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Magnetic resonances and susceptibilities are calculated for various allowed magnetic structures in ortho-
ferrites and similar magnetic perovskites. The calculation is based on a general form for the free energy
which includes canting contributions from both single-ion anisotropy and antisymmetric exchange, and
which assumes four distinct interacting magnetic sublattices. The results are compared with those obtained
from a simplified 2-sublattice model, and the effect of hidden canting on overt behavior is evaluated. When
antisymmetric exchange is the predominant canting mechanism, a 2-sublattice model presents a correct
formal (but not necessarily physical) picture for the antiferromagnetic resonance modes and for low-
frequency magnetic behavior, provided that exchange effects associated with hidden canting are properly
incorporated within an effective anisotropy energy. This effective anisotropy will, in general, not have the
physical properties, e.g., temperature dependence, typical of single-ion anisotropy. A 4-sublattice model is
required for the analysis of the high-frequency exchange modes. It is found that these modes are coupled
by the spin canting mechanism to the antiferromagnetic modes and as a result become optically active. In
general, one finds that, of the many interaction coeScients possible in a 4-sublattice system, only relatively
few can be determined by direct macroscopic measurement.

I. INTRODUCTION neighbor spins. s In the present convention, sublattices i
and 3 are oriented in one direction, and sublattices 2
and 4 in the opposite one. Canting is exhibited as a
small deviation of the sublattice magnetization vectors
from strict antiferromagnetic allignment and can assume
various forms (Fig. 2). Jn general one can distinguish
two types of canting. The first which we shall call overt,
consists in a bending of the spins toward a direction
perpendicular to the axis of ferromagnetism and gives
rise to a small resultant ("residual" ) magnetization.
This phenomenon is commonly referred to as "weak
ferromagnetism. '" In the second type, which we shall
refer to as hidden canting, the spins fan out synllnetri-
cally about the axis and produce no resultant mag-
netization. As a rule, both types exist side by side, but
while overt canting is directly observable, the inQuencc
of hidden canting is largely indirect.

The physical origin of canting may be found either in
thc QlRgnctlc anlsotropy of the individual ion sltc ol lIl
an antisymmetric exchange interaction of the form
D.Sr & Ss, first postulated by Dzialoshinski, r and later
derived theoretically by Moriya. ' According to Treves, '
antisyrnlnetric exchange is the predominant cause of
canting in several orthoferrites. In KMnF3, on the
other hand, it would seem that single-ion anisotropy

~~~RTHOFERRITES are typical representatives of a
cIRss of magnetic materials which crystallzc ln a

slightly distorted perovskite structure of orthorhombic
symmetry. In many instances these substances are
canted antiferromagnets' and exhibit on the macroscopic
scale some of the detailed structural aspects of the
superexchange mechanism. They are also of interest as
examples of multisublattice systems which possess
several optically active magnetic resonance modes. The
orthoferrites, in the strict sense, are mixed oxides of
composition NFCO3, where M is a trivalent metal. We
shall, however, use the term generically to include other
magnetic substances of isomorphic structure, e.g., the
orthomanganites, or more remotely related, KMnF3 in
its orthorhombic phase. The present analysis is con6ned
to those cases where the metallic ion M is nonmagnetic.
The more general and much more complicated case, in
which two distinct magnetic species are present, will
merit a separate discussion.

The structure of orthoferrites has been studied in
detail by Geller' and associates and by Bertaut and
Forrat, ' and there exist in the literature several visual
representations of this rather involved crystalographic
configuration. ' 4 For our purpose, Fig. 1 which indicates
the location of the Fe ions in the unit cell will sufkce.
There are four distinct iron sublattices, with an ap-
proximately antiferromagnetic arrangement of nearest-
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predominates. 4 It has been shown that the two canting
interactions produce distinguishable magnetic be-
havior' "and should not in general be lumped together.

The existence of four distinct sublattices makes the
task of relating macroscopic phenomena to microscopic
effects rather complicated, because of the large number
of possible interaction parameters. In previous studies, ' '
the analysis was greatly simplified by resorting to a 2-
sublattice model in which the respective sublattice pairs
(1,3) and (2,4) were each represented by a single
magnetization vector, thereby eliminating at one blow
a majority of the interaction parameters. The physical
assumption implicit in this model is that all hidden
canting sects can be ignored. As we shall see below,
this model is very useful at low frequencies in important
special cases, provided the proper physical interpreta-
tion is given to the constants used. Nevertheless, as
shown. by Joenk" in the related case of CuCls 2HsO,
important details are lost in this approximation, par-
ticularly with respect to magnetic behavior at higher
frequencies, as rejected in the optical activity of the
exchange modes.

In the following sections we present a detailed analysis
of the macroscopic dynamics of the magnetic system in
orthoferrites, based on a full 4-sublattice model. In
particular, expressions are derived for equilibrium con-
6gurations, residual magnetization, and equilibrium
energy for the various allowed magnetic structures.
Precession modes are analyzed in detail and expressions
are found for the various resonances, for mode ampli-
tudes, and for the high-frequency susceptibility (from
which the dc susceptibility is obtained as a special case).
The approach used in the calculation is fairly general, in

FIG. 2. Allowed magnetic
con6gurations in orthoferrites.
Con6guration III, which is in-
compatible with the antiferro-
magnetic interaction, is not
shown.

that it includes canting contributions both from single-
ion anisotropy and from exchange, and on the whole
avoids approximations based on heuristic arguments.
