagnetic system of E spin moments each
having two possible states (+).First, the energy of the
ground state is -2JtfJ, where +J is the interaction
energy between neighboring parallel spina (++, ——)
and —J the interaction energy between neighboring
antiparallel spins (+-). Second, the configurational
state of any one triangular layer of the lattice deter-
mines uniquely the con6gurational state of the whole
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lattice. Third, the number of con6gurational possibilities
within the triangular layer itself is severely restricted,
not only because each spin has to be at the center of one
of two types of cluster, a or P Lsee Figs. 1(a) and 1(b)j
but in addition, the. existence of a single e cluster de-
termines that the whole row along a certain axis also
consists of 0. clusters. As a consequence, each triangular
layer consists of rows of a or P clusters; hence, the de-

generacy of the lattice is of the order 2", R=Ã'".
Fourth, both the magnetic susceptibility and the en-

tropy per spin vanish at T=O'K.
The interesting feature of this case is that, although

the system does not order, both the magnetic sus-
ceptibility and the entropy per spin vanish at T=O'K.
This is not so in the other case where an exact analysis
of a degenerate ground state is available, namely that
of the triangular lattice'; here at T O'K, the entropy
per spin is finite and the susceptibility in6nite. 4 The
marked di6'erence between the thermodynamic proper-
ties of the two lattices at T=O'K must be due to the
existence of a substantial amount of "partial long-range
order" in the ground state of the face-centered cubic
lattice, as described by the second and third points of the
preceding paragraph. The difference in the ground states
of the two lattices is seen by noting that if the number
of sites on the triangular layer is e, then the degeneracy
of the triangular lattice is of the order 2"" (Ref. 3)
but that of a triangular layer in the face-centered cubic
lattice is 2~" (Ref. 2). It is therefore clear that there is
more order in the ground state of the face-centered cubic
lattice than in that of the triangular.

The precise extent of the order existing in the ground
state of the face-centered cubic lattice is shown as fol-
lows: the cr cluster )Fig. 1(a)$ has two mutually per-
pendicular axes XOX' and YOY', along which all clus-
ters in the lattice must be n clusters (see Ref. 2). As

X'

FIG. 1. The 0! and P clusters of the ground state of the face-
centered cubic lattice. Three successive triangular layers are
shown: the triangles form the middle layer; the circles denote
sites on the layer below and the remaining three sites are on the
layer above.

s G. H. Wannier, Phys. Rev. 79, 3S'I (1950).
4 M. F. Sykes and I. J. Zucker, Phys. Rev. 124, 410 (1961).
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FIG. 2. Two sections from the antiferromagnetic ground state
of a face-centered cubic lattice, each consisting of three consecu-
tive antiferromagnetically ordered quadrilateral layers. In case
{a} the layers form n clusters of which two adjacent ones are
shown. In (b) P clusters are formed where the spins in the x-y
plane (e.g., u, b, c, d) are also antiferromagneticaHy ordered while
those in z-z plane (e.g. , p, I, r, s) are ferromagnetically ordered.

these two axes delne a quadrilateral layer of the lattice,
it follows that we have a layer of 0. clusters comprising
the spins of the ith, (i 1)th, an—d (i+1)th quadrilateral
layers i.e., a total of the order 3S& spins. Furthermore,
since 3 adjacent spins of the same sign and making an
angle of 120' determine an n cluster t e.g., in Fig. 1(a),
spins A, 0, B],it follows that in the ground state, three
spins determine the configuration of approximately
3/& spins in the lattice. We now denote by X the set of
quadrilateral layers in the lattice parallel to the quadri-
lateral layer determined as above, and the other two
sets of quadrilateral layers by F and Z (the three being
mutually perpendicular). Looking at the lattice as a
whole, we 6nd that each layer of the set X is antiferro-
magnetically ordered —the spins on each square of a
layer being in the state (+~). Any three consecutive
layers of this set will consist entirely either of o. clusters
or of p clusters; thus, the spins of the ith, (i—1)th, and
(i+1)th layers are correlated. In tire case of rr clusters the
spins of the (i—1)th layer are antiparallel to those of the
(i+1)th layer whereas in the case of p clusters they are
parallel. The arrangements on the Y and Z sets of quadri-
lateral layers are not uniform throughout the lattice,
but depend on whether any particular square of spins
belonging to either of these sets is part of an n or p
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Fxo. 3. Configurations
utilized in Table I.

