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Incoherent Scattering of Radiation by Plasmas. II. Effect of
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We extend the previous random-phase approximation calculations on the incoherent scattering of electro-
magnetic waves from a classical plasma to include the effects of collisions. The high-frequency plasma line is
found to be signiacantly broadened by collisions. For most practical applications (e.g. , ionosphere scattering)
the cross section at the low-frequency ion acoustic mode is not changed very much from the RPA prediction.
However, in a highly collision-dominated situation, when the frequency of the acoustic mode is well below
the ion-ion and electron-electron collision frequencies, this low-frequency resonance is signiicantly sharpened
while the zero-frequency cross section is compensatingly reduced.

I. INTRODUCTION

S EVERAL years ago Gordon' suggested that the
weak but measurable incoherent scattering of radio

waves from electrons at high altitudes would provide
information about their density and temperature out
to a distance of several thousand kilometers. At fre-
quencies well above the electron plasma frequency
to„=(4se'e/crt)'ts the ionosphere is essentially trans-
parent. Radio waves are then scattered by charge
fluctuations, and the scattered power is proportional to
the number of particles. If the particles did not interact
among themselves, one would obtain for the scattering
cross section S times the familiar individual Doppler-
spread cross section':

d0 1—(co,k) =Xrp' e &t"ts 'rsL1+(kp k )'j, (1.1)
dec 42m k

where N is the number of scatterers, rp=e'/rrtc' is the
classical electron radius, to=(cop —a&.)/coo is the fre-
quency shift, and k= (k&—k,)/ko is the (vector) change
in wave number in units of the Debye wave number
kD=(4a.e'I/kT)'ts. The cross section for backscatter is
the 0-biota] Nfp .

An experiment was performed by Bowles. ' He ob-
served the incoherent scattering but found that the
frequency spread of the returned signal was much
narrower than expected, and he proposed that the
spread of the returned signal was characteristic of the
ion velocity and not the electron velocity. Subsequent
theoretical investigations by Salpeter, ' Dougherty and
Parley, ' and others' have con6rrned this conjecture and
have presented a more detailed picture of the scattered

' W. E. Gordon, Proc. Inst. Radio Engrs. 46, 1824 (1958).
~ K. W. Bowles, Phys. Rev. Letters 1, 454 (1958).' E. E. Salpeter, Phys. Rev. 120, 1528 (1960).
4 J. P. Dougherty and D. T. Farley, Proc. Roy. Soc. (London}

A259, 79 (1960).
~M.

¹ Rosenbluth and N. Rostoker, Phys. Fluids 5, 776
(1962).

radiation. The shape of the observed signal is deter-
mined largely by collective sects.

The backscattered radiation from a particular altitude
consists of a large sharp central resonance' (which really
consists of two acoustic resonances very close together)
and two smaller resonances separated from the central
line by the electron plasma frequency.

The shape of the resonances in the scattered radiation
has been worked out in the random-phase approxima-
tion (RPA) by Salpeter, ' Dougherty and Farley, ' and
more recently by Rosenbluth and Rostoker. ' The main
purpose of this paper is to extend these calculations to
include the eAects of collisions. e We employ the formal-
ism described in the previous paper (I) and Ref. 9, and
the reader will 6nd it helpful to refer to that paper for
certain basic results. In I we showed that the line shape
was essentially determined by the local longitudinal
conductivity or, (k,&o) of the plasma. In the limit of
classical statistics, i.e., when Phto«1, Eq. (3.5) of I for
the partial cross section near a sharp plasma resonance
can be written in the form (see I for notation)

do (k,po) rtrps

,'(1+cos'(t)
ELM be b

Q,+(k,a&) s ks 4s Imo (k,(g)X— (1.2)
co k er.(k co) kD to

where we have used rttP~os=k~s and where k=kp —k,
and or=orb —co, are the differences between scattered
and incident wave vectors and frequencies, respectively.
In this limit the partial cross section is expressed entirely
in terms of quantities with classical significance: the
dissipative (imaginary) part of the local conductivity
or, (k,co), the dielectric function ez, =1+(4aor,/po), and

' Preliminary results of these calculations were presented at the
4th Annual Meeting of the Division of Plasma Physics, APS, in
Atlantic City in November 1962. A summary of some of these
results will be published in the Proceedings of the Sixth Internutionul
Symposium on Ionirution Phenomenu in Guses, July 1963.
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da(k, cs) nrs'
s (1+cosee)

dMsdQy 7l

G)y kX—
G04g kg)

4' z(k, ce) ' 4w Ima z(k,a))
1+ — . (1.3)

the complete electronic polarizability Q, where sr, =1
+k 'Q.++k 'Q;+. For high-scattered frequencies where
co))ks; (s;=ion rms velocity) it was shown in I that the
partial cross section could be expressed entirely in terms
of the total local conductivity. In the classical limit the
formula

I Eq. (3.8) of Ij becomes

the acoustic ion resonance. In this collision dominated
case the ion waves behave very similarly to sound
waves, and the collisions sharpen the resonance as
discussed in Ref. 10.

