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cmjsec. The uncertainty given for v„is due to an allowed
~10'C uncertainty in the cell temperature as measured
by a mercury thermometer placed in the oven contain-
ing the optical pumping cell.

The data of this experiment yields a spin-exchange
cross section for Rb s-Rb'r collisions of (1.70&0.21)
X10 '4 cm'. The early work of Franken, Sands, and
Hobart' and Novick and Peters' yielded cross sections
of SX10 "cm'for Na-I collisions and 2X10 "cm'for
¹

Rb" collisions. These results were considered to be
reliable within a factor of 3 of the quoted values. The
uncertainty was primarily due to unreliable density
estimates. With the use in the present work of the
interferometric technique of density measurement,
estimated to be reliable to +11% this type of uncer-
tainty was largely overcome. The total error quoted
for the cross section is closely related to a 70%%u~ con-
Gdence interval. The result presented is in reasonable
agreement with measurements of Rb"-Rb" and Rb"-
Rbs~ spin-exchange collision cross sections performed.

by Moos and Sands" in this laboratory using an electron
paramagnetic resonance technique.

ACKNOWLEDGMENTS

The continued encouragement and help during the
course of this investigation by Professor P. A. Frankest
is gratefully acknowledged. It is a pleasure to thank
Dr. James L. Hobart, Professor C. Wilbur Peters, and
Professor Richard H. Sands for many helpful discussions
during the course of this work. We also wish to thank
G. Kessler and H. Roemer of the Physics Department
shops for their skill in the construction of much of the
equipment used. We wish to thank Professor Derek
Jackson for his generosity in supplying the Fabry-Perot
plates and for his guidance in the design of the scan-
ning Fabry-Perot interferometer.

' T. Stark and R. H. Sands have kindly informed us by private
communication of recent results for both isotopes of Rb based on
the Ph. D. thesis of H. W. Moos at the University of Michigan„
1961 (to be published).

PHYSICAL REVIEW VOLUME 133, NUM BER 1A 6 JANUARY 1964

Interaction of Optical and Infrared Radiation with Metastable Hydrogen Atoms

WOLPGANG ZERNIK

P/asma and Space App/ied Physics, Radio Corporation of America, Princeton, jtfeto jersey
(Received 1 August 1963)

This paper is an extension of a previous one and discusses the theory of the quenching of the metastable 2S
state of atomic hydrogen by means of optical radiation, for example by the light from a ruby laser. The case
discussed is that for which the incident intensity is suKciently weak for the usual quantum-electrodynamical
perturbation theory to be valid. A procedure developed by Schwartz and others is used to carry out the sum
over intermediate states without explicit enumeration. The results are given for a range of incident wave-
lengths from 5000 A to 50'. For unpolarized light from a ruby laser (6934 A), the total cross section for
quenching is found to be 0 @=1.27&&10 "cm~. The cross section for coherent scattering has also been cal-
culated for the same range of wavelengths; for ruby laser light, the total cross section for scattering is found
to be 0-8= 1.03)&10 "cm'.

1. INTRODUCTION
' 'N a previous paper, ' hereinafter referred to as I, an
~ ~ approximate calculation was reported for the
quenching of the atomic hydrogen 2S state by means of
the light from a ruby laser. It was concluded that, (a)
the process can be analyzed by means of the usual
quantum-electrodynamical perturbation theory' pro-
vided that the peak electric-Geld strength in the laser
beam is less than about 10' V/cm, and that if this is the
case, then, (b) the process consists mainly of virtual
excitation to the 3I' state followed by spontaneous
decay to the 1S ground state.

In this paper the treatment is restricted to the weak-
Geld case but all possible intermediate states, including
those in the continuum, are taken into account.

'%. Zernik, Phys. Rev. 132, 320 (1963).
s See, for example, W. Heitler, The Quantum Theory of Radiation

(Clarendon Press, Oxford, 1954), 3rd ed.

In addition, numerical results for the quenching cross
section are given for a range of incident wavelengths
from 5000 A to 50 tt, essentially covering the range of
currently available laser frequencies. The maxiInum
intensity of the incident radiation for which the results
are valid is a function of the frequency, as explained
in I. In particular, the theory breaks down completely
in the neighborhood of the Balmer frequencies.