with J) would favor rr clusters LFig. 2(a)j throughout
the lattice: the n.n.n. pairs of spins along the x axis will

align antiparallel because this does not aGect the energy
due to nearest-neighbor pairs; however, the n.n.n. pairs
along the two other axes will still remain parallel other-
wise the energy due to nearest neighbors will rise. This
is "ordering of the third kind. "The various ordered spin
conigurations and the energies involved in terms of
nearest and n.n.n. interactions have been discussed by
Carter and Stevens' and described extensively for
several lattice structures by Gersch and Koehler. '

III. THE PARTITION FUNCTION

As is usual, a low-temperature expansion of the parti-
tion function is obtained by 6rst determining the energy
changes (AE)„, involved in overturning n=1, 2, 3.
spins from the ground state. In Appendix A we show
that

C„
/J~

cluster. In the case of e clusters each square of spins
belonging to a F or Z set is in the (+f) or its equivalent

(+ ) state; in the case of p clusters there is another set,
in addition to X, which is also antiferromagnetically
ordered and the third is ferromagnetically ordered —the
spins being all parallel.

In Fig. 2(a), a section of three antiferromagnetically
ordered quadrilateral layers (of the set X) are shown in
the case where they form o. clusters (a spin with its 12
nearest neighbors forms a cluster —two u clusters are
shown). In Fig. 2 (b), the case is of P clusters: the second
antiferromagnetically ordered set of quadrilateral layers
is in the x-y plane (e.g. , spins a, b, c, d) and the ferro-
magnetically ordered in the x-s plane (e.g. , spins p, q, r, s).

To summarize: the antiferromagnetic ground state of
the face-centered cubic lattice may be constructed by
using antiferromagnetically ordered quadrilateral layers
and placing them one above the other such that any
three consecutive layers will conform to one of the two
conhgurational schemes shown in Fig. 2. Each time the
(s+1)th layer is added, there is the option of having
the spins parallel or antiparallel to those of the (i—1)th
layer (which are vertically beneath) —it is precisely this
which gives rise to the degeneracy of 2~ where E is the
number of layers, of the order N&. Itis now easy to see
that the presence of a small amount of interaction energy
between next-nearest-neighbor (n.n.n.) pairs will re-
move the degeneracy. For example, a ferromagnetic in-
teraction between n.n.n. pairs (they are along the diago-
nals of the squares i.e., along the x, y, s axes) would

favor the parallel alignment of the spins of the (i—1)th
and (i+1) layers i.e., P clusters LFig. 2 (b)] throughout
the lattice; this would result i'n what is generally known

as "ordering of the first kind. " On the other hand a
small antiferromagnetic n.n.n. interaction (compared

TmLE I. The energies Eqi of the "excited states" (k=1, 2, 3)
above the antiferromagnetic ground state (k=0) of a face-centered
cubic lattice of N spins. gg, f,X2~(R=N'I') is the total number of
those ground-state configurations which when overturned each
contributes an energy Epi.

Ep ———2$J
k=1
EIg ———2NJ+8J+2mH
E12———2NJ+8J—2mB

k=Z
E21———2NJ+12J
k=3

E31= -2$J+16J+4mH

E32= —2NJ+16J—4mH

E33———2NJ+16J

E34= —2$J+16J+2mH

E3g ———2NJ+16J—2mB
E36———2NJ+16J

Configuration'

Cll
Ci2

Cgg

C3g

C32

C34

C3~
CSO

Nl2
N/2

N N

4 2 j
N N

4 2 j
N (N
-~i —)

ION
PNb

a See Fig. 3. & depends on the degenerate state.

' W. S. Carter and K. W. H. Stevens, Proc. Phys. Soc. (London)
SN, 1006 (1956).' H. A. Gersch and W. C. Koehler, Phys. Chem. Solids 5, lfN
(1958).