Finally, in Sec. 5 we discuss briefly the applicability
of our results to scattering from the ionosphere.

2. THE PLASMA LINE

The form of the conductivity is very sensitive to the
magnitude of or relative to the collision frequencies in
the plasma. %e are considering here only a fully ionized
plasma so that the collision frequencies of importance
are the

Note that (1.2) and (1.3) are identical at the high-fre-
quency electron plasma resonance where Q.+= —k'.

Near the resonances, which are the zeros of el., the
approximation of Eq. (3.21) of I becomes, in the classi-
cal limit,

(i) electron-electron collision frequency

I'„~Kin(X ')I„,

(ii) ion-ion collision frequency

(2.1)

d~ eras ms IQ.+(»mz) I'

dcosdQ~ 4nkg)s (o k'

~L~L

(~ ~z)+s&z
r;; n& ln()~ ')~ ; (2.2)

&(-,'(1+cosr(l) (1.4)

where col, is the frequency, 'Yl. the damping rate, and
Z~ a renormalization constant, defined in I, for the
particular mode in question.

In Secs.. 2 and 3 of the present paper we calculate the
scattering rate using various approximations for the
conductivity. In the RPA we recover the usual results
discussed in I. The next correction to or,(k,m) of order
k&s/e as derived by Perel and Eliashberg, ' Dawson
e] al. ,' and the present authors' contains the eGect of
short-range Coulomb co11isions. This correction is valid
near the electron plasma line when or is greater than
any of the collision frequencies in the problem. . In Sec. 3
we use an approximation to oz, (k,co) recently derived by
DuBois and Kivelson" from the low-frequency plasma
kinetic equation. In Sec. 4 we examine the cross section
at co=0 and carry out an explicit calculation in the
collision-dominated case.

The plasma line is seen to be signidcantly broadened

by collisions as expected. The ion-plasma resonances of
the central line are signihcantly sharpened when the
frequency of this mode is well below the ion-ion and
electron-electron collision frequencies which can occur
for forward scattering or even for backscattering in a
su%ciently dense plasma. A compensating reduction in
the cross section at ~=0 occurs with the sharpening of

' V. I. Perel' and G. M. Eliashberg, Zh. Eksperim. i Teor. Fiz.
41, 886 (1961) LEnglish transl. : Soviet Phys. —JETP 14, 633
(1962)j.

s J. Dawson and C. Oberman, Phys. Fluids 5, 517 (1962);
C. Oberman, A. Ron, and J. Dawson, shed 5, 1514 (1962)..' D. F. DuBois, V. Gilinsky, and M. G. Kivelson, Phys. Rev.
129, 2376 (1963)."D. F. DuBois and M. G. Kivelson, Rand Corporation Report
RM—3755—PR, 1963 (to be published).

(iii) ion-electron and electron-ion collision frequencies

I';, ccn'X in(), ')(o„,

I'„~X in() ')(o„,

(2 3)

(2 4)

4wor, (k,a&) =(o, 2—ze &*

z

dtez" ——e—&(zf~&'

z/u

dte'*"

fw) 'I' s
+s

I

— « '"+I —
I

E2 k2) n

k
+ ——E.(a)), (2.5)

%2m'l" O)'

"In this paper we will use only these crude order of magnitude
estimates of the collision frequencies which contain the correct a
and X dependence and are sufhcient for our present purposes. Com-
plete calculations of these collision frequencies as they arise in the
calculation of transport coeKcients are discussed in Ref. 10 and in
L. Spitzer, Physics of Fully Ionized Gases (Interscience Publishers,
Inc., ¹wYork, 1956). The precise values dier from those in
(2.1)-(2.4) by multiplicative constants of order 1 as well as con-
stant factors in the argument of the logarithms.

where X=kns/e is the plasma coupling parameter and
ns=tN/Ã is the electron-ion mass ratio. " The signifi-

cance of these frequencies and the determination of the
conductivity in various frequency regions is discussed
in detail in Ref. 10.

