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(1) Deformation of an irradiated crystal causes a
reappearance of the "erst-stage" coloration for the Ii
centers. Moreover, the coloring curve can be separated
into the same stages as those present for the undeformed
samples. This verifies the eGect reported by Agullo-
Lopez and Levy. ~

(2) The deformation induced enhancement of the
colorability can be annealed out by heat treatirlg the
samples in air at 450'C for 20 min. After this treatment
reirradiation yields the same coloring curve as that
characteristic of an undeformed sample. A longer heat
treatment in air results in an increase in the colorability
of the sample. This is possibly due to oxygen since no
increase in colorability was noted for an Isomet sample

cleaved from the center of a large block which had been
held at 575'C for 2 h s

(3) The incremental increase in the F-center color-

ability due to deformation is diferent for crystals
obtained from diferent sources for the same amount of
deformation.

(4) In samples where the 195- and 212-mfa' absorption
bands grow more slowly than the V2 band it is observed
that the coloration curves for the V2 band are very
similar to those for the F band, and are RGected by
deformation and heat treatment in the same way.
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A discussion is presented on the behavior of electron and hole fluctuations under steady-state conditioj

The differences between steady-state and thermal-equilibrium systems, associated with microscopic revex

bility, are brieQy discussed. It is concluded that so far all calculations pertained to conditions valid I

(quasi-) thermal equilibrium. To illustrate the features for a nonequilibrium state, an academic model invo

ing cyclic transitions through one set of electron traps is analyzed. The variance is shown to be sup
Poissonian in the range where the photoconductance is superlinear and sub-Poissonian in the range where

all traps are 6lled. The connection with presently accepted two-center models for phosphors and photocon-
ductors is also indicated.

l. INTRODUCTION

&~URING the past decade several methods have
been developed to obtain. the variances and co-

variances of electron and hole Ructuations in solids. ' 4

These Quctuations arise from spontaneous or induced
transitions between the various energy levels in a par-
ticular solid material. A specidcation of these various
transition rates together with the applicable constraints
(e.g. , charge neutrality) and a priori probabilities for
the quantum states (generally governed by the Pauli
exclusion principle) is sufficient to obtain the variances

(he, s) and covariances (Dn, Arr;). In the past two com-

pletely diferent procedures have been employed for
materials which are in thermal equilibrium with the
surroundings.

(a) Burgess' has shown that carrier variances are

*Supported in part by a U. S.Army Signal Corps contract and
in part by a National Science Foundation grant.

' R. E. Burgess, Proc. Phys. Soc. (London) $68, 661 (1955);
969, 1020 (1956).

~ K. M. van Vliet and J. Blok, Physica 22, 231 (1956).' K. M. van Vliet, Phys. Rev. 110, 50 (j.958).
4 M. Lax, Rev. Mod. Phys, 32, 25 (1960).

easily calculated from the expression for the free-energy
function F(ter, ns I,), where Nr rs, represent the
carrier densities in the various electronic levels close to
the equilibrium state. H N~- e, ~ are unconstrained
variables (i.e., the charge-neutrality equation has been
used to eliminate rs,), then we have simply for the
VRrlRnces Rnd covariances

g; (hn;aN;) (a'p/an, an, ) = kTa;„,

ol, ln Inatrlx notation

(Anion) =AT/a'F/anan]-'

=Z' Lp~'(n)- p.f(n)j,
CI, j=&

(1 2)

This result could also be obtained using irreversible
thermodynamics, compare Ref. 3.

