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Screened Interaction Model for Impurity Diffusion in Zinc*)
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The screening theory proposed by Lazarus has been used to examine the impurity diffusion in zinc. The
difference in the activation energies (AQ) for the impurity diffusion and self-diffusion in zinc have been cal-
culated using a screened Coulomb interaction between the vacancy and the excess charge Ze of the impurity
ion. The change in the energy of formation of a vacancy next to the impurity ion is calculated by considering
the electrostatic interaction between the impurity ion and the vacancy when they are nearest neighbors. In
a saddle-point con6guration, the diffusion ion may be assumed to be Ranked by two half-vacancies. The
change in the energy of motion has been calculated by considering the electrostatic interaction between the
two half-vacancies and the impurity ion in the saddle-point coniguration. Correlation corrections have
been calculated using the expressions for the correlation factors. The estimated differences in activation
energies for trivalent and monovalent impurities in zinc have been compared with the available experi-
mental data. The estimated values check fairly well in the case of indium and gold, whereas the agreement is
poor in the case of silver. Correlation corrections are important for a trivalent impurity, whereas the dif-
fusional jumps of the monovalent impurity are relatively unorrelated,

are also available' (see Table I). lt is the purpose
of the present article to apply the screened interaction
model to the understanding of the impurity diffusion
in zinc and to examine to what extent the simple model
is valid for a hexagonal matrix. The main emphasis,
however, is on calculating the differences in the activa-
tion energies (AQ) for self-diffusion and impurity dif-
fusion and on checking these calculations against the
experimental values.

INTRODUCTION

S INCE the tracers became readily available, a con-
siderable amount of experimental data on tracer

diffusion in metallic systems has been accumulating.
It is known that impurities diQ'use at a different rate
with different activation energies and frequency factors
as compared to self-diGusion. The screening theory
proposed by Lazarus' has been fairly successful in
accounting for the impurity diffusion in monovalent
metals. According to this theory the change in the
activation energy is taken to be made up of two parts:
the change in the energy of formation of a vacancy next
to the impurity ion and the change in the energy of
motion. Size effects and correlation corrections have
been completely ignored. On the other hand, Swalin'
has taken a different point of view. He has calculated
the difference in activation energies from purely elastic
considerations and the main emphasis is on size effects.
However, the impurity diNusion data tend to show a
systematic trend as a function of the valence of the
diR'using ion. LeClaire' has used the screened inter-
action model with considerable success to account for
the impurity diffusion in copper, silver, and gold. He
has included the correlation corrections, whereas the
size effects have been neglected. Recently, experimental
data on impurity diffusion in a noncubic divalent metal
zinc have been reported. 4' Self-dift'usion data on zinc

TABLE I. Frequency factors and activation energy for tracer
diffusion in zinc single crystals.

Frequency
factors

(cm2/sec)

Activation
energy

(kcal/mole) Ref.
Diffusion
directionIsotope

In114
Inl14
Ag110
Ag110
Aul98

U188

Zne'
Zn"

0.062&0.008
0.14 &0.02
0.32 ~0.02
0.45 +0.07
0.97 &0.22
0.29 &0.12
0.13
0.58

19.1m0.1
19.6%0.1
26.0+0.1
27.6+0.2
29.7a0.3
29.7~0.5
21.8+0.2
24,3&0.5

DIFFERENCE IN THE ACTIVATION ENERGY: ILL

The method of calculating hQ is illustrated for the
impurity diffusion in the parallel direction. (Parallel
direction and also c axis will always mean the direction
parallel to the hexagonal axis. ) Experiments indicate
that the di8usion coeScients for zinc tracer and im-
purity can be expressed by simple Arrhenius-type
equations:
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DII.s=~ Il.«xp (—Qll.el~~) (1)

DII =~ II exp( Qlll&&). (2)

D~ ~,0 and Dt
~

are the corresponding diffusion coeScients

6 G. A. Shim, E. S. Wajda, and H. B. Huntington, Acta Met.
1, 513 (1953).
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of zinc tracer and impurity parallel to the c axis in zinc
single crystals. Q~~, o and Q~~ are the corresponding
activation energies for zinc tracer and impurity ex-
pressed in calories/mole. 3

~ ~,o and A
I ~

are the frequency
factors.