The plasma line is the simplest case to treat since the
high-frequency formula of Eq. (1.2) applies and the
calculation is thereby reduced to substituting known
expressions for the conductivity. For frequencies greater
than any of the collision frequencies the following
formula for the conductivity for k«kD has been derived
recently by several authors' ':
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where s=~/k, k and ro are in units of ko and &os, and

1 o')E'
(o&)= dqq' exp( —xrk'q') exp

o 2 q'~:—ln
q'+2

I
q'+0'(~/q)

I

'
-C.((v)-

PATE&

(2.6)

The terms independent of X are the contribution of the
RPA. If substituted into Eq. (1.3) they give us back
Eqs. (2.11) and (2.13) of I to terms of order m/M.
However, as is obvious from this formula (and dis-
cussed in detail in Ref. 9 for k«k~, co=co„ the imagi-
nary part in the RPA is exponentially small and the
collision correction proportional to X dominates the
imaginary part LIn Eq. (2.5) we should also include a
collision correction to the real part, but in this case it
is relatively small compared to the RPA terms and can
be neglected. f

The formula for E (or) is strictly correct only in the
high-temperature limit kT&&rydberg in which the Born
collision approximation is valid. The difhculty lies in
treating the high q (short distance) part of the collision
problem. The problem is usually avoided at lower tem-
peratures dropping the exponential factor exp( —xrk'q'),

which cuts o6 the values of q at nearly the thermal
DeBroglie wave number, and arbitrarily cutting oA the

q integration at q,„=k, where k,= 1/r„(k,/k11= 1/X)
is the wave number corresponding to the 6ctitious
distance of closest approach r, =e'/kT. This treatment
of the high q limit is used in Ref. 8. %hen this approxi-
mation is made E,(o&) can be written in the form

K,((v) =LnPC, (a))/Xj. (2.7)

kL' I kg)'—= (7r/2)"' exp —— + E,((o~), (2.8)
ka 2 k' 642m'I'

Z(k) =1 Q t(k ror, )= —k' (2.9)

do(lr, to) rrros k )' 1 1+cos'8 u)s

(2.10)
(tMgdQs Vl kg)) 'yI, — 2 &0~

The integrated cross section over the plasma line is

d (k) (k)'I+coo'9
=~«

i

~—
dQs kk11 2 M~

(2.11)

which is independent of yl, .

A table of values of C.(to) is provided in Refs. 7-9.
The height and width of the plasma line are accurately

given by Eq. (1.4), stnce for realistic plasmas the line,
even with collision damping, is still very sharp, %e
find for k((k~, using (2.5) and (2.6),

3. THE ION-PLASMA RESONANCES

The eGect of collisions on the properties of ion-acoustic
plasma waves has recently been studied by DuBois and
Kivelson. '0 The collisionless theory was discussed by
Fried and Gould. "The damping rate in particular is a
very sensitive function of the relative magnitude of the
frequency of this mode and the collision frequencies.
For k«k& this frequency in all cases of equal ion and
electron temperature is of the form

(o, (k/ka)cos(rN/M)"'. (3.1)

The collisionless theory applies when cv&&F„, which
impl1es Lsee Eq. (2.2)j

k/k (er/M) 'I'))X Ln()
—') (3 2)

For suf6ciently small X this inequality holds and the
scattering rate computed in the RPA is valid. This is
the most important case for backscatter from the iono-
sphere. For equal electron and ion temperatures the
ion-plasma resonances are very broad and the line shape
is that given in Fig. 2 of I. However, when T&&T; it is
well known'" that the ion-plasma resonance becomes
much sharper.

In the opposite extreme, when or;«I';;«F„ the colli-
sionless theory does not apply. In this limit

k/k~&&X Ln()t '), (3.3)

which can, in principle, be satisfied for small enough k.
For backscatter, where k 2k /ko (2',/u&s)(e, /c), since
o,/&vs))1 this cannot occur for densities and tempera-
tures found in the ionospheric plasmas. For a dense,
cold laboratory plasma or in semiconductor plasmas
with X 0.1 this condition can be satisfied. However,
for forward scattering where k (k /kn)8' this region is
met even for ionospheric conditions. It is beyond the
scope of this paper to discuss the feasibility of such an
experiment. In the intermediate regions, F,,&u &F„the
collisionless theory again is not valid (at least for the
electrons). The calculation of the conductivity in this
region is more di@.cult. "The behavior here must be
intermediate to the collisionless case and the collision
dominated case under discussion.