(b) A purely stochastic procedure was first employed

by van Vliet and Blok' and later on by Lax' by solving
the I'okker-Planck equation or master equation, re-
spectively. The kinetic equations are written in the form
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or, in linearized form, expanding about (n) =us equivalent with the master equation' '

dd, n;=g a;s(n)hns,
k=1

here n stands for all the independent variables and

aP(n, t
l m)

(1.3) =P'P(k, rim)Q(n; k)
Bt —P' P(n, tlm)Q(k; n), (2.1)

~pi'

—~+k- Il lip

Bpa'j

- ~~k- n np

where k and m have been used as additional symbols to
(1.4) represent the set n; Q(n;k) is the transition probability

The result of the solutions referred to above yields the
"generalized g-r theorem"

Q(n; k)= lim —P(n, atlk),
At~0 gt

(2.2)

a (Anon)+(Anon) ar= —I, (1.5)

where a is the rate-coefficients matrix defined by (1.3),
ar its transpose, and p is composed of the second-order
Fokker-Planck moments:

8

&"=2K' p' (no),

&'.= —p' ( o) —p *( o) ('&i)

(1.6)

The equivalence of both procedures ender thermal
eqlilibrigm condign'ops was proven by Burgess and by
van Vliet for special cases" and later on quite generally
employing arguments based on irreversible thermo-
dynamics by van Vliet' and by Lax.' However, the
result (1.5) is more general in that it also applies to
nonthermal equilibrium, i.e., in a steady state in which
stationary driving forces are present. Though, even
then, under some conditions the result (1.5) is still
identical with (1.1), this is not generally true. It is the
purpose of this paper to investigate the fluctuations in a
genuine nonthermodynamic state, and the conditions
for which this occurs. Particularly, we shall explore the
possibility of obtaining large variances ((Ans))&np),
such as have been found in some photoconductors. '~

' K. M. van Vliet, Physica 23, 248 (1957).
6 K. M. van Vliet, J. Blok, C. Ris, and J. Steketee, Physica 22,

723 (1956).
7 J. J. Brophy and R. J. Robinson, Phys. Rev. 117, 738 (1960);

also J. J. Brophy, ibid. 119, 591 (1960); J. J. Brophy and R. J.
Robinson, J. Appl. Phys. 31, 1343 (19605.

2. THERMAL EQUILIBRIUM VERSUS
STEADY-STATE PROCESSES

Rate equations such as (1.2) can generally be written
down for any stationary state that is attained as a
balance between gain and loss processes. Ke shall
assume that the linearized fluctuations from the steady
state are Gaussian in character and, moreover, that
the process as a whole is MarkofFian random. This
requires first of all that the specification of the stochastic
variables n(t) is complete and, furthermore, that
Smoluchowski's integral relation for the conditional
probabilities P(n, tins) holds. This latter relation is

Ws(k, m) = Ws(m, k); (2 3)

here Ws refers to the joint probability for n(t&) and
n(ts). The consequences of this principle are manifold,
of which we mention here:

(i) The postulate (2.3) leads to detailed balance. An
easy proof (compare, e.g., Bowen and Meyer") is as
follows. Let n(0) =k and n(ht) =m. Then (2.3) means:

Wi(k)P(m, ~1lk) = Wi(m)P(k, ~1
I m), (2 4)

where Wi(n) is the single probability distribution of
the set n. Dividing by Dt we have

Wi(k)Q(m;k) = Wi(m)Q(k;m). (2.5)

In particular, let us now consider the transitions de-
termined by

(mi, ~ m, ,m; m, }
=(ki, . k,+1,k;—1, ~ k,). (2.6)

Then for the transition probabilities we have

Q(m;k) =p;;(k),
Q(k;m) =pg(m) .

Summing Zq. (2.5) over all k, we have, using Eq. (2.6),

g Wi(k)p;;(k)
k1 0 kg 0 kg'=1 kg 0

Z Wi(m)p "(m)
R1=1 ks——0 kg'=1 ke=o

Z Z " Z W(m)p*"(m) (2g)
nay~l m&~l tn&~ fry~

'This equation is also known as the Chapman-KolmogoroR
equation in the mathematical literature.

