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Derivation of the Modified Bloch Equations for Spin Systems~
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A new form of the equations for the time-dependent statistical matrix of a spin system is used to derive
the modi6ed Bloch equations, without considering details of the relaxation mechanism. A number of re-
strictive conditions are imposed on the system, most of which agree well with known limitations of the
appl1cablllty of the modlGed Bloch equRtlons. In ordel to Rvold compllcatlonsy only splns one-hRlf Rre coQ
sidered. The theory does not apply to the case where the relaxation is anisotropic but where the constant
6eld and an applied rotating Geld are comparable in magnitude.

l. INTRODUCTION

~ ~HE motion of spin systems in liquids and in some
solids under inhuence of external 6elds is well

described by the modified Bloch equations (MBE).
These were obtained' as a generalization of the Bloch
equations to weak 6elds, in which the relaxation towards
thermal equilibrium in the constant external Geld was
replaced by relaxation towards thermal equilibrium in
the instantaneous total applied Geld. In both versions
the relaxation is represented by a simple rate term in the
differential equation for M, but if anisotropic, the new
form assigns the instantaneous total field, and not the
constant 6eld, as the direction of anisotropy.

While these equations are plausible and well veri6ed
experiInentally a del ivation from Grst pI'1nc1ples has to
our knowledge, not yet been published. As a conse-
quence, it is not clear to which systems and under what
conditions they can be expected to apply. Using a
statistical method which is described in the preceding
paper, ' we have found a general derivation and condi-
tions of applicability. It is presented in the following.

2. STOCHASTIC EQUATIONS

The magnetization of a system with identical spins S'
is given by

M= Tr Q S'pe "/Trpe~.

stant. pe~ is the statistical matrix of the total system,
which we assume to consist of the spins in equivalent
positions and a lattice. 8 is the temperature at which the
system is in equilibrium before application of the time-
dependent 6elds. In Ref. 3 it was shown that Eq. (1)
can be expressed in terms of a statistical matrix pg which
operates on the spin variables only, provided that the
time-dependent 6elds, applied to the spins, do not
disturb the thermal equilibrium of the lattice. Assuming
this to be the case, we have, according to Ref. 3, Eqs.
(21) and (27):

M= Tr P S'pe/Trp, ,

pe=(+'(t —s/2t)) tP (t+s/2S) },, (3)
sW'/at= PC(t)+k(t+s/2g) jg (t), Jlr(0) =1 (4)

Here k(t) is the Hamjltonian of the applied time-
dependent 6elds and X(t) is the Hamiltonian of the spin
system. X(t) includes the contribution of a constant
external Geld H0. It is time-dependent because it con-
tains randomly fluctuating parameters, as explained in
Ref. 3, which represent the spin-lattice interaction.
"av" indicates the average over a time long compared
with the correlation times of X(t). k(t) will be taken as
for a rotating 6eld:

k=g kc ~ kt(t) =Pl(So cosoot+So slncot) . (5)

We use units with &y=k=k=1, where y is the gyro- ghe 2 axis is in the direction of the constant 6eld.
magnetic ratio of the spins and k is the BoltEmann con- Equations (2) to (4) contain no condition other than

that the lattice remains in thermal equilibrium; the
*This work was b~gu~ Rnd c~mpleted during two consecutive form of K and the time dependence of the random

summers at the California Research Corp ~ation, La abra, functions it contains are, however, to be found fromCalifornia. ~ e 0 ~ 0 4 e
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versity, Columbus, Ohio. Ref. 3. For spins ~, 3'. consists of linear and bilinear' R. S.Codrington, J.D. Olds, and H. C. Torrey, phys. Rev. 95,
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(A) The spins are pi, so that X(t) takes the form

x(t)=H&. '+p V;(t) S'+ p S' e;;«& St. (6)

(B) All coefIKients V;(t) and 4,;(t) are random
functions of time with avei'age value zero and with
correlation times short compared, to the relaxation
times of the spins.

Assumption (A) avoids complicated mathematical
problems, but is perhaps not necessary. Assumption (B)
is very restrictive, as the systems to which it applies
are only liquids and (with C =0) such solids (as, e.g.,
diluted paramagnetic salts) for which the spin-spin
interaction can be neglected. %e hope to demonstrate,
however, that this restriction is necessary for the MBE
to be valid.