The conductivity in this collision dominated region
has recently been studied by DuBois and Kivelson"
by applying a modification of the Chapman-Enskog
method to the coupled kinetic equations for electrons
and ions. In this region the damping of the acoustic
mode is greatly reduced by collisions from the R'PA

value. The expression for the conductivity derived in
Ref. 10 wlllcll 1s valrd fol' ro((Prr~ rr(k/ko)((err/roy, 1s

"B.D. Fried aud R. W. Gould, Phys. Fluids 4, 139 (1961).'Ice general formula for the conductivity derived in Ref. 10
actually has a more complicated denominator than Eq. (3.4).
Ho@&ever, it eras shovrn there that near the acoustic mode Eq.
(3.4) is accurate and is qualitatively correct for other values of k
and co. It is readily veriled that the results derived in this paper
from Eq. (3.4) are the same as those derived from the exact
expression.
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with

a&,'(a[co' —(a,2(2+ 8;+h.)]
4s or, (k,a))=-i&o�F„[a'

—u;2(2+ 8~+ b,)]+[oo'—a).2(1+8,)7[~'—~'(1+8~)]

5kT
(o,'=k'c, ' c,'=- (s=i, e),

3M,

(3.4)

(3.5)

1+12(Mg /tdVgs) MO

1+5,=
1+1'(Ms /Mpse) ~sa

(3.6)

Thus c, is adiabatic sound velocity for species s. The quantities v„and ~„are the like-particle collision frequencies
which determine the coeKcients of thermal conductivity w, and viscosity p,, for species s.

15 c,'e cop'
Xl [8 — ~ (1+M./M;)-'9 j,

4 &.
(3.7)

3 cg s3f8 cop
) 1n[8s e

—&&+»(1+M,/M;) —"9 j
4 &, 8~3~2

(3.8)

where (a&~*)'=Are'IM, ' and 7 is Euler's constant. Thus these frequencies are approximately F„and F;; defined
above. Electron-ion collisions are taken into account by the collision frequency 7„., where I'„is essentially as given
in Eq. (2.4). A more careful calculation of these collision frequencies is carried out in Ref. 10. The order of magni-
tude estimates in Eqs. (2.1) to (2.4) are good enough for the purposes of this paper.

From the same calculations of Ref. 10 the separate electron and ion contributions to the current are easily
found to be

4n o z'(k, a&) =—Q,+(k,ar) =-
k'

(ra, ')'ra[co' —(o 2(1+h;)j
joo F „[o)'—ooP(2+ 8~+b,)]+[ca'—(o,'(1+8,)j[co'—

cog�(1+

bg)]
(3.9)

with a similar equation for the ions with e replaced by i.
(Note oo; and 8; appear in the numerator of o' and vice
versa. ) The quantity op, ' in Eq. (3.9) can be interpreted
as the longitudinal electron current (divided by Ez,)
induced in the interacting electron-ion system by a local
longitudinal field Ez,(k,oo). This is easily shown to be the
same as the total longitudinal current induced when

oely the electrons are perturbed by the local 6eld.
The formulas can now be used in Eq. (1.4) to deter-

mine the scattered line shape near the acoustic ion-

plasma resonances. The frequency col, , damping rate pz, ,
and renormalization constant [as defined in I—Eqs.
(4.1) to (4.5)j have all been computed in Ref. 10 and
we merely quote the results here in two cases in which

simple analytic results were obtained.

(i) For n«(a)z/F;;)«1,

(ii) For ((oz/F;;)«n,

GOI, =2(0;, (3.13)

71.

(OL, ~ gee

5 k' ygl „5k'
+ =- [1+0( )3.

6 kD2 ~ 2 6k~2

(3.14)

(3.15)

The case of orl. F;, is more complicated and numeri-
cal results are given in Ref. 10. In both cases above it is
easily verified that yz, /ooz, «1 which results in a sharp
ion resonance the shape of which is given approximately
by Eq. (4.5) of I. To use this formula it is necessary to
calculate Q,+(k,coz). Since at this resonance the factor
aP —arP(2+8;+8,) in the denominator of Eq. (3.9) is
essentially zero, "it is easy to see that

cog'= (8/5)(o ' (3.10)

Q.+(k,~&)=— i= (3.16)
cur, cog' —co '(1+8 )i (ozo) '(1+8 )1 col,v,. 5(5 1 1)