9 A. ¹ Kolmogoroff, Math. Ann. 104, 415 (1931).
'P H. B. G. Casimir, Rev. Mod. Phys. 17, 343 (1945}."S. R. de Groot and P. Mazur, Eon-Eglilibrilm Thermody-

namics (North-Holland Publishing Company, Amsterdam, 1962).
» J. I. Bowen and P. N. Meyer, Physica 26, 485 (1960).

providing this limit exists.
The central feature of thermodynamic equilibrium is

expressed by the principle of microscopic reversibility
(see Refs. 10 and 11),which, in a simple form, states
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s
=Z'(~ ')'(f.—f )

dt
(2.10)

where (p„—p;) are generalized driving forces, (R t);;
are generalized conductances. These conductances are
directly related to the p;;(n) and obey the Onsager re-
lations, i.e., (R '),;= (R ');,. The general proof of
Onsager's relations, following from microscopic rever-
sibility, is, of course, well known. (For original proof
see, e.g. , Ref. 10, for a modern proof, Ref. 11.)

(iii) A more peculiar result, based on microscopic re-
versibility, and of prime importance in the present
paper, is the fact that a (d,nAn) is a symmetrical
matrix, i.e.,

a (Anion)=(hnAn) ar. (2.11)

This means that now the covariance matrix Lsee

Eq. (1.5)] can be explicitly expressed as

(Anon) = ——,
'

tt
—'6. (2.12)

This result and its complete equivalence with (1.1)
was 6rst proven by the author"; later on, a very direct
proof of (2.11) was given by Lax."The essential parts
of this proof are as follows. From microscopic reversi-

bility we have, noticing

(An(f)hn(0)) = P P hnAn'Ws(n, n'), (2.13)
hn(0)=n hn(t)-n'

the well-known result

(an(f) an(0)) = (an(0) ~n(f)) . (2.14)

The linearized master equation solution using the
Stoszahlansatz (2.7) is easily shown to result in

(hn(t)hn(0))=r exp(at)]. (Anion). (2.15)

For small t this yields

(hn(ht)hn(0)) —(Anon)=a (hnhn)dd. (2.16)

Since the left-hand side is symmetrical, the right-hand
side must be symmetrical also, thereby establishing

(2.11).
Let us now consider a nonthermodynamic steady

state. Microscopic reversibility does not necessarily
exist. From the master equation we easily get the

'3 K. M. van Vliet, see Ref. 3, Sec. 8.
'4 M. Lax, Ref. 4, Sec. 6.

The sum in the left-hand side is (p, ;(n)). Likewise, the
summations in the right-hand side yield immediately

(P;;(n) ). If (e;)—=fs;s are large numbers, it is easily shown

that the above result is equivalent to

(2.9)

which expresses the principle of detailed balance.
(ii) It has been shown before' that the kinetic equa-

tions can be written in the standard form of irreversible
thermodynamics,

macroscopic equations by various procedures (cf.
Refs. 15, 16).

fl(n, (t)
~
m) =P' (p;, (n)

~
m) —P' (p,"(n)

~
m), (2.17)

8

which leads to the stationary state equations (f ~oo)

P' p;;(ns) =P' p;, ( np)+0(h ts) . (2.18)
7

In case transitions occur between two states only this
is equivalent to (2.9). These cases can be considered as
quasithermal equilibrium cases. Also, in several photo-
conductors it has been assumed that a set of traps
exists in quasithermal equilibrium with the conduction
band (i.e., having a common quasi-Fermi level) and a
set of activation centra, in quasithermal equilibrium
with the valence band. The variances in these cases are
similar as for thermal equilibrium conditions. "In par-
ticular, it can be shown that the simpliied result
(2.12), holding under (quasi-) thermal equilibrium con-
ditions, always yields sub-Poissonian variances, i.e.,
(hts,s)/e;p& 1.

3. A NONEQUILIBRIUM MODEL

Though noise has been calculated in various photo-
conductive materials, unfortunately so far all applica-
tions referred to a quasithermal equilibrium state. In
this paper we shall consider an academic model of a
three-level photoconductor, being in a steady state
(sometimes referred to as driven equilibrium) and in
which detailed balance is completely lacking. It will be
shown that in certain regions large, i.e., super-
Poissonian, Quctuations can occur, Though the model—
when properly amended, see Sec. 4—may have some

bearing to "giant noise" as observed in CdS, (Refs. 6
and 7) this will not be pursued in this paper, particu-
larly since experiments on indium-doped CdS by
Zijlstra" may point to an alternative explanation. ""¹G. van Kampen, Physica 23, 707 (1953)."J.R. Fassett, Ph.D. thesis, University of Minnesota, 1962
(unpublished); also K. M. van Vliet, Phys. Stat. Solidi (to be
published).