From the atomistic point of view, we can express

D~[,0 1sc &AofA, *:oexp(bSAO/R)

XexpL —(E~o+H~o)//RT7, (3)
D((= inc'~pe„exp(&Sg/R)

Xexp[ (E,+—H„)/Rr7, (4)

where p~o and v~ are the corresponding nonbasal (or
abasal) frequencies for zinc and impurity atoms, f~...o
and f~, , are the correlation factors for self-diiIusion and
impurity diffusion in the parallel direction, 8~0 and E~
are the energies of formation of a vacancy next to zinc
and impurity in solvent metal, H&0 and Hz are the
activation energies for exchange of a zinc atom with
the vacancy and that of an impurity atom with the
vacancy, and 5S&0 and 8S& are the entropy factors in
both cases.

To a 6rst approximation, we assume that 65~0 and
bS& are equal. (In the case of self-di8usion, no dis-
tinction is made between the tracer atom and zinc
atom in the host lattice. ) The correlation factors are
temperature-dependent, and hence the activation energy
measured in an experiment may not be identified as
equal to E~o+Hzo or E~+H~, as the case may be.
From the experimental data, one usually 6nds —Rcj lnD/
8(1/T) and identifies it with the activation energy.
Expressions (4) and (3) can be treated in a similar
manner. Then we get

R[B lnD/8 (1—/T)7= H~+E~ R/8 In f~, ,/—8 (1/T)7,
Q( [ H8+ EA ~A ~

Similarly,

Q~ ~, o= Hxo+E~o —~~o
Therefore,

Q[[ Q[[,o (HA HAO)+ (EA. EAO) (cA +Ao) (5)
~QI I

=~HA+~E~ —~~A.
If AE& is negative, vacancies are attracted by impurity
ion; and if positive, repelled by them. The quantity
( AEz) is then the bin—ding energy between the im-

purity and a vacancy. We shall assume that many of
the factors contributing to the absolute value of the
activation energy (and frequency factor) to be nearly
the same for both solute and solvent. As mentioned
earlier, our main attempt will be to account for AQ~~

=Q~~ —
Q~~, o rather than trying to calculate Q~~ and

Q~ ~, o directly.

SCREENED INTERACTION MODEL
TO CALCULATE AQ

Ke assume a free-electron model for the solvent and
that both the valence electrons can be treated as free.
The positive charge of the doubly ionized zinc ions is

smeared out uniformly. A vacancy in zinc metal will be
treated as a point charge —2e. Whenever an impurity
of diGerent valence is dissolved substitutionally in zinc
matrix, we shall assume that the impurity ion can be
treated as a point charge Ze. For indium and silver (or
gold) as solutes in zinc, Z will be +1 and —1, respec-
tively. This excess charge attracts electrons (if Z is
positive) or holes (if Z is negative) to screen the charge
at large distances. The potential V(r) around the
impurity ion is calculated in the linearized Thomas-
Fermi approximation. ~ Then,

V(r) = (Ze/r) exp( —qr), (6)

where qo=(4meo/h)(3eo/vr)'Io es is the mass of an
electron, e is the electronic charge, no is the number of
electrons per unit volume, 5 is Planck's constant di-
vided by 2m, and q is the screening constant. Lattice
parameters' a=2.66 A and c=4.94A were used to
calculate mo and, hence, q. We get no ——1.321&(10"
electrons/cc and q = 1.947X 10 cm '.

Recently, solutions of the Thomas —Fermi equation
have been given in a series form for monovalent
metals. ' "The leading term is, for V, at a distance t
from the excess point charge,

V(r)=n(Ze/r) exp( —qr). (7)

The values of e have been listed for dBerent Z values.
No such solutions are available for a divalent metal
zinc. The "master solution" given by Umeda and
Koboyashi" has been used to obtain e for Z=+1 in
zinc by interpolation. The value of 0, turns out to be
0.83. For impurities with negative Z, the method sug-
gested by Alfred and March" has been used to evaluate
0, for Z= —1. This turns out to be 1.3. Diffusion of
indium, silver, and gold is considered in detail. Before
we proceed to calculate AQ, a brief review on the cor-
relation factors" for the zinc lattice is now given.