+~i-~ ——+—I,
Mr, 10 coq 8 (8 pgq cdqq~

(3.11)
(3.17)

(3.18)

=kD
p ~l/Fiick)n p

= x3kg)', ool,/F, ,&&n,3 k' yL,I'„ 3 k&

Zg — + =— [1+0(n)j. (3.12)
8kD' co ' 8 kg)' to terms of order (m/M)'Is.
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Since at the resonances pal= 1+(Q,++Q;+)k ' van-
ishes, it follows that

Q*+(»~z) = —Q.+(»~z) —k' (3 19)

Thus since Q,+is of order kn' at the acoustic resonance,
and since k«k~, it follows that

Q,+(k,coz)~—Q,+(k coz), (3.20)

i.e., the ion-induced polarization cancels the electron-
induced polarization. Thus it is then extremelyim-
portant to distinguish the vertex factor Q,+ in Eq. (1.2)
from the total Q+. Applying the high-frequency formula,
Eq. (1.3), to the low-frequency acoustic resonance is

easily seen to be equivalent to replacing Q,+ by Q+ in

Eq. (1.2). The result is a u'oss section k' smaller than
that predicted by the correct form of Eq. (1.2). In
physical terms the reason Q,+ appears rather than Q+ is
because the electrons interact M/m times more strongly
with the scattered radiation than do the ions, so that
to order m/M only the electron vertex contributes. For
high co, Q+~Q,+ and the distinction is not important.

Combining Eqs. (3.10) to (3.18) with Eq. (1.4), we

have, for the heights of the ion acoustic resonances,

da(k, co) erpP cop 3 GO

--,'(1+cos'8) ))ac (3 21)
lglQg ~ + 8+1 r;;

nrp Glg 3 cO

,'(1+cos'8), «a, (3.22)
GO~ 10+1, r,;

using the notation co= (cop co) /c—ovand ~k p k, ~/kD—=k
For a 6xed ratio of k/X the formulas predict a re-

duction in the damping as X increases, which is evident
from the increasing sharpness of the resonances. This
behavior is characteristic of ordinary sound waves.
However, as discussed in Ref. 10, the acoustic mode in
a plasma divers signiGcantly from an ordinary sound
wave due to collective eGects which give rise to a
diferent phase velocity and damping mechanisms which
differ in detail from ordinary sound damping. For
example, in the case of Eq. (3.14) the primary mecha-
nism of ion wave damping is through the thermal con-
ductivity of the electrons.

4. ZERO FREQUENCY

For values of k in the collision-dominated regime we
can use Eq. (3.4) to discuss the line shape near zero co.

It is easily seen from Eq. (3.9) that in the limit as co-+0,

(Note the last result also is true in the RPA and is
probably generally valid. )

Using this result, the general formula, Eq. (3.4), for
the scattering rate derived in I becomes

da. (k,co) rp'n co p

lim = p(1+cos'8)—P pc ~ Vc/ Vcr" P dordQ Sx CON f

X(2sk) 8 (5k+Pc—Pg)(2s)(hco+E; —Er) . (4.3)

Note that, except for the relative sign of t/';~' and V;~',
the sum over state i and f would be just that given in
Eq. (I-3.3) for the local conductivity.

It is convenient to deGne

4s Ima z-(k,co)

1 Cd=-—(4se')P pc~ V;r'~'(2sk)'h'(hk+P, —Pr)(27r)
2k &f

X8(kco+E;—Eg) (1—e—e""), (4.4)

which is just the conductivity of electrons assuming
that the ions remain in complete thermodynamic equi-
librium. That this is the correct interpretation is obvious
since t/';~' contains no vertices at which the ions interact
with the external Geld. This quantity and the analogous
one L4s Ima z"(k,co)] can readily be obtained from any
calculation of the complete conductivity.

Using these defjjnitions we can write (letting ghco —+ 0)

da(k, co) nr. ' (1+cos'8)
lim

deed 0 4xkD 2

k'
Xlim —4s.tImaz(k, co)—26(k,co)j, (4.5)

where

A(k, co) = Imago z(k,co)—a r,"(k,co) —a z"(k,co)]. (4.6)

In the approximation for which Eq. (3.4) is valid it is
easily found that

—coo'cot co"—coP(1+8;)+icor;,j
4s a r,-(k,co) = (4.7)