From the number of independent interaction constants
one may immediately conclude that the task of relating
theory and experiment is a formidable one which re-
quires, on the one hand, information from many diverse
types of experiments, and, on the other hand, a very
detailed theory. One of the objectives of the present
calculation has therefore been to define the "measurable
parameters" of the problem, i.e., those parameters
which can be de6nitively established in a given experi-
ment, and determine which, if any, of the macroscopic
phenomena are uniquely related to a specific micro-
scopic interaction. In particular we investigate the
effect of hidden canting on overt behavior and establish
the relation of the 4-sublattice dynamic model to the
2-sublattice model. Since the latter model has the virtue
of simplicity its continued use by workers in the field is
likely, and it is important to establish its range of
validity and limitations.

FzG. 1. Unit cell of the orthorhombic orthoferrite showing and
indexing the iron sites.

1o G. F. Herrmann, Phys. Chem. Solids 24, 597 (1963}."R.J. Joenk, Phys. Rev. 126, 565 (1962).

II. CRYSTAL STRUCTURE AND THE
MAGNETIC CONFIGURATIONS

Orthoferrites belong to the crystallographic point
group D2~ and to the space group Dmy,

"—Dq„„. In
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Mj,=
Mj„=

M3 = M4„
Mgy= —Me„= —M4„,

Mj, ———Mg, = Ma, =—M4„

configuration III (E,EC2.,C2„,EC2.);
Mg = —M3,=—M4„

Mjy= Mp„= M3„= M4„)

Mj, = —Mg, = —Me, = M4„

dealing with fundamental precession the displacement
operations of the space group are irrelevant, since they
merely transform each sublattice into itself. Each point
group operation produces, on the other hand, a permu-
tation among the four iron sublattices, e.g., the 2-fold
rotation about x results in the permutation (14)(23).
Proper combinations of permutations and point group
operations can therefore serve as elements of the sym-
metry group. Moreover, since each Fe site is a center of
inversion, it suffices to consider the elements E, C~,
C», C&, of the smaller point group D&. The required
symmetry group is given by E, C2, (14)(23), C»(13) (24),
C2, (12)(34) where the 2-fold rotations C», C2„, C2, may
be regarded as orthogonal transformations acting on the
magnetization vectors, and the associated permutations
as acting on the subscripts denoting the respective
sublattices.

The magnetic structure and interactions in ortho-
ferrites are discussed in detail by Bertaut. "The equi-
librium spin con6guration must belong to one of the
magnetic groups derived from the crystallographic point
group. The magnetic groups can be obtained by the
method of Tavger and Saitzev" by appending the time
reversal operator R to D~. In the case of orthoferrites
there is no reason to expect that the inclusion of spins
will result in an inherent reduction of the symmetry.
One arrives at four "complete" magnetic groups, and
correspondingly four magnetic structures as follows:

configuration I (E,C2„C2„,C2,);
Mj,= —Mg, = —Mg, = M4„
Mjy= —Mg„= M3~= —M4„,

Mj, = Mg, = —Ms, =—M4„

configuration II (E,C2~,ECZ„,EC2,);

configuration IV (E,EC2„EC2„,C2,);
Mj,———Mg, = M3,= —M4,
Mj„=—Mg„= —M3„= M4„,

Mj, —— Mg, —— M3, —— M4„
where M; is the magnetization vector for sublattice i.

In orthoferrites the interaction between nearest neigh-
bors, i.e., sublattices 1 and 2, 1 and 4, 2 and 3, and 2
and 4, is essentially antiferromagnetic. Configuration
III is therefore ruled out as a ground state. The re-
maining configurations are represented schematically in
Fig. 2. In configuration I the spins are essentially along
the y direction, and there is no overt canting. In con-

6guration II the spins are essentially along the s direc-
tion with a residual component of magnetization along
x. In con6guration IV the spins lie essentially along the
x direction with residual magnetization along s.

Each con6guration exists in two types of domains. In
cases II and IV these will correspond to opposite re-
sidual magnetizations. In I, which has no magnetiza-
tion, the domains may be characterized as right or left
handed, respectively.

III. FREE ENERGY AND DYNAMIC EQUATIONS

We consider four types of contributions to the free
energy of the magnetic system. The first, and by far
largest, contribution is made by isotropic exchange
interactions. These are denoted by E with appropriate
subscripts denoting the sublattices involved. Next is

antisyrnmetric exchange, with coefficients D, and the
single-ion anisotropy, A. Last there is the interaction
with an applied Geld H. Synnnetric anisotropic exchange
is not included at present, and only quadratic terms are
included in the single-ion anisotropy energy (see Sec. IV
for a discussion of these omissions). As usual it is as-

sumed that Mj=M~=M3=M4, where M remains a
constant during precession.

It will be conve~ent to work throughout in units of
magnetic 6eld. Instead of the free energy Il, we use the
normalized magnitude V=F/M, and define unit direc-
tional vectors

r;= M;/M

with components (x;,y;,z;) to describe the sublattice
magnetization vectors.

The most general form for V, compatible with sym-

metry, is

V=E»(r, r2+r3 r4)+E13(rl'r3+r2'r4)+E14(11'14+1'2'r3)+D12 (ylz2 y2zl y3z4+y4z3)

+D12 (Z1Z2 Z2Z1+Z32'4 Z42'3)+D18 (yiZ3 y8Z1 y2Z4+y4Z2)+D18*(2'ly3 +8y1++2y4 Z4y2)

+D143(Zlz4 Z4z1 Z2+8+Z3+2)+D14 (+ly4 z4yl+z2y3 $3y2) —A..g *4 —A„,Q y —A..p Z'

—A,„(2:iyi+x2y2 S8y3 $4y4) A3 (yizi y2z2 y3z3+y4z4) A (z1$1 z2$2+z3x3 z4$4) —H Q r;. (1)

The sign of some of the coeKcients depends on the particular choice of sublattice labels. While this choice does

not eBect any of the macroscopic results, care must be used in applying it consistently.

