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FIG. S. Electron average
energy versus ratio of car-
bon dioxide density to
argon density for E/p=0.5 V/cm/mm-Hg and
E/p =1.0 V/cm/mm-Hg at
O'C.

' D. Barbiere, Phys. Rev. 84, 653 (1951).

at O'C. The electron-energy distribution functions for
Ar-Hs mixtures with E/p =0.5 and E/p= 1.0 at O'C are
plotted in Figs. 3 and 4, respectively. The electron
average energy as a function of the carbon dioxide
density to argon density ratio for E/p=0. 5 and E/p
=1.0 is plotted in Fig. 5. The electron average energy
as a function of the molecular hydrogen density to
argon density ratio for E/p=0. 5 and E/p=1. 0 is
plotted in Fig. 6.

The energy distribution function for electrons in pure
argon at E/p=1. 0 given in Figs. 2 and 4 is almost
identical with that published by Barbiere. ' The effect
of the addition of small amounts of carbon dioxide
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FIG. 6. Electron average
energy versus ratio of mo-
lecular hydrogen density
to argon density for E/p
=0.5 V/cm/mm-Hg and
E/p=1. 0 V/cm/mm-Hg at
O'C.

or molecular hydrogen to the argon is to lower the
electron energies. From a physical point of view, the
electron energies are lowered due to the relatively large
fractional energy loss per collision that an electron
su8ers in an inelastic collision with carbon dioxide or
with hydrogen. This lowering of the electron energies
is more pronounced in the Ar-C02 mixtures than in the
Ar-H2 mixtures because carbon dioxide can absorb a
greater fraction of an electron's energy in a collision
than can molecular hydrogen. It can be seen from the

figures that one part of carbon dioxide or of molecular
hydrogen in 10000 parts of argon is sufhcient to
alter appreciably the electron-energy distribution func-
tion and the electron average energy from the values
they would have in pure argon.
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Analytic expressions for the ionization and excitation cross sections of atoms by electrons are derived
using the classical impulse approximation, i.e., by considering only the Coulomb interaction between the
incident electron and one bound electron. The results obtained are slightly simpler and more self-consistent
than those obtained in an earlier calculation by Gryzinski. The cross sections are found to be roughly as
good as those obtained by the Born approximation except in the high-energy limit. The apparent superiority
of Gryzinski's theory to quantum approximations arises from a subsidiary approximation made in averaging
the cross section over the initial angular distribution rather than from the kinematic description of the
bound electrons or the nature of the impulse approximation itself. The Coulomb cross section for transfer
of energy AE between two particles of equal mass m, charge e, initial kinetic energies E& and E2, relative
velocity V, with an isotropic initial angular distribution is found to be

Vda/d(aE) =2'"~e'[HEI '(mE&E2) '"(s'"+eg'"/[aE))
where 8 is the smallest of the four initial and final kinetic energies. For single ionization this cross section
is found to increase as the 3/2 power of the excess energy above threshold, reach a maximum at about 2$
times the threshold energy, and decrease as E at high energies. For hydrogenic atoms in any state the
cross section goes to 5/3 the classical Thomson ionization cross section in the high-energy limit.

INTRODUCTION

INTIL recently there has been no acceptable
treatment of inelastic electron-atom collisions by

the classical impulse approximation —that is, by cal-
culating the cross sections for energy transfer in binary

electron-electron collisions, neglecting the 6eld of 'the
nucleus and other bound electrons. Some time ago
J. J. Thomson' treated inelastic electron-atom col-
lisions by considering the Coulomb scattering of the

' J. J. Thomson, Phil. Mag. 23, 419 (1912).



incident electron by an atomic electron at rest. The
neglect of the motion of the bound electron is certainly
not justi6ed at low or intermediate incident energies
and, surprisingly, yields too small a value for the classical
impulse approximation cross section in the high-energy
limit (see below).