2. PERTURBATION THEORY RESULTS

As indicated in I, second-order perturbation theory
yields a cross section for quenching given by:
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In this equation, rp is the classical electron radius in cm
and all other quantities are in atomic units, i.e., energies
in units of (tie'/fi') and dipole matrix elements in units
of (A'/me'). Subscripts 0, i, and f refer to initial inter-
mediate, and Gnal states, respectively. The r;p are dipole
matrix elements, the ep are unit polarization vectors,
and E denotes the energy of an atomic state. The wave
number of the incident photon, in energy units, is de-
noted by kp. The wave numbers of the two possible
emitted photons k& and k2, are given by

ki Ep ——Et+—kp,

k2 ——Ep—Eg —kp.

(2)

(3)

The four terms in (1) may be regarded as representing
the following paths by means of which the process
occurs: (a) kp is absorbed, then kr is emitted, (b) ki ls

emitted, then kp is absorbed, (c) another kp is emitted,
then ks is emitted, (d) ks is emitted, then another kp is
emitted.

The summation over intermediate states i, in Eq. (1),
includes all those states allowed by the dipole selection
rules, i.e., 2I', 3I', 4I', , etc.

It was indicated in I that the angular factors in (1)
may be taken out and the result written in the following
form

do—=2Q(ko, ki)LIa."'I'+ la "'I'1
dQ

+2Q(ko k&)I I
a "'I'+ I u "' I'I cm'/sr. (4)

In (4), ai. and a~i are the inelastic scattering ampli-

tudes for final-state polarizations perpendicular and
parallel to the scattering plane, respectively. They are
determined by

(5)

(6)

~&"'=~p. ,
gl 1

= F011 COSey j

here gi is the angle between kp and ki, and epi, eoii are
the components of the incident unit polarization vector
perpendicular and parallel to the scattering plane, with

eoi'+eoiP 1. = (7)

Therefore, if the incident light is unpolarized and the
polarization of the inelastically scattered light is not
measured, the cross section for quenching is

80—= Q(kp, ki)I 1+cos'8ij
dQ

+Q(kp, ks)I 1+cos'esj cm'/sr. (8)

The quantities Q(kp, ki) and Q(ko, ks) in Eq. (4), may
be expressed as

Q(kp, ki) = (1/18)ro'I ki'ko
I P(ko)+P( —ki) I'j, (9)

Q(kp, ks)= (1/18)rp'Iks'koIP( —ko)+P( —ks) I'j, (10)

where

P(k)= Q P, (k),
i 2P

TABLE L Values of P, (k) for incident ruby laser light. P, (k)
=(res, ertis, )/(Fps &-;+k) T.he rosra, re dipole matrix elements
between atomic states having energies E2s, E' kp is the energy
of the incident photons; kI=E2s —~1s+kp,'k2=~~s —Rs—ko.
Matrix elements and energies are in units of fi'/me', pie'/fi',

respectively. P(k) = Z P;(k).
spss2P

1
2P
3P
4P
P(k)

+kp—102.2
—412.9
—13.9

—558.8

—k1

+15.2
—3.1
—0.7

8.65

kp

+102.2
—11.6
—2.4
80.72

—k2

+21.7
—4.1
—1.0
13,06

P;(k) =
&o—E+k

(12)

3. IMPLICIT SUMMATION OVER
INTERMEDIATE STATES

In this section, the sum defined by Eqs. (11)and. (12)
will be evaluated by means of a technique similar to
that introduced by Schwartz and Tieman'4 and utilized
by Mittleman and Wolf' in their calculation of the
coherent scattering of photons by atomic hydrogen in
the ground state.

Denoting the normalized radial functions' for hydro-
gen by R t(r), one defines the function

~ rR„i(r)Jo"R i(r')R~p(r')r"dr'
U(r, k)= g E E k

(13)

P C. Schwartz, Ann. Phys. (N. Y.) 6, 156 (1959).
4C. Schmartz and T. J. Tieman, Ann. Phys. (X. Y.) 6, 178

(1959).
p M. H. Mittleman and F.A. Wolf, Phys. Rev. 128, 2686 (1962).
8 See, for example, H. A. Bethe and E. E. Salpeter, Qnuetum

Meekae~ies of One arid Tioo Eleetroa Atoms (Academic Press Inc. ,
New York, 1957), Sec. 3.