' E. F. Bertaut, J. Phys. Radium 23, 460 (1962).
'3 B. A. Tavger and V. M. Saitzev, Zh. Eksperim. i Teor. Fiz. 30, 564 {1956) /English transl. : Soviet Phys. —JETP 3, 430 (1956)j.
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In order to keep the calculation within reasonable bounds it is convenient to follow Dzialoshinski' and introduce
a system of symmetry coordinates de6ned by

2ro= r~+r2+ra+r4,
2r~ ——r~+r2 —ra —r4,

2ro = r~—r2+ ra —r4,

2rz=r~ —r~—r~+r4.
Apart from a constant, t/' is now given by

V =Eoro +EprI'+Ezra +D, (yozr ypzo—)+D„(zoxo zoxo—)+D,(xoyz xzy—o)+ (D&2,+Des,) (yzzo —yozz)
+ (%2,—R4,) (zzx~ —z~x~)+ (%4.+D»,) (x~yo —xoy~) —A ..(xo'+x~'+xo'+xz')

A»(yo'+—yp +y Q +yR )—A**(zo'+zI +zq'+zz ) A,*(yozz—+yzzo+yozI +ye so)
A„—(zoxo+zoxo+zzxz+zaxz) A,„—(xoy~+x~yo+xoyz+xzyo) 2H —ro, (3)

i;=x;XV;t/'. (4)

IV. RESONANCE AND SUSCEPTIBILITY

In order to make best use of the available syxrimetry,
it is best at this point to split the discussion and treat
separately each of the allowed magnetic structures. We
shall begin with a discussion of structure I, which is
most tractable to analysis, and then apply analogous
procedures to the more dificult cases of structures IV
and II.

The introduction of an applied Geld will in general
destroy the synnnetry of the magnetic configuration,

where Eo=E»+E», EI'=E» E» E—&=%4 E» D~
Dgn D» Dy D»y+D$4y D.=Dg4, —D» ~ Equa-

tion (3) is obviously no shorter than (1), but it has
certain distinct advantages in application, owing to the
fact that most symmetry coordinates vanish at equi-
librium. The new exchange coefficients represent the
energy associated with bending of one particular pair of
sublattice magnetization vectors relative to the other
pair. Eo and D„, which represent the energy involved in
bending M& and M3 against M2 and M4, are the only
exchange parameters to appear in the 2-sublattice ap-
proximation, and together with A„are responsible for
overt canting. The parameters EI, Eg, D, D„A„„A „,
are associated with various types of hidden canting. The
terms associated with (D»,+D»,), (D~2„—Dq4„), and
(D~4,+D»,) turn out to be unimportant for small
canting angles and will not make a significant contribu-
tion to any of the final results.

The dynamic equations are given in the form

r';/y= r;X &~V,

where the gradient V; is taken with respect to the
coordinates (x,y;z;) which are treated as independent
variables, the condition xP+yP+z,z= 1 being imposed
upon completion of the operation. In order to simplify
the notation, we shall set the gyromagnetic ratio p equal
to unity. This implies that all frequencies will be
measured in units of magnetic 6eld, normalized ac-
cording to the true value of p. We thus use the equation
in the form

and therefore greatly increase the difhculty of calcula-
tion. In general one can split the magnetic 6eld into a
component compatible with the magnetic group, and a
component which reverses sign upon application of
some group operation. Elementary considerations indi-
cate that the compatible component will in general
produce 6rst-order sects, while the other components
produce at most second-order sects. We therefore
con6ne ourselves to magnetic 6eMs compatible with the
magnetic groups in each configuration. We thus put
H= 0 in configuration I, and take 8 along the z direction
in configuration IV and along the x direction to con-
6guration II. We make no assumption as to the direc-
tion of the small rf field h, and can therefore still derive
complete expressions for the susceptibility tensor.

In the course of the calculation it is necessary to apply
drastic approximations. It is assumed that canting
angles are small, and all relevant parameters are de-
termined up to first order in the canting angle. The
approximation is based on the fact that the exchange
parameters E are large compared to D and 2 type
parameters. At the same time, magnitudes of the form
D'/AE may in some instance be of the order of unity
and must be retained. We therefore attempt to adhere
to an approximation procedure valid for either small or
large D. We retain up to quadratic terms in H, and
obtain the coefEcient of each power of H essentially to
an accuracy comparable to the canting angles.

Configuration I
1. Equi/ibrilm I'ositiorl, and Energy

Con6guration I is characterized by the symmetry
group Gr ——E, C2,(14)(23), Cn„(13)(24), C2, (12)(34).
The only nonvanishing symmetry coordinates at equi-
librium are x, yg, and zp. Since the spins are essentially
along the y direction one has yg 2 and xz and z& are
small. One readily obtains to first order

xz = (D,+A,„)/Ez,
zg ———(D.—A „,)//Er,

at equilibrium, The choice of particular domain implicit
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(1,1,1,1 ) . (1,1,-1,-&)

where 8 is the angle, at equilibrium, between r& and the

(x,y) plane, and q the angle between the projection of
r& on the (x,y) plane and the y axis. According to (5)
and (6), approximately

q = (D,+A,„)//2Eg,

8= —(D. 2„,)—//2Er . (10)

EXCHANGE

O)p ( tp U
p )

(1,—,1,1,-1)

ANTIF E RROMAGNE TIC

(t,u„)
R

(1,-1,-1,1 )

The coordinate systems for the remaining sublattices
are chosen so as to give complete symmetry with respect
to GI, and the corresponding transformation equations
are obtained by successively applying the operations of
Gr to Kq. (8).