Gryzinski' has greatly improved the status of this
approximation by allowing for the motion of the bound
electrons. He calculates classical cross sections for an
arbitrary energy transfer to a bound electron from an
incident electron or heavy particle. From these, ioni-
zation cross sections can be deduced by imposing a
correspondence between the 6nal kinetic energy of the
target electron and the energy levels of the atom.
Gryzinski's results also yield a quantum impulse
approximation to these inelastic cross sections insofar
as the classical and quantum cross sections for Coulomb
scattering are the same in the absence of relativistic
or exchange eGects. ' Thus, the signi6cant approximation
made is not that of classical mechanics but rather that
of neglecting the effects of any third bodies (the nucleus,
other atomic electrons) on the motions of the incident
particle and target electron. 4 Gryzinski's cross sections
are in remarkably good agreement with experimental
data for a wide variety of inelastic processes. The
results appear to indicate that the properly calculated
impulse approximation is superior not only to the
earlier classical theory, but also to many first- and
second-order perturbation theories of inelastic electron-
atom collisions.

What has not been pointed out is that a subsidiary
approximation made by Gryzinski in averaging over
the initial angular distribution is responsible for the
fact that his cross sections are in any better agreement
with experiment than the Born approximation. This
second approximation, rather than simplifying the
forms of the cross sections, actually complicates them;
and while it does improve the results, it enters in an
arbitrary fashion which removes Inuch of the self-
consistency of the calculation (e.g. , the cross sections
do not behave properly under time reversal).

In this paper we derive the "exact" classical impulse
approximation and obtain a number of simple analytic
cross sections for ionization and excitation of atoms by
electrons. These cross sections are generally the same
at threshold and in the high-energy limit as those
obtained by Gryzinski but lie somewhat above them
in the intermediate energy domain. The ionization
cross section duplicates the Born approximation at low
energies and falls below it at high energies, whereas the
excitation cross sections fall below it at all energies.

' M. Gryzinski, Phys. Rev. 115, 374 (1959).
s R. Aherib and S. Borowitz, Phys. Rev. 122, 1177 (1961); the

calculations presented in this rderence robably are not reliable
LS. Borowitz (private communication) . See also W. F. Ford,
Bull. Am. Phys. Soc. S, 435 (1963).

4 Noted by M. J. Seaton, reviewer paper presented at the Third
International Conference on the Physics of Electronic and Atomic
Colhsions, July 1963 (to be pubhshed).

The form of the classical cross sections obtained
below thus shows that allowance for the motion of the
bound. electrons does improve the agreement with
experimental data over that obtained with the Thomson
formula. These cross sections do not, however, con-
stitute any significant improvement over quantum
approximations except in their greater simplicity.

DESCMPTION OF MODEL

The model for the classical impulse approximation
for electron-atom collisions consists of neglecting all
terms in the Hamiltonian except the kinetic energies
of the target electron Ej and the incident electron Eg
and the interaction between them e'/rts. We are left
with the problem of calculating the cross section for
the scattering of two electrons in the laboratory frame
of reference. Rather than the usual diII'erential cross
section, however, we seek the cross section per unit
energy transfer dE.' Later we shall interpret collisions
in which

where E2 is the 6nal kinetic energy of the incident
electron and U is the ionization potential of the target
electron, to result in ionization of the atom. Excitation
of the state e may be defined analogously, but with
somewhat less con6dence, to occur when2

U„&—hE& U~i,
where U„ is the total energy of the level e with respect
to the total energy of the initial configuration of the
atom. Clearly, this approach is only applicable to
states resulting from excitation (or de-excitation) of a
single electron in the initial con6guration.

The total cross section 0. for the scattering of two
particles with velocities vj and v2 may be obtained in
the form

V~(vt, vs) =
) (vs —vt) 8( E(s)d's,

where V—=
~
vt —vs~, E(s) is the probability for a col-

lision at a separation of the velocities vectors in con-
figuration space of s, and the integration is performed
over a plane in con6guration space whose normal is 8.
The cross section for transfer of energy between hE
and ~+d(AE) is given by

Vdo/d(AE)= i(vs —vt) 11' P(s)bt bZ(s)jd's. (4)

Because the Coulomb 6eld has inhnite range and
because we are treating the collision classically we have
P(s) =1 for all s.