CORRELATION FACTORS

The expression for the correlation factor"—"can be
written as

f;;=1+2P (8)
( ', )'
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'2H. B. Huntington and P. B. Ghate, Phys. Rev. Letters 8,
421 (1962).
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where 2;,; is the jth component of the ith-type jump
and X„(;~ is the eth jump of the diffusion atom in the
sequence of the jumps of the diffusing atom that fol-
lowed ith type in question. We introduce the vector

I
'dc

S;=P X„(;),

which can be thought of as representing the average
6nal displacement of the tracer. One can solve for the
S; by a sort of recursion relation. Suppose the various
jump rates of the vacancy are given by or, where the
particular or„represents the reverse impurity vacancy
jump. Then

S;= (P„&u„S„co„X;—)/g„ru . (10)

f;,; can then be expressed as

f;,;=1+2S; j/(X;,;),
where j is the unit vector in the jth direction.

The expressions for the vectors S; and the correlation
factors are now evaluated. Let the s axis be parallel to
the hexagonal axis. For a vacancy site 8 adjoining the
di8using impurity atom and in the same basal plane,
the following frequencies are pertinent (see Fig. 1):
co„jump of 8 to another neighboring site in adjoining
basal plane; ~b, jump of 8 to a neighboring site in the
same basal plane; co„jump of 8 to a site which does not
adjoin the diffusing atom; and ~&, exchange of diffusing
atom with the vacancy in the same basal plane.

For a vacancy site A adjoining the impurity but in a
different basal plane, the following frequencies are
pertinent: co,', jump of A into the same basal plane as
that of the diBusing atom; cob', jump of A to another A
site; co,', jump of A to a site which does not adjoin the
diffusing atom; co~', exchange of the diffusing atom with
the vacancy at site A.

There are two different kinds of jump lengths for
the diffusing atom in the hexagonal lattice Xg )jump
length of nonbasal (abasal) jump j and Xs (jump length
of basal jump), depending on the initial position of the
vacancy.

Q DIFFUSING ATOM

0 VACANCY

Fxo. 1. Nearest neighbors of a diffusing ion and the
pertinent frequencies.

f~,.=
2M' +2M~+ 7PM g

For the diffusion in the basal plane,

(13)

For Sg, the suitable resolution is into components
Sz,, and S~,b, respectively, parallel to the hexagonal
axis and the projection of )~ on the basal plane. The
appropriate components of S~ are S)),, and S~,„.The x
axis is so chosen that it coincides with the jump
length 'A~.

We have, from Eq. (10), for the s component
—~x(Sx,,+1)

Sg, ,—— (12)
2&g, +7PMg +big

2(a,'+ 7P(o,'

S~,b=

Sg, =

Sg,„——

2~.'[(v3/2)S&, .+2',„j+2~t,'( ,')SA, b
—Cl)A—(XA,b+SA, b)

2(0+ +2CJb +7')c +G)A

2(o, (&3/2)Sg, t+2a&g(-,')S~,g
—a)s (X~+S~,g)

2&a+ 2&b+7P&c+&B
2~.(-', )Sx,a+2~g( ——',)Ss,„

2',+2(og+ 7Pa),+(a))

(14)

(15)

(16)

f)),,——1+2',./X)) . (18)

After solving the set of linear equations (14), (15),
and (16) for S~,q and S~, one can substitute the results
into Eq. (11).Then,

f~, ),=1+2S~,)/&~, a

The escape jump rates 7', and 7~,' have been
multiplied by a factor Ii. In the LeClaire-Lidiard"
approximation F= j., and this corresponds to the case
where a vacancy jumping away to a nonnearest-neighbor
position is assumed to be completely dissociated from
the impurity atom. The eGect of the vacancies returning
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EQ0 IL I SR IUM CONF IGURAT ION as a point charge —2e. The change in the energy of
formation DER is assumed to be due mainly to the
electrostatic interaction between the vacancy and the
impurity ion when they are nearest neighbors. Since we
are interested in the parallel diAusion, the vacancy and
the impurity are in the adjacent planes. The nearest-
neighbor distance (nonbasal jump distance) is equal to
X~ (see Fig. 2). Then,

II
I6

I I
II
I6

back to the nearest-neighbor positions is to reduce the
values of 7~, and 7','. In the case of an fcc lattice, the
efkct of returning vacancies on the correlation factor
has been worked out by Manning, ' and E is approxi-
mately equal to 0.736. In the case of hexagonal struc-
tures, Ii can, approximately, be set equal to 0.736.'~

This seems to be a good choice, as the correlation factors
reduce to 0.78 within a fraction of a percent when all
frequencies are equal. The correlation factors for hex-
agonal structure have been obtained by Compaan and
Haven'8 and Mullen" by different techniques, and they
obtain a value close to 0.78, within a fraction of a per-
cent, when all the frequencies are equal. With 8=0.236,
the equations for f~,„f~,q, and fe, , are used in evalu-
ating the correlation correction,

IMPURITY DIFFUSION IN THE
PARALLEL DIRECTIO

It has been shown earlier that EQ~~ is made up of
three parts, nanMly, hE~, hB~, and AC~. These quan-
tities are calculated as follows:

DER. A vacancy in a divalent metal zinc is treated

SADDLEPOINT CONFIGURATION

Fxo. 2. Diffusing ion and the vacancy in the equilibrium con-
6guration and in saddle-point configuration.