'7 In connection with the experimental work in CdS it may
further be emphasized here that a quasithermal equilibrium model
involving relatively shallow traps, such as discussed previously
PK. M. van Vliet and J. Blok, Physica 22, 525 (1956)j will not
lead to super-Poissonian fluctuations. This was pointed out to me

by Dr. A. Rose of RCA Laboratories.
' R. J. J. Zijlstra, Physica (to be published).
»The experimental situation about CdS noise is not com-

pletely clear at present. Van Vliet et cl., reported g-r noise in
silver- and self-activated CdS crystals, for which the shape of the
spectra was shown to be in agreement with the measured response
to alternating light (Ref. 6). The estimated magnitude of the
variance (nN') ja was below 10 in most cases, and as high as 50 in
some curves (if the mobility is evaluated at 100 cms/V sec).
Brophy and Robinson (Ref. 7) on the contrary report relative
variances as high as 5000. Even larger magnitudes were found
recently by Pai in this department. It is by no means sure in all
these cases that the noise is g-r noise. Zijlstra showed that similar
spectra as reported by Brophy occur in indium-doped CdS layers
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de/dt =o(Z be (—I i),—
di/dt= be(I i) —«i (—e+i),

(3.1)

where e, i, p=e+i are the carrier concentrations in
conduction band, traps and valence band, respectively.
I is the number of traps, 0. is an absorption e%ciency,
b and If. are rate constants, related to the cross sections
for electron and hole trapping. Linearizing in the form
(1.3) we obtain:

The simple model is depicted in Fig. 1(a).We assume
that recombination levels are 6lled by electrons from
the conduction band, which in turn only release their
carriers to the valence band. Thus the transitions can
be labeled ppi, pts, pss. The opposite transitions are
absent (simply because traps are too "deep").We
assume that psi is induced. by light. The advantage of
this model is that, though detailed balance is lacking,
the rate constants do not enter explicitly into the ex-
pression for the variances, as shown below.

The rate equations are in this case

p 44Z

p)~ =bng-i) .
I'evel I

cac Z

bn(I-i)

traps

~=Rip pip

Ei1/8/r"lE/8//
(a) (b)

Fio. 1. Noise due to cyclic transitions. (a) Academic model.
(b) More realistic model.

Then,
(fez) 2k'+ (3k+1)q

ep 2k'+3kq+ (1+2k)q'
(3.S)

Large variances can occur in a narrow range where
k((1 and q((1. To discuss the feasibility of this situa-
tion, we investigate the photoconductivity exhibited by
the model, following from the steady-state equations
(3.4).

(a) For very low light intensities, ep(&ip, ip(&I or
k&&1, q(&1. This yields immediately

aii ———b(I—zp) ais bep—— ep ——aZ/bI, (3.9)

o(Z=bep(I —ip) =«i p(ep+i p) . (3 4)

It is then possible to express the a's and 8's in 8 only
(besides ep, i p, I) and, since the matrix equation (1.5)
is homogeneous in a;; and 8;;, the variance is deter-
mined by the concentrations only. One then obtains

(t( e') (I zp)'2i p+—3epi p(I ip)+i p'—ep

ep (I ip)'2ip+—3epip(I ip)+2e—p'(I ip)+i pe—p'

(3.3)

It is easily verified that this solution differs from that of
a quasithermal equilibrium state in which (2.10) and
(2.11) are supposed to hold. If the traps are being filled
I—ip-+0. Then

(t) es)/ep +i p/ep. - (3 6)

This may be several orders of magnitude larger than
unity. More speci6cally, let us put

(I ip)/i p k—, ep/i ——p= q (3 7)

on an insulating CdS substratum. In this case the fluctuations are
clearly to be attributed to diffusion of the carriers from the semi-
conducting layer into the insulating substratum. The possibility
that similar sects occur in regular insulating CdS platelets should
not be excluded and is being investigated.