'The calculation is carried out in the laboratory frame only
because AE is not an invariant under transformation of the
reference system.
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scattering of either beam are related to Eq. (8) by

vsdo 2(v1)vs) = vide 1(vl)vs) = Vdo'(v1)vs)
=ed(m)/X, rr„(9)

where E is the total number of collisions per unit
volume per unit time with transfer of energy hE, and
S~ and E2 are the number densities of particles 1 and
2. For an isotropic velocity distribution for either
particle we have

Fro. 1. Coordinates for calculation of the Coulomb scattering
cross section per unit energy transfer in the laboratory frame.

Vdo (vr, v,) 1

d(aE)

Vdo'(Vt, vs)
2x sino'.

d(AE)
(10)

EI Es /rI v]vsV(vr cos8—vs) (s/2e') costr s1118

1+ (4/4/2e')' V'tv's'
, (5)

where

CALCULATION OF THE COULOMB CROSS SECTION

The integration of Eq. (4) can. be performed over any
-plane in configuration space but it is convenient to
choose one normal to v~. Then, as shown in Fig. 1. we
integrate over the x-y plane letting s and e be polar
coordinates and 0 the angle between the two incident
velocity vectors. In these coordinates it is readily shown
that the energy transferred in a Coulomb collision is

-given by

cos'8 &EI'Es'/EIEs. (12)

The integration of Eq. (10) may be carried out exactly.
For E&E2&E&'E2' it yieMs

do'('vr, 'vs) xe4

d(aE) (2~EIEs)1/s
) ~E

~

s

)({/
gE) (EII/s+Est/s

/

EII/s Est/s [)

Here the integration over angles must be conlned to
the region for which the condition given in Eq. (8)
holds. This will include the whole range of 8, 0&8&x if

EIEs& (EI DE) (Es+~—)=EI'Es'. — (11)

If E&E2&E&'E2' the limits on 8 are given by

tt/= [(vt cos8—vs)'+ vts sin'8 sin'tr]I/'.

From Eq. (4) the cross section becomes

do(VI, V,) ~v, —v, cos8~ d(&E) -'
des

( )

(6)

Vdo (vr, vs) me4

d(~E) (2',Es) / ~~E~

+—'(E s/s+E s/s —
)
E s/s Es)/)s) —(13)

while in the case E&E2&E&'E2' it yields

Using Eq. (5) to find d(~)/dS and s(o/, hE), and
integrating over n, we find

do'(Vr, vs) 2E~E2 sin'g
+

4/4s) m'v'~4s~ 4s aw )
l»E+Es EII—

& [(Es—EI)'+4EIEs sin'8j'/',

=0, otherwise.

This result is essentially equivalent to the cross section
found by Gryzinski. ' It gives the total cross section for
collisions with transfer of energy hE in the scattering
of two beams of singly charged particles of mass m with
velocities vt and vs (cos8—= 81 ~ vs). It should be noted
that Eq. (8) is completely syrrunetric with respect to
the two particles. Asymmetrical cross sections for the

Vdo (v,,v,)

w~ere

4re4 p 28 q'/s- 4 h1+-, (15)
)aE) ~,~E,E,) 3 )SEf

h= [EIEs EI Es'j (16)

is the smallest of the four ingoing and outcoming
kinetic energies. '

IONIZATION CROSS SECTIONS

To find the ionization cross section we integrate Kq.
(15) over —U&AE& Es, where U is—the ionization

x{)gE) (Et"/'+Es"/' [EI"/' —E "»—))
+4(E 's/'+E 's/' —/E '~' —E '~'j)) (14)

Equations (13) and (14) may be combined into the
more compact form

6 Qur Kq. (8) is the same as Kq. (10) of Ref. 2 when the latter
result is multiplied by aE/ ~/1E

~
as rIt should be. The equivalent

to the quantity f(8)d8 of Ref. 2 is dQ»/4r in our treatment; hence
the apparent discrepancy of a factor of 2 is not real.