These assumptions permit us, for the purpose of
calculating M(t), to separate the system entirely into
one-particle systems:

where
x(t) ~p x,(t), pp~g p;p, (7)

x, (t) =Hp' '+HI. '(t) S' (10)

where the time average of Hi, ' is zero. Suppressing the
index i, we Anally have

M=X(S),

(S)=TrSpp/Trpp,

p, = (W(t i/2a) Wr(t+i—/2a)).„
(»)
(12)

(13)

iaw/at= $Pps, +HI..S+Hi(s, cospi(t+j/2a)
+S„sinpp(t+i/28))7W(t). (14)

Hr. (t) is a random function of time with a correlation
time short compared with the relaxation time of the
splns.

3. SOLUTION OF THE STOCHASTIC EQUATIONS

The solution of Eq. (14) for the special case Hi ——0 was
discussed in a previous publication. 4 In a frame rotating

4 A. Voshimori and J. Korringa, Phys. Rev. 128, 1054 (1962).

p, p t W, (t ——i/2a)W—;r(t+i/2a)}, , (8)

iaw;/at= pc, (t)+h, (t+i/28)7W, (t). (9)

The conditions for Eqs. (7) to (9) to be valid with
suitably chosen X,(t) are the same as those for Eqs. (2)
to (4), i.e., the random parameters in X;(t) must
represent a contact of the spin i with a system in
equilibrium at the temperature 8. Although, on account
of the rotating field Hj, the spin system is not in
equilibrium, each of the spin-spin interaction terms is
modulated through +;;(t) with the fluctuations of the
lattice. As these are, by assumption (B), faster than the
random reorientations of the spins, they dominate the
random character of X,(t) and thus allow us to apply
Eqs. (7) to (9).

As the spins are —,', X;(t) is of the form

with the Larmor frequency Ho one 6nds a random

rotation, expressible in three Euler angles (xixpxp)

=(a, y,f), which are random functions of time. The
probability P(a, ap, t) that the angles change, in the time

t, from the values gp to x satisfies the diffusion equation

aP/at = soP, (15)

Po= (1/2ri) (E +K„)+(1/2r p)E, . (16)

The operators I are i times the operators of angular
momentum

E,+iE„=exp(+i&) $a/aaWi(sina)-'
&( (a/ay& co—saba/a&) 7, (1'7)

(18)E,= a/a&.

rj and ~0 are expressible in terms of the square average
of the components of Hz (assumed here to be isotropic)
and their correlation time 0.

1/ri ——p(Hz. '),r(1+Ho'a') ',
I/rp=o(Hzg), .

(19)

(20)

ap/at= sp,
P=Q G pE Ep,

G.p ht(Hz "Hzp"). , ——

(24)

(25)

(26)

where HL,
" is the average of HL,

" over a time At

satisfying

0&gkt&QT. (27)

T is a relaxation time of the spins, expressible in terms of
G p. The averages in Eq. (26) are calculated on the as-

sumption that the components of Hz(t) in the resting
frame are statistically independent. The short-time
average must be taken in order to obtain a random-walk

problem. A simple calculation shows, Qovrever, that the
coe%cients G p depend explicitly on At unless the
effective field H, = (bH'+Hip)i~p and the correlation

In order to solve Eq. (14), we go to a rotating frame

by applying the transformation

W(t) =exp( —is&S,t) W'/t) . (21)

This gives

i aW'/at = (AHS, +Hi cosh (~/28) 5,
+iHi sinh((a/2tt)S„+Hz'(t) S7W'(t), (22)

where AH=Ho pp, and where H—z,'(t) is the local field

seen on the rotating frame.
We first consider the high-temperature limit I/O -+ 0.

The transformation to a frame precessing around the
effective field

W'(t) = expL —i(AHS. +HiS )t7W" (t), (23)

removes the external field terms and replaces Hz' with

Hr, ", the random field seen on these axes. The procedure
used in Ref. 4 gives
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times o satisfy

H,o&(1, (28)

%e will assume in the following that this inequality is
obeyed. In view of assumption (B), this is hardly a
restriction except for the fact that it excludes frequencies
very far from resonance and exceedingly large values
of Bg.