In the manner indicated in Eq. (2), one can combine
the coordinates s;, t;, and u;, into symmetry coordinates

so, s~, sq, sg, etc. For these symlnetry coordinates one
obtains similar sets of transformations, the 6rst of
which is

EXCHANGE

ru .(t&, u)

ANTI FE R ROM AG NET IC

cu (t, u I
p p'p

FIG. 3. Mode patterns of con6guration I, showing idealized
trajectories traced by magnetization vectors as viewed along the
y axis, with vectors 1 and 3 pointing towards, and 2 and 4 away
from the observer. The character with respect to Gz —=8, C2g, C»,
C&„ the resonance frequency, and the precession coordinates are
listed for each mode.

so=san sing cos8—tg sing sin8+ug cosy',

yo=sq cosy cos8—tq, cosy sin8 —ug siny,

zo=s~ sin8+t~ cos8.

The remaining transformations are obtained by suc-
cessive application of the double-pair permutations
(OP) (QR), (OQ) (PR), and (OR) (PQ) to the subscripts
in (11).

In order to obtain small signal equations for a weak rf
magnetic field, he'"', Kqs. (4) must be expanded in
terms of small deviations from equilibrium. At equi-
librium itself so= 2 and all other symmetry coordinates
vanish. The simplest procedure is to first expand Eqs.
(4) and then form the synunetry combinations in the
fashion of Eq. (2). One obtains four separate sets of
equations of the form

(12)mto —Vo&„to ——(Vo —V,)u—o+ho,
in these relations will be adhered to consistently in the ~uo= (Vo~s V.)to+—Vo~ uo ho~, —
remaining calculations. The free energy at equilibrium is

with similar equations for the P, Q, and R components,

Z. Resonance Frequency and
v, = av/a. ;=-',av/a. o,

There are 4 resonance modes corresponding to
the symmetry characters (1,1,1,1), (1, 1, —1, —1),
(1, —1, 1, —1), and (1, —1, —1, 1) of the group Gr.
Idealized mode patterns are shown schematically in

Fig. 3. By use of the syxllmetry coordinates introduced
in Eq. (2) a separation of the dynamic equations is

automatically obtained. First, one introduces a set of 4
distinct systems of coordinates (s;,t;, ),uone for each
sublattice, such that the s; axis coincides with the
equilibrium orientation of r;, and u; is in, the (x,y) plane.
For sublattice 1 the transformation is given by

xq= sq sinq cos8—tq sing sin8+uq cosy,

yy=Sz COsy COSO —ty'COSy Sin0 —uz Slny

z~ ——sq sin8+tq cos8,

ko =0,
hg „=0,
kq =—2h„siny)

hg =2h, cosy)

ko~ ——0,
kp g

= 2kz cos8 )

kgg= —2k' cosy sin8)

kg&= —2k, siny sine.

V«. a'V/atoauo——, Vo~~= amv/auoauo, etc.

The derivatives are taken at equilibrium, and V, in

these expressions, no longer includes the rf contribution
from h. The normal components of h are. de6ned ac-
cording to the standard procedure, indicated in (2), e.g.,

2hp =h g+h 2+h 3+h 4,

where h„; is the component of h along u;. Using the
transformation Eqs. (11) one finds
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In the same approximation, the resonances are given by

or 0~ erg~—4ZJ Bg,

Equation (12) is analogous to the equation for
ferromagnetic precession of a single magnetization
vector, and can be arrived at directly by noting that
V(u,s;t,) is symmetric to double pair permutations of
the indices and that all mixed derivatives of the form
O'V/BNgBNp, etc., must vanish.

The formal solution of (12) is easily obtained. First
one finds the resonance frequency by setting h=0,
giving

u p'= 4Eg[(A yy A**)—+ (D~ A ttt—)I/4E p

+A*u(D.+A.u)I/E145 (Du+—A-)' (1&)

~z'= 4Eg)(A „p A*t—)+(D.+A *g)2/4Eit
—A„.(D.—A„.)/E 5—(D„—A,.)'.

40.et'= (v «—V.) (v —vt) —«~'.

The solution of (12) is then given by
cup'+ (D„+A..)'

(&tip 4& )Eg—t= ((o,.,2—sP)
—'P(v„„—V,)ht —(Vt —m)h 5,

I= (~„,'—(g')-'f —(vt„+i~)ht+ (vt 4 V,—)h 5,

+0' and ~@' are not strictly identical, their relative
(14) difference being of the order of the square of the canting

angle. The precession amplitudes are

where the subscripts 0, P, Q, E have been omitted, since

the equations apply to each of the modes.

In order to obtain explicit expressions one must work

out in detail all the coefficients which appear in Eq. (12)
for the specific form of V. This requires first the substi-
tution of (11) into (3), and then differentiation with

respect to the symmetry coordinates. Within the ap-
proximation used here, one finds

Vo« —V.= Vg~~ —V.=2&I,

VI «—V.= Vz —V.=2&o,

Vq« —V, = Vo „—V, =2Ez,

Vrt „U,= 2 (A „„—A 4,)—+ (D,+A,„)'//2Ert

2A „,(D, A„,)/Ep—, —

Vp„„—V, =2(A„„—Ag, )+(D, A„,)'/2Ep-
—2A,„(D,+A,„)/Ert,

Vgt D12 +D14

V~] ———D„—A...
Vg,„——a~2„—Dj4„—A...
Va~~=ay —~-.