(3.2)
apt= bI bi p «i—p a—sz= —(bep+«ep+2«zp)

For the 8 matrix we find from (1.6) in conjunction with
Fig. 1(a):

&it 2(pt——s'+ pis') = 2be p(I ip)—
8„=33„=—3„'—P„'=—3e,(I—z,)j. (3.3)
Bss= 2(P +tsPss') =2bep(I —zp)

The coe%cients ~, 0., and 8 are related to each other,
since in the steady state

i.e., the photoconductance is linear with Z.
(b) High light intensity. From the second relation of

(3.4) we have

Zp

—ep(«+b) 1
+ &(«+b)'—eps+4bepI«]«s (3.1O).

2K 2K

If Ss&&4I~, the square root can be expanded, yielding
ip/I ~/b( +«)b. Substitution of this into the first relation
of (3.4) yields

o(Z «+b
SQ—

bI
(3.11)

kq/(q+1) =«/b—=y,

qk/(k+ 1)z=m/bIs= Z, —
I'=e./I =q'/L~(1+~)+r j—;

(3.12)

(3.13)

(3.14)

here k and q were defined before LEq. (3.7)$, y is a di-
mensionless parameter involving the ratio of the
capture cross sections, 2 is the normalized light in-
tensity, I' is a measure for the photoconductance.
Equations (3.12) and (3.13) lead to a cubic equation
for k and q, which was solved for varying Z and y using
a Control Data 1604 computer. The results are shown
in Fig. 2 (computed photoconductance), Fig. 3 (com-
puted filling of traps ip/I versus 2) and Fig. 4 /com-
puted relative variance according to Eq. (3.8)j.

Again, the photoconductance is linear with Z; the pro-
portionality constant is larger tham in the low light case.
Thus, the photoconductor is superlinear, and the more
so when b/« increases.

(c) In the intermediate region approximations are
not appropriate. From (3.4) we have the relations



Io Io

IO —'

IO'

I

IO164, IO' IO'' '-+4

Fro. 4. The relative variance (An2)/no versus Z
(computed results).
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A final peculiarity of the model is that the addition of
a distribution of traps with the same 5 and x, throughout
the forbidden gap does not affect the noise power, nor
the i ctime. is is so,1 I . Th so because the kinetic equations
remain of the form (3.1), where now i =ass, I=+ s.

IO

KP Ia' IO'
4. MORE SOPHISTICATED MODELS

alized li htFxo. . ea ivep o. 2. R I t h'toconductance Ns/I versus norma
'

g
intensity 2 =uZ/sp for various y =s/S (Control Dataata 1604 com-
puter results).

First of all, it is noted that the photoconductance is

s/8 (which is physically most feasible, see Sec. 4). This
super incan
do not release their carriers to the conduction band and
thus are groun s ad t tes" in Rose's sense; a comparison
of Fig. 2 with Fig. 3 clarifies this point.

The variance is indeed quite large in the superlinear

1 rl we show the relative variance versus the
number of photoexcited carriers in the super in

F' 5 taking s/5=10 —'. It will further beregion in Fig. , ta ing ~

d that the noise drops to zero in the hig ig
region due to the absence of shallow traps in the present

~ ~

The above described three-level model is academic in
that only one fixed electron-trapping level has een

d. Most hotoconductive phenomena have een
explained, however, on the basis of a two-center mo e,

, R " d H. A. Klasens. "The basic reason
: Thef th' t from the chemistry of phosphors: e

ll thatle of "controlled valency" requires genera y a
both donors and acceptors be incorpora e .rated. Neverthe-
less, the absence of appreciable hole conductivity in
materias i e, i

'
ls like CdS, indicates a preference for o e trap-

ping y eb th occupied acceptor states in the c emica
sense a ove t e va ence) b th 1 nce band. "The quasithermal equi-
libriuxn etween ese sb th states and free holes is indicated

jo

jo

&.n')
O

to/

IO'

IO

IO Io IO Io Io

FIG. 3. The 6lling of the traps (computed).