'Equation (15) yields the exact cross section for binary
Coulomb collisions. By replacing V by (v12+v22)'~~ before inte-
gration over 8, Gryzinski (Ref. 2) obtains an approximate form
of our Eq. (15) for the case AJi &0,
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Fxo. 2. Cross sections for the ionization of hydrogen obtained
from the classical impulse approximation, the Born approximation,
and from the measurements of Fite and Brackmann. m

which, upon integration, becomes

2sre' (E,—U)'~'
o"""(E) = . U&E &E+U

3Z U2 Z»2

potential of the target electron. In so doing we ignore
the eGect of the nuclear Geld on both the incident and
target electrons except insofar as it determines the
initial kinetic energy of the target electron El and its
ionization potential. This approximation should be
good primarily for collisions in which Es,

~
AE~)&Et-

that is, for close binary collisions of the electrons at
moderate to high energies (Es&100 eV). Thus, for the
effective ionization cross section, we have

different. Setting El=0 yields a cross section which
increases linearly with the excess energy above
threshold, while for Et/0 it increases with the 3/2
power of the excess energy. While neither treatment
can be expected to yield accurate results in this domain
it is interesting that the exact classical impulse approxi-
mation duplicates the 3/2 power law of the Born
approximation at threshold while the earlier classical
theory' quite fortuitously gives the currently accepted
linear behavior at threshold.

. It .is worth noting the form of Eq. (18) for hydro-
genic atoms. For ionization of ari energy level
E„—=Ry/n' containing a single electron, the cross
section becomes

8srap'n' (X—1/n')'"
oionie(X) 1/n'& X&2/n'

4srup'ns 5X—8/n'
X&2/n',

3 X(X—1/n')
(2o)

where X=Es/Ry.
In Fig. 2 we show the classical cross section for

ionization of hydrogen in the ground state, along with
the Born approximation and the experimental data of
Fite and Brackmann. "Up to about twice the threshold
energy the classical and Born results agree. The
classical cross section has a maximum value which is
4/3 of the Born approximation value, and, while the
agreement is not bad for intermediate energies, it
worsens above 300 eV. The best agreement, within
15%, between the classical theory and experimental
data lies in the region 100—300 eV; the worst agreement
is near 30 eV where it is too large by a:factor of 2.5.

sre4 2Ei+3U

3E2 U'

EXCITATION CROSS SECTIONS
)

jV2 The cross section for excitation of a state with total
energy U„relative to the initial bound state is readily

Es&Et+ U. (18) found from Eqs. (2) and (18):

This result should be compared with the classical
ionization formula obtained by Thomson': &exc

3+2+11/2 U 2

2sre4 (Es—U„)P"
Un +~2~ Un+1 (21a)

oTh" "(Es)= (sre'/Es) (1/U —1/Es), (19)
2sre' (Es—U )"' (Es—U~t)"'-

which is identical to Eq. (18) if Et is set equal to zero.
If both E2&&E» and U&)E~ there is little diGerence
between the cross sections. The latter condition is never
valid, however; in fact, for most atomic electrons
El&U. Taking account of the motion of the bound
electrons is seen, then, to increase the ionization cross
section by a factor of about two through most of the
energy range. In the high-energy limit the Thomson
cross section should be multiplied by the factor
(1+2Et/3U). The behavior at threshold is also

' See Ref. 1, or more conveniently M. J. Seaton, in Atomic end
Molecular Processes, edited by D. R. Bates (Academic Press Inc. ,
New York, 1962), p. 374.

3ZZll2 U2

U~t&Es&Et+ U„(21b)
2sre4 2Et+3U„

382 2U„' 2(Es—Et)

(Es—U~t)"'

E,+U„&Es&Et+U~t (21c)

' See Ref. 8; also S. Geltman, Phys. Rev. 102, 171 (1956).' W. L. Fite and R. T. Brackmann, Phys. Rev. 112, 1141
{j.958). Not shown are several variations of the Born approxi-
mation; see S. Geltman, M. R. H. Rudge, and M. J. Seaton, Proc.
Phys. Soc. (London) 81, 375 (1963).
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2we4f 1 1 — /1 1 3-
Ei + +-,

3Es EU U +r EU„U~r 2

Es&Er+ U.~r." (21d)

In practice almost the whole incident energy spectrum
is spanned by Eqs. (21b) and (21d) since
AU=—U„+&—U„ is usually small. The cross sections
given depend only on the initial and final energies-
not on the angular momenta —of the electrons. Implicit
in the calculation is a sum over all final angular mo-
menta allowed by the conservation laws and the limits
on the energy transfer. It should be noted that this
classical theory can in principle be extended to dis-
tinguish between various final l values" but it becomes
quite cumbersome.