(~z)„=SIX+4zs„+z~az„,

where b„=(number of "even" bonds) —(number of
"odd" bonds); d„= (number of + spins) —(number of
—-spins); m=the magnetic moment per spin; H=the
external magnetic field along the + direction.

Sy "bonds" we mean those which connect pairs of
nearest-neighbor spins; these are "even" or "odd" de-
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pending on whether the spins are parallel or antiparallel.
If all the spins of the cluster are "separated" then 8„=O.

The "excited states" can now be evaluated by apply-
ing (1) to all possible con6gurations of 44=1, 2, 3
spins, noting that the con6gurational possibilities are de-
termined not only by the lattice but also by the general
configurational scheme of the ground state described
in Ref. 2. The important feature of the configurations
with e= 1, 2, 3 spins is that they are common to all the
degenerate states. It is essentially this feature which
makes possible the derivation of a series expansion from
the ground state, and it is due to the substantial amount
of order discussed above.

At this stage we consider the possibility of (tkE),&„
being less than or equal to (DE)„(apart from the case of
r=E—n and r=r4 which is discussed in Ref. 1).This is
easily possible but we have found that (hE) „' i.e., the
minimum value of (hE)„for a given I, increases mono-
tonically with e in zero 6eld up to the limited value of n
investigated. Ke assume that

(AE),'& (hE) „', p) r) r4; (2)

where p is an upper bound imposed to exclude the case
mentioned and because (1) is not valid for all 44 due to
surface effects. In Appendix 8, we discuss (2) further
and show precisely what its validity depends on.

Applying Eqs. (1) and (2) we find that the first four
excited states are:

i.e.,

ZN=A244S irg+rsg (p+14 ')S4—+4gS'+-
+(P'(s& 5) ( '+p ')+s&(s—& g)—

+10'(t4+p ')+plV)s' ]. (3)

Z, the partition function per spin defined by,

(1) 8J, (2) 12J, (3) 16J, (4) 20J.

Table I (Fig. 3) shows the various energy levels Esi of
the lattice beginning with the ground-state energy
Ep= —2S'J. The subscript "k" denotes the various ex-
cited states, e.g. , k =3 refers to an energy jump of 16 J
above the ground state. The second subscript "l"de-
notes those configurations which, when overturned, give
rise to the energy jump denoted by "k".If Esi=Eo+crsJ
(where rrs is a number), it follows from (2) that all the
con6gurations which can contribute to it are limited to
those of clusters of up to e spins, where e is determined
by (DE)„'=nsJ. The last column shows the number gsi
of each configuration on a lattice of X spins.

We can now write down the partition function for
an E-spin system:

ZN A2n Q gsi exp( ———Esi/kT),

Is

Z=As-' 1+(p+p ')—+4s'
2

15
+ p ——+10(p+p ') —-(p'+p ') s'+" (5)

8

where s=exp( —2J/kT), p, =exp( 2—mH/kT), and. F,
the total free energy of the system is given by

F= XkT ln—(Z).

IV. RESULTS AND DISCUSSION

(6)

Using (5) and (6), other thermodynamic functions
may be derived from well-known relations; thus, the
zero-field magnetic susceptibility and the specific heat
C, are given by

( 4}2

x= —
/

k&H' Ir o

a t alnz)
C„=

]
kT

aT& aT /

or in terms of the variables s, p, ;

4'' (8' 1nZ)

kT k c}p

8 8 lnZ
C.=R(lns)'s s

8$ Bs'

Hence we obtain,

4Xnz'
s4(1+10s4—4s' )

kT
(9)

16s4
C,/E = (1+9s' )

(kT/2J)'
(10)

In Fig. 4 we show Xo ——(2XJ)/le'm' plotted against
t=kT/2J. Curve A is obtained from (9), and 8 is a
PaN approximant~ of the high-temperature series of
Bomb and Sykes consisting of eight terms. The two
intersect at t =1.2, where the last term of (9) contributes
1% and where the values for Xo given by the various
Pads approximants are practically identical. Higher
terms in A and 3 may cause this intersection to be
smoother, however we tentatively interpret this point
as the maximum of the susceptibility or the Noel point
ter. The ferromagnetic critical point (Curie temperature)
has been estimated' at t, =4.9, hence tN=t, /4.