Io

jo
jo

"Rja' jo jo~ no/&

Fm. 5. Relative variance as a functionion of the free carrier con-
centration in the superlinear region for y=1

20 A R e in Photocowdgctzvzty Conferee
~ ~

e ohn Wiley R Sons,ose, i
. 3—48.Inc., New Vork, 1956), pp. 3—

'1 H. A. Klasens, Phys. Chem. Solids 7,
~F. A. Kroger, in,, H. ~ V k and J. van den Soomgaar,

Physik. Chem. 203, 1 (1954).
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Thus, the recombination through the electron trap—
assuming that all traps are still characterized by one 5
and a—can be written as

El hng (I—— i ) =bn—(I i)—
E2——Q; «i;p= »i(n+i)/F,

(4.3)

(4.4)

where F is the denominator in (4.2). Clearly F))1;
hence, the apparent recombination constant K'= K/F((»
Thus, even if 8 and ~ are of the same order of magnitude,
'tIM Rppal cll ty ='K /8 ls R vc1y siilRl1 clllailtl ty. Tll1s
leads to superlinearity and large variances. Moreover,
the abundant hole trapping reduces the free hole con-
centration to such an extent that the electrons become
the majority carriers, i.e., n0))po, even though
no&pa+co, thus making the electron fluctuations
(An') observable (no contribution from (hp') in the
conductance fluctuations).

The previous model concentrated the superlinearity
in a very small light range. If the small value of the
parameter y=» /ii is attributed to hole trapping, how-
ever, this is no longer the case. If a set of acceptor levels
fills up, i.e., ako —+31„ the apparent ~' starts to rise.
Thus, the presence of acceptors in the forbidden gap will
make the photoconductance to rise much more gradual
than before, particularly if these acceptors are dis-
tributed in energy. If, e.g., this distribution mere such
that ~' would rise linearly with 8 for 2& 10 ' the photo-
conductance would behave as indicated by the dashed
line in Fig. 2. It may be noted that in this case the
photoconductor shows superlinearity in the transition

by the usual equation t compare Fig. 1(b)j
««/d&=VP(&« o—«) V—P«la«=D, (41)

where Ap is the number of acceptors of kind k, aI, the
number of trapped holes, p«i the Shockley-Read quan-
tity (i.e., the number of free holes if the quasi-Fermi
level of the centers coincides with the trapping level).
At low light intensities and times large compared to the
hole-acceptor relaxation tilnes me have al,g&AI„and
P=P«1(c«/A«). Siilcc also P=n+P& fy P«c—«, wc fmd,
denoting by i the total electron trap population,

range, whereas the effect of the distribution of states is
to make the overall photoconductivity large but sub-

linear, with no proportional to 2053 over nearly four
decades. (The whole situation becomes quite analogous
to that presented by Rose; see, e.g., Ref. 2D, Fig. 4.)

Unfortunately, the behavior of the variance under
these more realistic conditions cannot be predicted.
with certainty. If the acceptor-valence band inter-
actions were extremely fast and noiseless, the eGect of
these states indeed would be to spread the super-
Poissonian variance region along with the photoresponse
over a wide light-intensity range. However, the possi-
bility of negative correlations which would reduce the
noise cannot be excluded. Thus, to obtain reliable
results, the matrix equation (1.5) has to be solved for
the entire multilevel system. Though a formulation in
terms of integl al equations is feasible —in case one
assumes continuous trap distributions —an alternative is
to invert (1.5) directly by computer techniques, which

is presently being programmed.

5. CONCLUSIONS

It has been shown that the computation of the
variances and covariances in a multilevel electron
system in a steady state is more involved and entirely
diferent from that in a thermal equilibrium (or quasi-
thermal equilibrium) state.

The academic Inodel presented here shoms a relative
variance (An2)/no not bounded by unity as is the case
for thermodynamic fluctuations.

More realistic models involving two kinds of centers
are likely to retain several of these features.

Along with the variance the photoconductivity has
been evaluated and the results are shomn to be con-
sistent with current understanding.
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