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have been tried, ' ""but they are as yet not in a form
where their predictions of galvanomagnetic effects can
be compared with experimental results.

6. MEASUREMENTS AT 20.4'K

Some measurements were made on samples IIa and
IIb at 20.4'K. The zero 6eld resistivity at this tem-
perature is 0.0109 0 cm. The transverse magneto-
resistance is shown in Fig. 11, in which hp/p is plotted
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against II on a log-log scale. The behavior of R as a
function of H' is shown in Fig. 12. The results at other
temperatures are also indicated in these figures to
facilitate a comparison between the data at different

temperatures for the same sample.
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The high-frequency and long-wavelength resistivity due to the electron-proton (optical) interaction is
calculated for degenerate semiconductors. This result is compared with the resistivity arising from electron-
ion collisions calculated previously.

I. INTRODUCTION

"'N a recent paper, the high-frequency and iong-
' ~ wavelength resistivity of degenerate semiconductors
was obtained' from a model of an electron gas moving
in a medium of randomly distributed ions. Hence, the
electron-ion collisions were responsible for the absorp-
tive part of the conductivity and therefore the
resistivity.

However degenerate semiconductors such as InSb,
InP, GeP, etc., are ionic to a small degree and their con-
duction electrons interact with the polarized vibrations
of the lattice (optical phonons). Therefore, the electron-
phonon interaction is an additional mechanism which
gives rise to an absorptive part of the conductivity. In
the following pages we shall calculate the high-fre-
quency and long-wavelength resistivity which arises
from the electron-phonon (optical) interaction.

Our calculations are based on an expression for the
resistivity previously obtained by the author. ' How-

ever, in order to perform the machine calculation, we
compute the resistivity for a model semiconductor in
which the frequency spectrum of the phonons is con-
stant for all wave numbers, and the temperature of the
system is taken to be zero.

Our calculations below show that for realistic semi-
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conductors the resistivity due to the electron-phonon
interaction is about 20% of the resistivity arising from
electron-ion collisions.
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where D,t(x) =2a&,[(x+irl)' ares j ', ri=0+-,
=(4wesw/m)'~s is the classical plasma frequency, and

8(q,&o) is the dielectric function of the electron gas.
We calculate now E(ar) for a simpli6ed model in

which co~=co&——constant for any wave number q, and
the temperature of the system is taken to be zero (i.e.,

II. CALCULATIONS OF THE RESISTIVITY

Ke use here the notation and the definitions of
Ref. 2. Our starting point will be Eq. (36) of Ref. 2

which gives the expression for the high-frequency and,

long-wavelength resistivity. After some algebra we

obtain
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k=r//2cII where qI is the Fermi wave number and Q,
Q, are, respectively, co/ror and col/cop, and 8(X)= 1 for
X&0, 8(X)=0 for X(0.

The asymptotic value of R(Q) for frequencies Q))1,
QI(1& ls glvcll by
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FIG. 1. Plot of the functions (cu~/16o')R;, (au/car) encl
(~~/1&r)R~s, , (cu/~IP), respectively.

P-+ ~). We obtain
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where 8, (k,a&) is the imaginary part of 8(k,co). Here Mr
is the Fermi frequency, n= (4/9s. )'", r, =ro/ao, where
ro is the mean radius per electron, and Go ——h'/ms' is the
Bohr radius, eo is the static dielectric constant and ~~,
co~ are, respectively, the longitudinal and transverse
frequencies of tllc optical vlbratlons. Ill Eq. (2)

where we used to expression for 8(q,oo) given by Glick
and Ferrell. 4

The computation of Kq. 2 has been carried out on an
IBM-'%94 for a degenerate semiconductor and is dis-
played in Fig. 1 together with the resistivity given in
Ref. 1.%e have chosen the effective electron mass and
charge to be nr/100 and e/(10)'~', respectively, ' and the
electron density to be 10" electrons/cc. As for the
photon part we have chosen' nil ——10" rad/sec and
ntP/&oP=so/e„=3/1, where e„ is the crystal dielectric
constant in the limit ~ —+ ~.

In conclusion, the resistivity R(oo) has a threshold at
~=~~, a wide peak around co 0.4 ~~ and for ~&~„,
R(ro) behaves as a constant, times &v

' '. The resistivity
due to the electron-phonon interaction is of the order
of 20'Po of the resistivity arising from electron-ion col-
lisions and in principle couM be detected experimentally.
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