As we have already seen, the behavior of the magnetic
susceptibility and the entropy per spin as T —+ O'K of
this nonordering system is an unexpected feature of this
case. The question of interest which next arises is

Z= lim (Zsr) "~, (Ref. 1) (4)
' G. A. Baker, Phys. Rev. 124, 768 (1961).' C. Doinb and M. F. Sykes, Proc. Roy. Soc. (London) A240,

214 (1957).
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now a cluster of n spins. Each spin "i"in this cluster will
in general have p; bonds with other spins of the cluster,
such bonds will be described as "internal" bonds; it will
also have (12—p;) bond. s with spins not appearing in
the cluster, these bonds will be called. 'external' bonds.

Let the ith spin be connected with:

8—b;,

"even internal" bonds;

"even external" bonds;

"odd internal" bonds, (a;+b,= p;);
"odd external" bonds.

FIG. 5. Clusters of spins from the ground state of the antiferro-
magnetic face-centered cubic lattice. (A) and (8) consist of g
and iI+1) spina, respectively: minimum energy is involved in
overturning either of them. Cluster (C) is (8}with one spin (u)
removed.

After overturning all the spins of the cluster, all
"external" bonds change: the "even" bonds becoming
"odd" and the "odd" becoming "even. "Therefore the
6nal energy contribution of the "external" bonds is:

P—(4 a;)J+ (—8 b,)J— (A2)

The contribution to (DE)„ is therefore

g —2J(4—a,)+2J(8—b~)
i~1

=SeJ+Q 2J(a, b,)=SNJ+4J—b„, (A3)

where 5„=(total number of "even internal" bonds)
—(total number of "odd internal" bonds) in the n-spin
cluster.

The magnetic contribution is simply 2mHd„, where
d„ is the difference between the number of (+) and (—)
spins,

.'. (AE)„=SNJ+4J8„+2mHd„. (A4)

The energy associated with each "even" bond is +J,
and with an "odd" bond -J. We now consider the
energy contribution of the bonds to (8E)„, the energy
change involved in overturning e spins in the ground
state. When all the spins are overturned, the contribu-
tion of the "internal" bonds is zero, because "even"
bonds remain "even" and "odd" bonds remain "odd."
Therefore it follows that only "external" bonds con-
tribute to (hE) „.

The original energy contribution of "external" bonds
1S

Q (4—a;)J—(8—b,)J.

APPENDIX 8

Let p„=(~E)„, q„=(~E).', q„„=(aE)
q„ is the minimum value of (~)„, the energy change
involved in overturning a cluster of e spins in the ground
state and similarly q~l, the minimum energy involved
in overturning a cluster of @+1spins.

Let (A), (B), (C) (of Fig. 5) represent the clusters of
spins corresponding to q„, q„+t, p„, respectively. (C) is
identical to (B) in every respect except that one of the
spins (a) is removed.

By definition, p„&~q„, i.e., if the n spins of (A) are
rearranged as in (C), the energy (dE)„will remain the
same or increase. One can go from (B) to (C) in (rs+1)
different ways, corresponding to the (n+1) different
spins one could remove from (B). If it can be shown
that (B) must contain at least one spin, which when re-
moved causes (~) to decrease (or remain the same),
then it would follow that q~t ~&p„, since q„+t is a mini-
mum. Therefore we would have

qa+t &~ ps ~&qn
Now from (1),

q~t —p.= (~)~t' —(~E).
=4J(2+6,), (in zero field); (B1)

where (a) denotes the spin which is removed on going
from (B) to (C). It is therefore sufficient to show that
(B) must have at least one spin for which 8, ~&

—2 i.e.,
(number of odd bonds)-(number of even bonds) ~(2.
Or alternatively, to show that it is impossible for every
spin in (B) to have an excess of 3 or more odd bonds.
We have not been able to prove rigorously that this is
the case but examining a large number of possibilities
indicates that it is highly unlikely that a Gnite cluster
exists in which every spin has an excess of 3 or more odd
bonds due to the existence of vertices.