2(D„+A.. i(u)—
Ng —— h„

co~2—co~

2(D,—A „,)
h„,

o) g' —oP

2(D,+A.„)
kg y

GO g —6)

2(D„A„is—))—
tg=—

co +it(Dy —A „)'
Ng= h .

(~it —40 )Eg

The optical activities of the P, Q, and E modes are,
respectively, along s, y, and x directions. The 0 mode is
inactive. P and E are antiferromagnetic modes, 0 and Q
exchange modes with much higher resonance fre-
quencies. The eliptic trajectories of the antiferromag-
netic modes are highly eccentric (Fig. 4), the ratio of
minor to major axis being of the order of top/Eg oi'

tda/Eg, and the optical activity is confined to the direc-
tion of the minor axis.

3. SuscePtibility

The total magnetization is P M;=M P r;=2Mrg.
The rf components of ro are expressed in terms of the
normal mode coordinates by Eq. (11), in which the
terms containing s coordinates are left out. With the
help of Eqs. (18), (9), and (10) one readily obtains the
coeKcients of the susceptibility tensor,

cM
X

FIG, 4. Schematic trajectories in the antiferromagnetic modes
of con6guration I,

x„=(2M/Eg)(~it'+ (D, A)'5/(~a' —~')—
x„„=2M((a. A„,)'/Ep+(D, gA.„)'/E,5/—(~,'—~ ),
x„=(2M/Eg)L(d p'+ (Dy+A tg)25/(M p' —M') .

By setting co=0 one obtains the dc susceptibility
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(1,1,1,1)

EXCHANGE

o(tp, p)

(1,-1,-1,1 )

ANTI FE R ROMAGNETIC

cu '(t, u )

(18) it is evident that the rotational coordinates Ns and
t~ are large compared to their bending counterparts, tI
and ug. The application of a magnetic field in a direction
perpendicular to y thus results in a screw motion con-
sisting of a large rotation about the Geld accompanied
with slight bending towards the 6eld. (The sense of the
rotation will depend on the domain type. ) The rotation
indicates an inclination of configuration I to go over into
configuration II or IV, which upon application of a
field, become energetically more favorable on account of
their residual magnetism. The incremental magnetiza-
tion appearing in Eq. (20) is thus accounted for by an
admixture from configurations II and IV which is
introduced upon applying a magnetic field.

(.1,-1,1s-1) (1,1,-1,-1)

EXCHANGE

„(1„, )

ANTI FE R ROMAGNETIC

xv(4g'to)

Fic. 5. Approximate mode patterns of con6guration IV, as
viewed along the x axis, with trajectories of vectors 1 and 3 dis-
played above those of 2 and 4. The character is with respect to
Gqv =E, RC2„EC2„, C2, where time reversal is assumed to occur
when the s component of precession vanishes. The precession
coordinates listed are not true normal coordinates.

Con6guration IV

The treatment of configuration IV follows that of
configuration I in many details, and it will save space if
we apply an essentially identical notation to the present
case. To avoid confusion we must stress at the outset
that equations and definitions used in this section apply
exclusively to configuration IV.

The di%culties in the treatment of configuration IV
are due to the presence of time-reversing elements in the
magnetic group. The group Gr v=E, RC (14)(—23),
RC„(13)(24), C, (12)(34) is isomorphic to Ds and has the
same character table as Gi. The characterization of
normal modes according to this table is, however, not in
general possible a priori, because of the nonunitary
properties of R (see Wigner" for a discussion of this
point. Physically the ambiguity lies in specifying the
exact instant of time reversal relative to the precession
phase). The characterization and separation of modes is
therefore more complicated in the present case.

coefficients

X„( =0)= (2M/Eo)[1+(D„A„)'/ rc'], —
x-( =0)=(2M/ o')L(D*—A.*)'/E

+ (D.+A*s)'/Ea]
X„(&o=0)= (2M/Eo) D+ (D„+A„)'/cor'].

4. "Screw" Susceptibility

The expressions for X„and X„are surprising at first
sight. Intuitively, one would expect the four magnet-
ization vectors to bend toward a magnetic field which is
applied essentially at right angles to their orientation.
The field would thus be acting directly against the
antiferromagnetic exchange field Eo, and in the present
approximation this would lead to the usual susceptibility
values in antiferromagnets, namely X„=X„=2M/Eo.

To arrive at a physical explanation for this apparent
discrepancy, let us consider the geometric meaning of
the coordinates tI, u~, t~, ug. From the definitions one
sees that tp and u~ represent bending of all magnetiza-
tion vectors towards s and x, respectively, whereas u&
and trc represent rigid rotations about these axes, From

l. Equilibriums Position and Energy

The only nonvanishing symmetry coordinates at
equilibrium are xg, yz, and so. The spins lie essentially
along the x direction, hence xg 2, and to first order

ysc = (D.—A.,)/Esc, (21)
so= (De+A za+B)/Eo, (22)

where H is an applied constant field along the s direction.
There is a residual net magnetization along s, given by

M'I =2Mso= (2M/Eo)(De+A ) (23)

The free energy at equilibrium, to first order, is

V= 4A (D +A. +H)s//E—o (D—. A)s/Erc (24)— —

Z. Resonance Frequencies

The precession modes can be classified according to
the characters (1,1) or (1, —1) with respect to the
subgroup E, Cs, (12)(34). Further classification with re-
spect to RCs, (14)(23) and RCs„(13)(24) is ambiguous

'4 E. Wigner, Group Theory used its ApP/icutioe to the Quantum
Mechanics of Atomic Spectra, (Academic Press, Inc. , New York).
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(D, A.„)/2Eg, —
8 (Dy+A sx+H)//2Eo.