With Eq. (28) satisfied, it is easier to solve Eq. (22)
(1/8=0) directly, as one can take the short-time
average of the equations of motion of the Euler angles in
that frame with ht satisfying

0&(kt&(T and B,ht&(1. (29)

These inequalities guarantee that the change in the
Euler angles in the rotating frame due to the random
6eld and the effective 6eld, respectively, is small. A
simple calculation gives

We now write Eq. (36) as

(S.')=R.'/R, ',
R =TrS;ptt',

(39)

(40)

i =x, y, s, 0, SO=1. Using the invariance of a trace for
cyclic permutation, Eq. (38) gives

where

R,'= Tr(R,"—Ro"Hi/28),

R„'=Tr(R„"),
R,'=Tr (R."—Ro"Ho/28),

Ro' Tr (Ro——" R,"H—i/28 R,"Ho—/28),

R,"=(W' (tt)S,W'( )t), .

(41)

(42)

The time derivative of these quantities can be found by
expressing the average in terms of the probability I':

8P/8t= PP, r= so+Sr,

Fg= —~&E,—HgE„

(3o)

(31) R;"= P(xxt)Wt(x)S;W(x)p(x)p(x)d'xdox, (43)

as was to be expected.
At finite temperatures, the imaginary term in Eq.

(22) offers a new problem. Equation (22) is still solved

by a rotation, but the Euler angles will take nonreal
values. One can, however, follow the same procedure by
considering x and its complex conjugate S to be inde-
pendent variables, and by using correspondingly a
probability P(x,x; xo,xo,t) of six variables. We find

where W(x) is the familiar expression of a rotation
matrix for spin 2i in Euler angles and. p(x)=sin8.
Therefore,

dR;"/dt= (SP)WtS;W= Pd(WtS;W), (44)

8P/at=SP, S=r,+r,+S„
bo ——(1/2r )L(E,+E,)'+ (E„+E„)oj

+ (1/2ro) (E,+E.)', (33) (45)dR Ir/dt P T rrR lf

where St is the Hermitian conjugate of 5', obtained by
(32) changing the sign of Pi and Fo. Carrying out the

di8erentiations, we 6nd

Si—— ~(E,+E,)
Hi cosh (or/—28) (E,+E,), (34)

Fo —iHi ——sinh(or/28) (E„—X„). (35)

~ —1/To
AP
0
0

—AH
—1/To

+1
—orHi/28

0 0
—H, —ooHi/28

(46)
1/Ti 0—
0 0

Here the barred vector K has the same form as K, Eqs.
(17) and (18), but with 8, oo, rt changed to ot, oo, P.

1/Ti 1/~i, ——
1/To ———,

' (1/ro+ 1/ri) . (47)
4. THE MACROSCOPIC EQUATIONS

The equations of motion for (S(t)) will now be ob Taking the trace, and inserting in Eq. (41), one obtains

tained in the "high" temperature approximation, i.e.,
up to a,nd including terms in 1/8. On the rotating frame
one has

dR /dt=P T; R/,

0 Hi/28To
—B'g 0

—1/T Ho/28T
Ho/28Ti 0

—1/To
B'AV —1/To
0 Bg

.Hi/28To 0

(S')=TrSpo'/Trpo',

po'= exp(iorS. t)po exp( —iooS,t) .
(36) rv'=
(37)

From Eqs. (13), (21), and (22) one finds, to first order
1n j1y'8: Substituting in

exp (iooS,t) W(t —i/28) d(S ')/dt= (dR '/dt)/Ro' R'(dRo'/dt)/Ro", —(50)

= exp ( S,or/28) W'(t—i/28)— one sees that the last term is of third order in 1/8,
=$1—(HoS,+HiS, )//28 jW'(t). (38) because R '(O.=x, y, s) are small of first order. One
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5. ALTERNATIVE INTERPRETATION

This derivation of the MBE can be given a different
and intuitively more appealing interpretation which has
guided us in the beginning stage of this work. We will

brieQy sketch our original approach, and show that it
goes completely parallel with that given above.