The special case of light from a ruby laser (6934 A)
will now be considered and estimates made of the
contributions of several possible intermediate states to
the cross section for quenching. These calculations are
useful for understanding the physics involved in the
process and as rough check on the exact but somewhat
indirect calculations to be described in the next section.

For incident ruby light, kp=0.0657 (trte'/It') which is
just slightly less than E»—Ess=0.0695 (me'/k').
Therefore, the largest of the P, (k) is Pot (kp). In Table I,
values of the P;(k) for i—=2P, 3P, and 4P are given.
The P(k) are obtained by the method described in the
next section.

One notes that the transition via the 2I' state
contributes a not insignificant amount to the cross
section and that this transition does not saturate (as
does that via the 3P state) when the field strength in
the incident beam approaches about 10' V/cm.
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Using (11) and (13) one obtains IO
I I j ljj ] I I I I jil I I I

E(k) = Ris(r) U(r, k)r'dr.
105=

AT THE BALMER- a RESONANCE'-
ll

Q (k, k ) * 1.54 x lO cm
-ja gS(& k )aROR r IO cm0' 0

The functions rR„i(r) satisfy the equation OI

CP

ED
Ol
'O 4——rR i(r) = E„rR—„i(r), (15)ftrR—„jr g

——r r =—
2dr r r

and the orthonormality and closure conditions.

O

O

tA

IO

r'R i(r)R i(r)dr=5„ (16) O
JC

IO
e

g rR„i(r)r'R i(r') =B(r—r').
n 2

(17)

IO =
Consequent y, e1 th function U(r, k) satisfies the equation

Es k + U(r, k) =Rss(r)r'. (18
2 dr r r

0.4

s("0 ko)

I I I lkl
I

I 1 I I I I Ill
IO

INCIDENT WAVELENGTH IN MIGRONS

1 I I I

60

UrkOne noir intro uces ed the Laplace transform of U(, ),
Kcientse differential cross-section coeK '

th elm th of thQ k0,4), Q(ko, ks), and S(ko,ks) versus e
incident light.

S(p,k) =

and notes the relations

U(r, k)e "'dr, (19)
Using (20) and (14) one finds that

d'S(p, k)
Z(k) =2

2 ~ ~1
(23)

(20)

and

(21)

Using (20) and (21) in (18) one obtains

sion has been evaluated numerica y1 andr dr= j —iS(p)r'e "'U(r)d

Q(ks, kr) and Q(ks, ks) are

(ks,ki) =7.539X10 ~ cms/sr, (24r'e r' dr= t p'S(p)g.
dr' dp'

(ks, ks) = 7.542X10 "cm'/sr.

ss sections for quenching are givenThe differential cross are iven
b Eqs. (4) or (8).The total cross section ord25 dS

(—4+k+-'p') + (2p —1)—
o q

——1.27 X10-"cm'. (26)

Figure 1 show h Q
(22)

f ks ki) and Q(ko, ks) versus
ia q

erically. Ho eve,
' - 50fi. On, e n

o dit' o etl h d fth 81 l'

and this is done as
m ' ' t. 11,idd 1" go

5 k and all its derivatives rea

ain dS/dP at this of the strong 6eld theory as i+' ' '" ' ' ' '" ' '"" ' '
One notes that the "strong e

takes only one intermediate s a e in o accoun,
point, for all k(3k.

be used to obtain educ) results in the gaea - eOne may now integra e,/ + th oint. resonance pea .= 1, obtaining dS/dp and, hence,e O'Sd at is
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Xo
(microns)

Q(kp, kg)
in 10~' cm»

Q(kp, k2)
in 10~' cm»

S (kp, kp)
in 10 "cm'

Table II. Values of Q(k„k&), Q(kp, kp), and S(kp kp) for incident
wavelengths from 5000 A to 50 p. The energy of the incident pho-
tons is k0, corresponding to a wavelength )0, k1=&2s ~ls+ko,
k»=E»g —E1g—k0. If the incident light is unpolarized, and the
polarization of the outgoing light is not measured, then the differ-
ential cross sections for quenching with emission of k1 or k», respec-
tively, are (dp/dQ)~=Q(kp, k&)L1+cos8&j, (dp/dfl)..=Q(kp, kp)
XLl+cos282), where 8& and 82 are the angles between kp and k& or
k», respectively. The differential cross section for scattering of
unpolarized light is given by (dp/dQ) s = S(kp, kp) $1+cosp8sg, where
88 is the scattering angle.