D(k, co)
and —e'cov'co(co' —co.'(1+8,)+icoP„j

4m or,"(k,co) =—,(4.8)
D(k, co)

so that

lim Q,+(k,co) = lim Q,+(k,co) =kgP (4.1)
co~a co~0

where D(k,co) is the denominator in Eq. (3.4). From
Eq. (3.4) the expansion in powers of co is

Q.+(k,~), Q.+(k,~)
lim = lim" 'k'ol. (k,co) " 'k'+Q+(kco)+Q. +(kco)

kg)' -=2+o(k') (4 2)
k'+2kns

2' 4o' 8 o)'
lim crz,(k,co) =—+i P„+——(v„+v;;)

k' k4 25 k'

10co'( 1 1
+——,I

—+ . (49)
3 kcEco;; co„
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Combining Eqs. (4.7) and (4.8) with Eqs. (3.4) and the
dehnition of Eq. (4.6), we find using F,,=asI'„,

6(k,(o) = 2ioPI'„/k'. (4.10)

Using this with Eq. (4.5), we find

do(k, ei) Nrss (1+c os (st)

lim" 0 debdQb mk2 2

2 (v„+v;;) 5( 1 1)
X ~ — +-i +—

i . (4.11)
125 k' 6 (,(o„re;;)

It is interesting to note that the mutual coupling term
j. „drops out at zero frequency. " In this expression
clearly v;,&&v„and co;; '&)~„', but the small terms are
included for the sake of symmetry. Again for a Axed
ratio k/X, do(k, 0)/d~dQ decreases with increasing ).
Thus, as ) increases for fixed k/)i, the acoustic reso-
nances become higher and sharper while the zero ~ part
of the line becomes lower.

5. REMARKS

In this paper we have examined the eGect of Coulomb
collisions on the resonances in the scattering cross sec-
tion. We have approximated the shape of the resonance
by a Lorentzian as in Eq. (1.4). For a more detailed
picture of the line shapes near and away from the reso-
nances, the general Eq. 3.16 of I can be used. The
partial cross sections O.„occurring in this expression
can be obtained from the. same conductivity calculations
used above. Such detailed results on the complete
scattered spectrum will be presented elsewhere.

The calculations presented here apply to weakly
coupled (kDs/n«1), classical (i3ha&«1) plasmas in the
absence of an external magnetic field. If the incident
radiation has a frequency high compared with the cyclo-
tron frequency of the plasma, these results are appli-
cable. For lower frequencies the structure" due to the
magnetic field at multiples of the cyclotron frequency,
which are predicted by the RPA, are expected to be
smeared out by collisions. The eGect of Coulomb colli-
sions on this structure is an interesting problem yet to
be treated.

We are grateful to Professor E. E. Salpeter for an
informative discussion.

"E.E. Sslpeter, Phys. Rev. 122, 1663 (1961).
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Resonance Line Shapes of Weak Ferromagnets of the
n-FesOs and NiFs Type

H. J. Fzwx*
Bell Telephone Laboratories, 3furray Hill, Rem Jersey

(Received 16 August 1963)

Based on a two sublattice model the resonance line shapes of the low- and high-frequency branch of weak
ferromagnets of the n-Fe203 and ¹iF&type were calculated by solving the equations of motion with a
damping term of the Landau-and-Lifshitz type. When the rf driving field is applied perpendicular to the
ferromagnetic component and in the easy plane of these-Fe&QI type crystal, an enhancement factor appears
in the susceptibility. The frequency linewidth is proportional to the exchange frequency and approxi-
mately independent of an applied field. The linewidths are compared with experiments and good agreement
is found for MnCO3, For MnCO3 the damping of the high-frequency branch is by a factor of about 2.6 more
eBective than that of the low-frequency branch.

I. INTRODUCTION

ASED on a two sublattice model the resonance line
shapes of weak ferromagnets of the O,-Fe203 and

NiF2 type are calculated. Crystals of this type have
two frequency branches. The low-frequency branch is
an oscillation of the ferromagnetic component around
its equilibrium position, and the high-frequency branch
is similar to the resonance of a pure antiferromagnet.

In order to calculate the linewidth we make the assump-
tion that we may use a two sublattice model and that
the damping of the resonance may be expressed by a
term of the form'rrisMX(yMXH)/~M~ in the equa-
tions of motion. The latter term is proportional to a
torque which tends to drive the magnetic moment
toward its equilibrium position. For the present con-
siderations, a~~ is a phenomenological damping constant

*Present address: Atomics International, Canoga Park, ' L. D. Landau and E. M. Lifshitz, Physik. Z. Sowjetunion 8,
California. 153 (1935).