The idea was to obtain the ensemble average for a
large number of spins from the time average over the
motion of a single spin. Any spin experiences the ex-
ternal fields and a fluctuating field, representing its
interaction with the other spins and with the lattice. It
"senses" the value of 8 only through the latter inter-
action. This field must therefore be such that, in the
time average, it tends to produce a Boltzmann distribu-
tion, in the direction of the instantaneous total Geld.
The rotating field will, of course, prevent this equilib-
rium state from being realized. The fluctuating Geld
must therefore be complex, as it must produce transi-
tions between the two spin states (quantized in the
direction of the total 6eld) with a priori probabilities

p~+ satisfying

is+p~= e p~, n /n+ = 1+Z„,/8. (52)

A real field gives p~= p~, the fluctuating field must
therefore have rotating components in + and —direc-
tion of diGerent intensity.

If B','(t) is this complex, fmld, seen in the rotating
frame, we would have, for the operator S'(t) in the
Heisenberg representation

S'(I)= W,'t(I) SW,'(I), (53)

iBW,'/BI= (~S.+HiS,+H, '(i) S)W,'(/). (54)

The simplest way to obtain a field of this type is to
assume that it becomes a real 6eld Hz'(I) after a
nonunitary transformation expL —(PsS,+ZiS )/28j,
by which the occupation numbers e+ are absorbed in
the normalization of the wave function. Writing

W, '(I) = expL —(HsS,+HiS,)/281W'(I), (55)

one has

iBW'/Bt= (RES,+HiS +i&iS~/28
+Hz' S)W'(t). (56)

Comparing with Eqs. (38) and (22) one sees that, to 6rst
order in 1/8, W, '= exp (iS,erat) W(3—i/28). Therefore, one
can fmd the long-time average of dS (t)/dt by using the
same diffusion equation. This gives the Eqs. (48) and

therefore has

d(S,')/dt = —((S,') ll, /—28)/Ts ~(S„'),
d(Sw')/dI= (S's'—)I/Ts+~&(S') J'Ii(S—'& (51)

d(S,')/dk = —((S,') Bs/—28)/T, +Bi(S„'),

which, but for an unimportant diGerence to be discussed
below, are the MBE.

(49) as operator equations. Taking the trace gives
the MBE.

0. CONCLUDING REMARKS

The limiting conditions under which the above deri-
vation of the MBE applies can be summarized as
follows: (1) All spins are equivalent; (2) the spins have
value s; (3) the system is a liquid or a gas, or a solid in
which spin-spin interaction can be neglected compared
with spin-lattice interaction; (4) the important correla-
tion times 0. of the lattice motion are short compared
with the relaxation time of the spins; (5) the applied
rotating field satisfies Hio«1; (6) the lattice is in
thermal equilibrium. It would be of interest to know if
these conditions, which are sufhcient for the validity of
the MBE, are also necessary.

With higher spin values and possibly quadrupole
interactions, one expects in general to Gnd several
relaxation times, corresponding to di6erent transitions
between the spin levels. A discussion, under which con-
ditions the MBE are valid in the average, falls outside
the scope of this paper. With respect to conditions (3), it
is well known that spin systems not satisfying it have in

general a non-Lorentzian line shape, i.e., nonexponential
relaxation. In the light of the present approach, this can
best be understood in conjunction with assumption (4).
The part of the local Geld Hl. caused by neighbor spins
owes its time dependence to liquid or lattice motion and
to random reorientation of the spins. This last source of
time dependence has correlation times comparable with
the relaxation time of the spins. In the light of the
present theory, this gives a non-MarkoKan system for
which the diffusion equation is far more complicated
than Eq. (15) and does not lead to exponential relaxa-
tion. Therefore, unless the liquid motion completely
averages out the spin-spin interaction in times r((T, one
can have the MBE only if the spin-spin contribution to
Pr, (t) is negligible. Although certain qualitative aspects
of the MBE may remain valid, it is precisely to systems
not obeying these conditions that the theory of Redfield'
applies and for which it predicts deviations from the
MBE.