Therefore,

0 Eg+EH' = —2e V(1ih~/16) . (20)

The values of hB~ are listed in Table II for indium,
si,iver, and gold.

dC~. The expression for f~,, developed earlier will
now be used to calculate the correlation correct.'on. Let

(o.'= v.' exp( —II.'/RT),
(og' ——vg exp (—Hg/RT),
co,'= v,

' exp( —H, '/RT),

where v, ', vg, and v,
' are the appropriate frequencies and

II,', H~, and B,' are the appropriate activation
energies. Then,

V(&) is given by Eq. ('2). For indium we set 8=+1 and
a=0 83, a. nd for silver (or gold) Z= —1 and tt=1.3.
The values of hE~ are listed in Table II. This model
has been used earlier by Lazarus' and LeClaire' for
impurity diffusion in monovalent metals with a con-
siderable amount of success.

AH~. For the saddle-point configuration, we assume
that the diffusing ion, situated midway between two
equilibrium sites, is flanked by two half-vacancies whose
charges are assumed to be centered at the centroids of
the hemispheres (see Fig. 2). (This simple model was
suggested earlier by Huntington" and has been em-
ployed recently by LeClaire' with fair success. ) Then,
AII~ is estimated as the diBerence in electrostatic-
interaction energies between the two charges —e, each
situated at a distance (11/16)X~ from the impurity
ion of effective charge Ze, and a charge —2e situated
at a distance X~ from the impurity ion. %e get,

p, ' exp( —H, '/RT)+ gFv.' exp( —H.'/RT)

v
' exp( H, '/RT)+ pg ex—p( Hg/RT)+72Fv. ' ex—p( —H.'/RT)

Lsee Eq. (13)j.Divide the numerator and the denominator by ~~0, where &v~~= v~0 exp( —H~o/RT) represents

'6 J. R. Manning, Phys. Rev. Letters 1, 365 (1958); Phys. Rev. 116, 819 (1959};H. 3. Huntington (private communication);
Phys. Rev. 128, 2169 (1962).

"A. D. LeClaire (private communication).
'SK. Compaan and Y. Haven, Trans. Faraday Soc. 52, '?86 (1956); 54, 1498 (1958).
"H. B. Huntington, Phys. Rev. 61, 325 (1942).
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the nonbasal jump probability of the zinc atom in the lattice. Then,

(v '/v~o) exp( —hH, '/RT)+ oF(v.'/vip) exp( hH—,'/RT)
jz

(v '/vip) exp( —AH, '/RT)+ (vg/vip) exp( —AHA/RT)+oF(v, /vip) exp( AH—,'/RT)

AH, '=H, '—H~o, and so on.
Since v ', v, ', and v~0 refer to the frequencies of the same atomic species, we may assume with Manning' that

the ratios v, '/vip and v, '/v&p can be set equal to unity. A minor point that may be noted here is that 7oo,
' actually

involves nonbasal and basal escape jumps. Since the effect of this quantity on BC' is small, as the numbers will
indicate later, setting v, /v~p= 1 is not a serious approximation. Therefore,

exp( Ej H, '—/RT)+ ,'F exp—(—AH, '/RT)

exp( —AH '/RT)+ (vz/vzo) exp( AHg/RT—)+oF exp( —hH. '/RT)

We can use this expression to evaluate 8 ln(f~, ,)/8(1/T). A long but straightforward calculation gives

(22)

Ej Hg+Ej H '

(AH~ AH, ') ex—p
Ej.Hg+AH, '

+~~F(AEEg Ej H, ') exp—

VVe also note that

and

[exp(—AH, '/RT)+-'F exp( —AH, '/RT)]'

fA, j:o

v~o &ii,o f~, *

fs, j oexp.
All 0 Zr

(23)

(24)