(26)

The remaining transformations are obtained by suc-
cessively applying to (24) the symmetry operations of
Gz~. The effect of the time-reversal elements is to make
the coordinate systems for sublattices 2 and 3 left
handed. For the symmetry coordinates the appropriate
transformations are

So=st cosp cosH —fg coscp slnH —Ng sin(p

yo= —sii sing cos8+tg sing sln8 Nil cos—y, (27)
so=&o sin8+to cos8,

since it depends on the choice of the exact instant at
which precession is reversed. Nonetheless, one gains
physical insight by considering the approximate mode
patterns presented in Fig. 5, in which time reversal is
defined as occurring at the instant at which all s com-
ponents of the precession vanish. (This approximation
is closely related to the 2-sublattice model. ) The reso-
nances are designated as coo, co, ~,„, and co„where the
subscripts refer to the direction of optical activity of the
modes, in this approximation. coo and eu represent ex-
change modes and co „and co, antiferromagnetic modes.
The detailed calculation shows that these modes are not
normal, as each antiferromagnetic mode is coupled to an
exchange mode, and that, as a result, the optical ac-
tivity is not coined to the directions specihed.

We proceed again by introducing 4 separate coordi-
nate systems, (s,t,m;) where s; is along r; at equilibrium,
and I; is in the (x,y) plane. The transformations for rl
are

xj=sj cosqcosH —i~ cosy sinH —Nj sing,
yi ———si sin+ cos8+ti sinrp sin8 —Ni cosy,
sl ——sl sin8+ti cos8,

where H is the angle between r& at equilibrium with the
(x,y) plane and p the angle which the projection of ri on
the (x,y) plane makes with the x axis. According to (21)
and (22)

where the remaining transformations are again obtained
by successive application of the permutations (OE) (QR),
(OQ) (PR), and (OR) (EQ).

The small signal equations are obtained as in con-
Gguration I. In the coordinate systems (sm, t&,«2) and
(sg, t au )ithere is, however, a sign reversal associated
with taking the time derivative. Hence, when forming
standard linear combinations of the equations, one
obtains expressions of the I', 0, R, Q, on the left side of
the equations, opposite expressions of the form 0, I', Q,
R, respectively, on the right. There are therefore two
systems of coupled equations, the 6rst being

~to= Vz—i„tz (V—i . V, )up—+hp„,
LG)so'(Vpti V )tp+Vpi +p hpt

i~tI V—=oi.to (V o— V,)uo+h—o,
miiz= (Vo&i—V,)to+Voi No ho&. —

(28)

hog=2h, cosH,

kP, ——0,
hqg= —2k cosqsinH,

kg&= 2k„sinqsinH,

ho =0,
kP„=O,

hg„= —2k sing,

h~„= —2k„cosy.

(29)

Equation (28) can be interpreted as coupling an
antiferromagnetic mode with coordinates (to,li) to an
exchange mode with coordinates (ti,uo) via the coefK-
cients Vo&„and VP& .

In order to solve (28), one first puts it in the form of a
"Telegraphy Equation. "Defining

Qo
$P

hpe
—kPg

ho+
.—ho|,.

The second set is obtained by applying (OQ) (PR). The
components of h are given by

0
0

—Vo~~

.(Vo« —V.)

0
0

—(Vo —V,)
Vo~

(Vz« —V*)
0
0

—(Vp —V,)

0
0

with

((o'+T') g= —(T+ia&)g, (30)

one can write (28) in the matrix form mQ= TP+g. By where
substituting the right-hand into the left-hand side of the
equation, one obtains

(Vp V.)(Vo« —V.)——Voi Vi'i
l (Vo V )(Vpit V ) Vot Vpt

m= Vzi~(V o~~ Vs) Voi~(—Vz~~ —V.), —
e= Vzg„(Vogi V,) Voi.(—Vzii —V.)—(31)

T=
0

, 0

m 0 0
0 0

0 —S —m
0 —n —k.

Equation (30) separates into two independent sets of
equations for (iso, to) and for (Nz, tz). The resonance
frequencies are obtained from the secular equation

eDt(co„,'+ T)=0,
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mrhich gives
((p„,2—l'p) ((p„,'—4) =22222

with solutions

pp„,2=-2'(4+ i'p) a-2,L (4—k)2+4m22]"2.

Since, in our case 422222&&(l —k)2, one obtains the follow-
ing approximate expressions for the two resonance fre-
quencies denoted coo and co, '.

(&o
'—&o2) '(~p2 —aP) ' which results from the coupling to

the oro exchange mode. The eliptic trajectories as-
sociated with the antiferromagnetic modes are highly
eccentric, the ratio of minor to major axis being of the
order of pp, /Eo and ~,„/Eo, respectively. These are
represented schematically in Fig. 6. The tilting of the
elipses is due to the interaction with exchange modes.

3. SuscePtibility

ppp2= 4+22222/(4 —k),
~p,2 =k —22222/(4 —k) .

As in configuration I the susceptibility is obtained
from g M;=2Mrp, where rp is given in terms of the
mode coordinates according to Eq. (27), with the s
coordinates left out. A detailed and somewhat lengthy
calculation gives

(32)

-(D„+A„+H)' (D, A.„)'—
x„=2M +

(ip „2 pp2)E—p (G7
—pp )Eii-

-(D„+A„+H)

(~p, „2—~2)Eo
u= Xu~*= 2zorMVo« —V.= Vz —V.= 2~o,

Vp« —V,= Vg„„—V, =2Ep,
Vz«—V.= Vo —V.=2~x,
V«, —V,= 2(A,.—A„)+(4A,.+H) (D„+A..+H)/

2E,+(D,—A,„)/2E„
l'I=—2(A- Ap, )—+ (Dp+A-)

X(D +A. +H)/2Eo
2A,„(D, A,—„)/2Ea, —

2(D,—A „.) (D.—A,„)
2 ~2 ~ 2 ~2

(35)

2(p2 (D,—A „,)'
(33~ xuu=2M( ) .