do/dQ= S(kp, kp) L1+COS208$, (2s)

where eg is the scattering angle.
The coefficient S(kp, kp) is given by

s(kp kp) = (1/18)rp {kp [P(k )p+P( kp) [ I (29)

where a&& & and ut&( & are the elastic-scattering ampli-
tudes for 6nal-state polarizations perpendicular and
parallel to the scattering plane. If the incident light is
unpolarized and the polarization of the scattered light
is not measured, Eq. (27) becomes:

0.5
0.6
0.6550
0.6563
0.6570
0.6934
0.7
0.8
0.9
1
2
3

5
6
7
8
9

10
20
30
40
50

1.296X 10»
4.277X10
4.816X10~
1.54 X10'~
7.670X 10'
7.539X10»
5.909X10»
1.409X 10»
9.334X10
7.751X10
7.150X10
9.060X10
1.120X10'
1.342 X10'
1.566X10»
1.792 X10'
2.019X10»
2.246X10»
2.474x 10»
4.763x10»
7.o55x1o
9.349X10»
1.164X10'

4.458
6.002
6.899

6.932
7.542
7.654
9.392
1.120X10
1.306X10
3.347X ~0
5.525X1O
7.753X10
1.000X10'
1.227 X 10'
1.454X 10»
1.682X 10»
1.910X10'
2.138X10»
4.428 X10'
6.721X10»
9.014X10'
1.131X10'

4.643
2.086X10
6.576X 10'
2.02 X10'4
1.o15x 10&

6.122X 10
4.444X10
4.190
1.386
6.468X10 '
1.869X10-»
3.306X10 '
1.008X10 '
4.060X10 4

1.940X10 4

1.042X10 '
6.o84X10 '
3.790X10 '
2.482X10 '
1.542X10 '
3.045X&0 '
9.640X10 '
3.940X10 s

where

and

F(k)= P P;(k),
i—2P

F;(k) =
Ep—E;+k

(30)

(31)

F(k) = Esp(r) U(r, k)r'dr, (32)

which, using Eq. (20), may be written as

d'S 1(dPS)
P (k) = 2-i/2

dp p=l/2 2 KcEp ~ p=l/2-

Using Eq. (22), one finds finally

(33)

Now using Eq. (13), one finds that F(k) is given by

Since it will not be possible for the reader to read
accurate numbers off the graph, the results are also
given in tabular form in Table II."

1- 9 &ES)

F(k) =- 42+—2-r/2 —
~

k 2k dp),—,/2
(34)

4. COHERENT SCATTERING

The previous calculations also enable one to calculate
the coherent scattering cross section with little addi-
tional work.

Perturbation theory yields a result which may be
written down by analogy with Eq. (4), S(kp, kp) =6.122)&10 "crn'/sr, (35)

This quantity may be evaluated by solving Eq. (22)
numerically as explained in Sec. 3. A rough check on
the results can be obtained by calculations analogous
to those summarized in Table I.

For ruby laser light, one fj.nds

&@}2+
~

&s& }2j 2/ (2&)
and the total coherent scattering cross section is

» It has been brought to the author's attention by J. P. Wittke
of RCA Laboratories that the wavelength used for ruby laser light
in this work, i.e., 6934 A., is actually that appropriate to liquid-
nitrogen temperatures. At room temperature, the wavelength
is 6943 A.

' After this work was completed, results of some similar
calculations were published by I. D. Abella, M. Lipeles, and
N. Tolk /Bull. Am. Phys. Soc. g, 476 (1963)j. These results are
currently being revised (personal communication from I. D.
Abella). It would appear that a quenching experiment with ruby
laser light might be more easily done with He+ metastables rather
than H (M. I.ipeies, I . Gampel, and R. Novick, Bull. Am. Phys.
Soc. 7, 69 (1962)j. The cross sections for He+ may be obtained
from those for H by simple scaling, i.e., by calculating the H results
for a wavelength of four times the ruby value. In the notation
of Table II, the results are: Q(k0, kl) =8.600X10~~ cm»; Q(ko, k»)
=5.032X10 "cmp' S(kp kp) =4.576X10~ cmp.

o-a=1.03X10 "cm'. (36)

A graph of S(kp, kp) versus the wavelength of the
incident beam is shown on Fig. 1.
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