Condition (5), although not serious from a practical
point of view, is responsible for the fact that our formal-
ism does not apply to the most general case considered
in Ref. 1, i.e., when Tj/T2 and Bi=IIO. This comes
from the fact that these two relations are incompatible
with H~o.((1, because a difference between T~ and T2
can be traced to large denominators of the form
1+Peso', appearing differently in the expressions for Ti
and Tq. Therefore, in the framework of the present
theory, T&/T2 implies Ho))II&, and the question
whether the axis of anisotropy of the relaxation is along
Bo or H~, ~, as suggested in Ref. 1, becomes immaterial.
This leaves the general case undecided, although it

' A. G. RedIield, Phys. Rev. 98, 1787 (1955).
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seems doubtful that one will find a simple result as
suggested in Ref. i.

The last condition, finally, depends on the value of H&

and of Tj, and also on the lattice-lattice relaxation
times which will become a factor of importance in
paramagnetic salts at low temperatures.
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Perturbation. theoretic equations for several properties of the zero-temperature many-fermion normal
system are rederived from general considerations. Though none of the equations are new, some of the deriva-
tions are, and taken together they form a brief and simple summary of many-fermion relations and a basis
for further irivestigation of the basic perturbation description of the many-fermion normal system: the
Brueckner-Goldstone expansion. A "change-of-parameter" technique is then developed and employed to
investigate the possible use of the true momentum density instead of the unperturbed Fermi distribution in
the Brueckner-Goldstone expansion and in the Brueckner E-matrix approximation. The result is a simpler,
approximate perturbation series for the interaction energy, whose accuracy for nuclear matter is estimated
to be approximately +2 MeV, The new approximation is exact to the fourth order.

I. INTRODUCTION

HE theory of the many-fermion system has been
the object of intense study for many years.

This paper is limited to a small portion of the over-all
field, the study of the perturbation theory of the zero-
temperature "normal" state —that state in which there
is no binding which would lead to a phenomenon such
as superconductivity. The basic theory for the perturba-
tion treatment has been developed, and is presented

briefly in the next section as the basic tool on which
the remainder of this investigation depends. This basic
tool is the Brueckner-Goldstone linked-cluster expan-
sion' (BG expansion), the perturbation theoretic
expression for the ground-state energy of the system
described above. With the BG expansion as a basis,
the properties of a many-fermion system are then
analyzed and several general relations are developed.
These have previously been derived with the framework
of Green's function theory, but the equations developed
here are expressed as explicit perturbation series in
contrast to some of the original derivations.

A "change-of-parameter" technique is then developed
and employed to derive an approximation to the BG

* Based in part on a thesis submitted by K. S. Masterson to the
Faculty of the University of California, La Jolla, in partial ful611-
ment of the requirements for the degree of Doctor of Philosophy.

t Present address: U. S. S. Wright (CC-2), /q F.P.O., New
York, ¹ Y.

' K. A. Brueckner, Phys. Rev. 97, 1353 (1955); 100, 36
(1955); The JIuey-Body Problems (John Wiley, R Sons, Inc. ,
New York, 1959);J. Goldstone, Proc. Roy. Soc. (London) A239)
267 (1957).

expansion in terms of the true momentum densities
instead of the Fermi step function unperturbed distribu-
tion. It is shown that the above replacement, coupled
with the neglect of the "self-energy" terms in the
expansion, yields an approximation which is exact
through fourth order and whose accuracy is estimated
to be approximately &2 MeV for nuclear matter. This
approximation further leads to a modified form of the
Brueckner E matrix approximation in which the self-
consistent energy denominators are replaced by free
kinetic energies and the Fermi distributions by the
(self-consistent) momentum densities. An application
to nuclear matter calculations in which the momentum
densities are calculated to low order in perturbation
theory, avoiding the self-consistency restriction, is
discussed in another paper. '

II. THE BRUECKNER-GOLDSTONE LINKED-
CLUSTER EXPANSION

The heart of the perturbation theory of the normal
state of zero-temperature many-fermion systems is the
Brueckner-Goldstone linked-cluster expansion (BG
expansion). ' Et is briefly reviewed in this section because
of its importance in the following sections and in order
to establish notation.

The Schrodinger equation for the system is

(IIo+&r)+=~= (&o+~)e,

s K. S. Masterson, Jr. (to be published).