(pp
2 (g2)Eo (ip 2 472) (pp

2 (p2)E/

Qlg 2(d (Dg+Apg)

-( '—')Eo ( *'—')( '—')Ei-
yzz= 2'

Volts ~ uz D12s D18x y

In complete analogy one obtains two additional
resonances ~, and ip,„froin the equation for the Q and R
coordinates. An approximate assignment of coordinates
to each resonance mode is given in Fig. 5.

A detailed calculation of the coefhcients appearing in
(28) gives, to first order,

Vpg„———D,—Au„
Vq ~~=D.—~u. ,

Vi22„——Dipg+Dipg —A „..

In order to obtain the dc susceptibilities one sets
co=0 and substitutes h —+ B, hu —+ Hu, h. ~H„
H —&II„and expands up to quadratic terms in the
fields. One then obtains

From Equations (32), and their analogs for pp,2 and
~,„', one obtains, after proper substitutions and ap-
proximations,

x„(pp= 0)= 2M (D„+A„)2/cp,p2E p,

x„„(a&=0)= x„((v=0)=2M/Eo,
(36)

No ~~~ ~4EpEg
&

~.,'= 4Eo[(&.. A„)+(D, A,„)'/— —
4Eri (D, A, ) / 2E4)i- —

+ (4A. +H) (D„+A.,+H), (34)

piP =4EoDA.~ A„„) A,„(D, —A.„)/— —
Eri (D.+A „,)2/4Er 'j-

+ (D„+A„)(D„+A„+H),
where again ~0' and ~ ' difI'er by a relative amount of the
order of the square of canting angles.

To obtain the precession amplitudes one must solve
(30) in detail for all modes. Because of their length we
will not reproduce the expressions in full, but confine
ourselves to some general remarks. Each precession
coordinate contains a direct resonance term and a mode
interaction term. For example, the coordinates to and
Np which belong with co„have a direct term propor-
tional to (cp,2—ip2) ', and a term proportional to

for the linear coefficients, and

&**.= )2M(D, +A ..)/Eopp. ,'7
X L2co.„2—(D„+A„)(D„+5A.,)], (37)

for the quadratic coeflicient. The frequency M,„ in (36)
and (37) is taken from (34) for H=O.

+IG. 6. Schematic trajectories in the antiferromagnetic modes
of configuration IV.
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Con6guration 0
It will be observed that Eqs. (1) and (3) are invariant

to a transformation consisting of (1) interchanging x
and s, (2) interchanging the subscripts 2 and 4, (3)
interchanging the subscripts P and R, (4) reversing the
sign of all D coefficients, and (5) reversing the sign of
all coordinates. This transformation e8ects a complete
mapping of configuration II and everything relating to
it into configuration IV. All equations of the last section
can be systematically transformed to give the analogous
equations for configuration II, and there is no need to
treat this configuration separately.

The study of configuration II is of practical interest
even in those cases where configuration IV is the normal
ground state, since the application of a suKciently high
field along the s direction may cause the magnetization
vectors to flip from the latter to the former. The stability
condition for configuration II under those circumstances
is that the frequency co„, be real (the reality of a&, will

usually follow automatically), or,

~,'=4EoDA. . A,.)+ (—D,+A„.)'/
4Ep (D,+A.„)'/4—Egj
+(—4A„+H)(D,—A.,+H)&0. (38)

For fields slightly above the flipping field, - Hp,

(u„.~(D.—5A.,+2H p) (H—H p) . (39)

This mode is therefore distinguished by its low fre-
quency, and its tremendous sensitivity to small changes
in the magnetic Geld.

IV. DISCUSSION

At first sight it would seem that all.of, the results
obtained in the last section show a clear dependence on
hidden as well as overt canting parameters. A closer
look will show that at low frequencies (i.e., low com-
pared to the exchange resonances) the dependence on
the hidden parameters is largely formal. This becomes
most apparent when A&&D, (which, according to
Treves, ' is probably the rule in most orthoferrites) in
which case one may neglect the off-diagonal terms of A.
One can then introduce effective anisotropy constants
given by

A.,=A„+D.2//4E g,
A„„=A „„=DP /4Ep, +D 2//4Ep, (40)

A„=A „+D,'/4Ep,

which completely account for the effect of the hidden
canting parameters, as can be seen by substituting (40)
into (7), (24), (17), and (34) (and the corresponding
equations for structure II), as well as into the sus-
ceptibility expressions at low frequencies. The anti-
ferromagnetic resonances, and the low-frequency be-
havior in general can in this case be completely described
in terms of a 2-sublattice model, which is obtained by
lumping together M~ and Ms, and Mm and M4. The

results obtained here in fact agree completely with
those obtained for the 2-sublattice model in an earlier
work, ' provided A„, 2» and A„are substituted for
A, , A» and A„.It must, however, be stressed that the
model is strictly formal, not physical. The effective
anisotropy may bear little relation to the spin Hamil-
tonian in an analogous paramagnetic configuration and
its temperature dependence must reflect the contribu-
tion of hidden exchange parameters.

When A(&D does not hold, it is in general impossible
to introduce a 2-sublattice model which will account
consistently for all relations. But in this case too, the
hidden canting parameters are always found in combi-
nation with anisotropy constants and cannot be sepa-
rately extracted from the macroscopic data at low
frequencies.