In Fig. 3 we show the cross section for excitation of
the m=2 levels of hydrogen as given by Eq. (21) as a
function of the incident electron energy E2. Also shown
are the experimental results of Fite and Brackmann, "
the Born approximation, ' and the distorted wave
calculation of Khashaba and Massey. "It is seen that
the classical cross section is too peaked at its maximum
value —a shortcoming which arises from its too rapid
falloff at high incident energy [like 1/E rather than

(1/E) logEj, and from its too slow rise at threshold

l.4—

Las (Es—U )P~' rather than (Es—U )'I'7 Below 80 eV,
however, the order of magnitude of the result is as good
as that obtained from even second-order perturbation
theory.

In Fig. 4 we show the cross section for excitation of
the n=4 level of hydrogen from the 3d level as given
by Eq. (21) and also as given by the Born approxi-
mation. " No experimental values are available, al-
though it can be expected that the comparison would
be similar to that shown in Fig. 3 for excitation of the
n=2 level.

For higher states it is worthwhile expanding Eq.
(21d) in powers of 1/n. For a transition n~n+1,

prap'e' t'Ry)e'*'(I —+ I+1)
EE,j

4 5 4
XI 1+—+—+ ), E,)s. (22).

rs 3' N4

This equation again demonstrates a significant diGer-
ence between the classical impulse approximation with
and without allowance for the motion of the bound
electrons. If we set Bi ——0 as in the earlier classical
theory the excitation cross section is

oTse"'——(me'/E, ) (1/U„—1/Es), U„&Es&U„+r
= (we'/Es) (1/U„—1/U„+t), Es& Ua+r ~ (23)

For a transition n -+ v+1 where e is large this becomes

t oa

Ry)
0Th (S~ I+1) 1lap tP

E,)
1 3 i 4E„

Xi 1— + +" ~, E& . (24)
2e' 4n' )

0.4

0.2

IO Ro 50 IOO 200 500 IOOO
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Fro. 5. Total cross sections for excitation of the I=2 (f= 1 or 0)
state of hydrogen obtained from the Born approximation, '4 the
exchange distorted wave approximation, " the classical impulse
approximation, and from the measurements of Fite and
Brackmann. "

Thus this cross section obtained with E~=O is smaller

by a factor of n/2 than that found in Eq. (22) with
E~=B„.As in the case of ionization the cross section
is considerably enhanced by including the motion of
the atomic electrons in the calculation. The n4 de-
pendence is more in accord with experiment and the
Born approximation than the n' dependence.

Our ionization cross section given by Eq. (20) should.

be compared to our total cross section for excitation to
all levels n'& n. In the limit of large n, the latter cross
section is

"It is assumed that E1)U~+1—U~. For E~&U~j —U~ use
Eq. (21c), omitting the third term, and Eq. (21d)."C.f., Ref. 8, p. 378.

'~W. L. Fite and R. T. Brackmann, Phys. Rev. 112, 115k
(1958).

'4V. M. Burke and M. J. Seaton, Monthly Notices Roy.
Astron. Soc. 120, 121 (1960).Not shown are the exchange (B.O.)
or B II approximations, see P. G. Burke and K. Smith, Rev. Mod.
Phys. 34, 458 {1962}."S.Khashaba and H. S.W, Massey, Proc. Phys. Soc. (London)
71, 574 (1958).

2wap'e4(Ry)
(25)

3 kE)'
which is I'/10 times the corresponding ionization cross
section obtained from Eq. (20).