Clearcut evidence for hidden. canting must be sought
in the behavior of the-high-frequency exchange modes.
In configuration IV, the coo mode is optically active in
the s direction and the or mode is active also in the y
direction. This activity results entirely from hidden
canting.

The total number of measurable parameters is thus
rather small. Eo, D„, and A„can be obtained from
measurement of the residual magnetization, the dc
susceptibility, and the field dependence of antiferro-
magnetic resonance. From these resonances one also
obtains effective anisotropy, constants whose physical
nature is complex. The exchange frequencies yield the
product E~Eg, the absolute line strength measurements
of these. resonances in configurations II and IV yield the
parameters (D,+A,„)'/Eg and (D,+A „,)'/Ep.

The optical activity of the resonance modes is rather
weak. If one takes as a standard the susceptibility near
resonance of a ferromagnet with magnetization 4M, i.e.,

dupes/(h1peg M )

then the strength of the antiferromagnetic modes is
weaker by a factor of the order of &o„,/Eo, which is
generally comparable to a canting angle, and the
strength of exchange modes weaker by the order of
D'/E' or roughly the square of a canting angle.

Some cautionary remarks are called for concerning
certain approximations and assumptions used. These
are

(1) Neglecting of symmetric anisotropic exchange.
Such terms become submerged in the single-ion ani-
sotropy term.

(2) Neglecting higher than quadratic terms in the
anisotropy. At room temperatures this assumption is
probably justified on the basis of paramagnetic reso-
nance data, but at low temperature the eGect of higher
terms could be significant.

All of these considerations combine to indicate, that
in the expressions of the previous section one should
regard the anisotropy constants as describing the ani-
sotropy surface only in the neighborhood of each par-
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ticular equilibrium position. The effective local ani-
sotropy thus contains in addition to hidden canting
contributions also contributions from anisotropic ex-
change and higher-order terms of the single-ion ani-
sotropy. This can result in. a complicated temperature
dependence and considerable caution is required in

applying a physical interpretation to the data.

V. CONCLUSION

A complete derivation of the resonances and sus-
ceptibilities has been presented, for the various possible
magnetic ground states in orthoferrites. The results
show a dependence not only on overt canting but also gn
the hidden canting mechanism. %hen the anisotropy
energy is small compared to the antisymmetric ex-
change, it is possible to describe the low-frequency be-
havior on the basis of a formal 2-sublattice model,
employing an effective anisotropy energy which includes
hidden contributions of an exchange character. At low

frequencies hidden canting cannot be observed directly,
at its indirect effect may be noticed in the temperature
dependence of measured parameters.

The chief observable effects associated with hidden
canting is the susceptibility of the exchange resonances.
In a purely antiferromagnetic configuration these modes
would be optically inactive. Hidden canting introduces
a coupling between exchange modes and antiferromag-
netic modes, which result in optical activity of the
former.

In general, one may conclude, that out of the large
number of coefBcients which play a role in the inter-
actions among the four magnetic sublattices, onlyxela-
tively few are susceptible to macroscopic observation.

ACKNOWLEDGMENT

This work was initiated while the author was at
General Telephone and Electronics Laboratories, Palo
Alto, California.

P HVSI CAI REVIEW VOI UME 133, NUMBER SA 2 MARCH 1964

Low-Temperature Behavior of a Face-Centered Cubic Antiferromagnet

A. DANIELIAN*

Wheatstoae Physics Laboratory, Ugieersity of Logdon Eirsg's Co/lege, Lorsdon, Ercglamd

(Received 7 October 1963)

A detailed description of the ground state of a face-centered cubic antiferromagnetic system with Ising
interactions is followed by an investigation of the low temperature thermodynamic properties by means of
a power series expansion of the partition function about T O'K. This expansion has been found to be
possible even though the ground state is degenerate because of the existence of a substantial amount of
"partial long-range order. "Expressions for the zero-field magnetic susceptibility and the specific heat are
derived.

INTRODUCTION

'HE low-temperature thermodynamic properties of
magnetic spin systems with Ising interactions

have been investigated by means of series expansions
(for a review, see Ref. 1).The general principle is that
at low temperatures the partition function can be ex-
panded in terms of successive deviations ('excited
states') from an ordered ground state. This has not
hitherto been possible in the case of a face-centered cubic
system, because it does not have an ordered ground.
state when nearest-neighbor interactions only are pres-
ent. In a previous communication, ' the present author
determined the degeneracy of the ground state of such
a system and gave a complete classi6cation of the
ground-state con6gurations. As a result it is found that,
although the ground state is degenerate, there exists a

*Present address: Department of Physics, University of
Toronto, Toronto, Ontario, Canada,' C. Doinb, Phil. Nag. 9, SuppL 34, 149 (1960).' A. Daniefian, Phys. Rev. Letters 6, 670 (1961).

substantial amount of "partial long-range order" which
makes it possible for the partition function to be ex-

panded in the usual manner to a limited number of
terms. In the following section the ground state of the
face-centered cubic system is discussed further; sub-

sequently some of the excited states are evaluated and
expressions for the zero-field magnetic susceptibility and
speci6c heat derived.

II. THE GROID STATE

Ke 6rst give a summary of the results reported in
Ref. 2 concerning the ground state of a face-centered
cubic antiferromagnetic system of E spin moments each
having two possible states (+).First, the energy of the
ground state is -2JtfJ, where +J is the interaction
energy between neighboring parallel spina (++, ——)
and —J the interaction energy between neighboring
antiparallel spins (+-). Second, the configurational
state of any one triangular layer of the lattice deter-
mines uniquely the con6gurational state of the whole