' G. C. McCoyd, S. N. Milford, and J. J. Wahl, Phys. Rev.
119, 149 (1960).
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FIG. 4. Total cross sections for excitation of the ts=4 (i=0, 1,
2, or 3) state of hydrogen obtained from the Born approximation"
and the classical impulse approximation.

CONCLUSIONS

Our motive for performing the above calculations
has been more to clarify the predictions and point out
the shortcomings of the classical impulse approxi-
mation than to suggest that it is an accurate way to
obtain cross sections for various inelastic electron-
atom collisions. Due to the lack of any theoretical or
experimental values for most inelastic cross sections,
the results of Gryzinski' have been applied extensively
in calculation of electron-ion recombination coeK-
cients, "and have recently been proposed" as the basis

"H. A. Bethe and E. E. Salpeter, Quantum 3/Iechunics of One-
ond Ttoo Electrort Atoms (Academ-ic Press Inc. , New York, 1957),
p. 264.

'8 D. R. Bates, A. E. Kingston, and R. %.P. McWhirter, Proc.
Roy. Soc. (London) A26?, 29?' (1962); A270, 155 (1963); S.
Byron, R. C. Stabler, and P. I. Bortz, Phys. Rev. Letters 8, 376
(1962); E. Ashley, A. Dalgarno, D. Layzer, A. Naqvi, H. E.
Stubbs, and G. A. Victor, Geophysics Corporation of America
Technical Report 62-4-A, February 1962 (unpublished)."A. Burgess, Proceedings of the Third International Conference
on the Physics of Electronic and Atomic Collisions, July 1963 (to
be published).

Also, in the limit of large e, excitation of the level n
of hydrogen from the ground state is given by

56~a,' Ryqo'"'(1~ tt)- i, Es)2 Ry. (26)
3~s ZJ '

The n ' dependence for these transitions coincides with
that for the squares of the dipole matrix elements in
quantum theory for e&)1 '~—a result which points out
the similarity between the Born approximation and
this classical one.

for further semiclassical calculations of inelastic cross
sections. They will probably continue to be used until
such time as the results of better approximate quantal
calculations are available.

%'e have shown here that the classical impulse
approximation can be expected to fail at threshold and
in the high-energy limit. It also cannot predict reso-
nance effects. Between two and ten times the threshold
energy, however, these cross sections for excitation or
ionization are probably accurate to within a factor of
about two. The other merit of this classical theory is
that it provides the only analytic estimates, which also
allow for differences in binding energies, for inelastic
electron-atom cross sections. Even the Born approxi-
mation must be calculated by numerical methods and
yields cross sections which are significantly better only
in the high-energy limit.

A number of modification of the classical impulse
approximation are possible. We consider Gryzinski's
results' ~ to be a modihcation of the above formulas
which will in general improve the agreement with
experiment due to the decreased weighting given in the
total cross section to collisions with long interaction
times. Of course a large number of similar modifications
are possible which will also yield better agreement. The
most physically meaningful of these is to choose the
initial energy distribution of the target electron to be
given by Ps~/(P) ~'dP, where f(P) is the Fourier trans-
form of the wave function of the target electron (as
in the quantum impulse approximation'), rather than
by the expectation value of the kinetic energy. Along
this line Gryzinskiss has noted that a continuous
velocity distribution may yield. the correct E 'logE
behavior for the classical ionization cross section at
high energies.

Burgess" has obtained the correct high-energy and
threshold behavior for ionization by treating distant
collisions by the impact parameter method, the close
collisions classically, and including exchange e6ects.
There are other extensions of the classical approach
for which the cross sections obtained here may be of
some use. Finally we note that Eq. (15) may be applied
in a straightforward way to hand the rate of thermali-
zation of charged particles as well as to 6nd the cross
sections for inelastic collisions.

Note added irt proof. Some of the results obtained here
have been found also by V. I. Ochkur and A. M. Pet-
run'kin. "

M. Gryzinski, Proceedings of the Third International Con-
ference of the Physics of Electronic and Atomic Collisions, July
1963 (to be published).

» Optika i Spektrosk. 14, 457 (1963) LEnglish transl. : Optics
and Spectroscopy 14, 245 (1963)j.