A l(

Ail, o

exp(AC~/RT) exp( —AH~/RT)
, z:0

exp( —AH, '/RT)+-,'F exp( Ej H.'/RT)—
(25)

For self-diGusion 7',' has four basal jumps and three
nonbasal jumps and ~ ' and ~z are equal. If +&0 and
ergo are the jump probabilities of basal and nonbasal
jumps for self-di&usion, then

4.208+ 2 944(pjeo/opto)
, z:0

6.208+2.944 (&us o/pj go)

(26)

Mullen" has evaluated the ratio oooo/opto using the self-
diffusion data for zinc, '

ojao/&o~o= 17 exp( —3.83X10P/RT), (27)

forRT= 1.1 kcal/mole, f~,„p 0.742, and Cgp—=——0.265
kcal/mole.

To evaluate C~ we have to evaluate d H, ' and hH, '.
These are evaluated as follows.

b,H . In the initial configuration, the vacancy is at
a distance X& from the impurity. In the saddle-point
configuration, the solvent atom will be midway between
the initial and final positions, and we assume the two
vacancies to be situated at a distance (11/16)Xg on
either side of the solvent atom, as shown in Fig. 3:

AH, '= —eV(v, )—eV(rp) —AE~, (28)

ri and r2 are the distances of the centroids of the half-
vacancies from the impurity. Values of hH ' are listed
in Table II for indium, silver, and gold.

hH, '. In all, there are seven escape jumps. In each

of these cases AH, ' has been evaluated by following the
procedure outlined for the calculation of AH, '. For
positive Z, two of the jumps give negative values and
the rest give positive values. The average is calculated
as follows:

(1/7) Q exp( —6H, '/RT) =exp[—(6H,'), /RT].
(AH, '),„has the same sign as that of Z. For positive Z,
the vacancies are attracted by the impurity and the

Ze

I I I

I I I

—wll II
l6 j I6

Fzc. 3. Saddle-point con6guration for a nearest-neighbor
solvent jump.
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migration of the vacancies away from the impurity
atom is made more di%cult, and conversely for nega-
tive Z values, because of the repulsion between the
vacancies and the impurity ion, the escape jumps are
made more easier. (hH, '), has been evaluated for
RT=1.1 kcal/mole. This corresponds to X=280'C,
which is fairly representative of the midpoints of the
temperature ranges of self-diBusion and impurity-
diffusion measurements. Values (DH, ')„are listed in
Table II.

We can now use the calculated values of AII~, AII ',
(&H ) fA, o and Co (see Table II) and the experi-
mental values of A «and 2 &&,o (see Table I) to evaluate
CA. The calculated values of LOCA, fA, „and vA/vAo are
listed in Table II.

IMPURITY DIFFUSION IN THE
PERPENDICULAR DIRECTION

Diffusion of Indium Perpendicular to the c Axis

The analysis of the diGusion perpendicular to the c
axis is more complicated than the analysis of the
parallel diffusion because two types of atomic jumps,
basal and nonbasal, are contributing to the perpendicu-
lar diffusion. One can express D„(=D,) in terms of the
lattice parameter a, correlation factors, and energies of
formation and motion in the following manner":

D„=D~= (u /8) fB,,VB exp(8SB/R)
Xexp) —(HB+EB)/RTj+ (a'/24) fA, bv A

X exp(&SA/R) exp) —(HA+EA)/RT j, (29)

a is the nearest-neighbor distance in the basal plane;
v~ and vg are the corresponding vibrational frequencies;
8S, B, and E, with proper subscripts, are the entropy
factors, energy of motion, and the energy of formation
of a vacancy, respectively; f&, is the c, orrelation factor
for basal jumps; and fA, b is the correlation factor for
nonbasal jumps.

ALE II. Change in the activation energies, correlation factors,
etc., for parallel diffusion, (All energies are expressed in units of
kcal/mole. )

GAEA

sH. '
AHA
(AHA')„
All
A ll, o

fA, z:0
~Ao
bCA
(~Qual)t eory

(~QI l)expt I

fA, z

&A/&AO

Diffusion of
indium
8=+1

0.83—0.655
0.210—4.933
0.05

0.062 cm'/sec
0.13 cm'/sec

0.742—0.265—2.978—2.61—2.7
0.363
0.065

Di6usion of
silver

Z= —1

1.3
1.026—0.329
7.726—0.184

0.32 cmo/oec
0.13 cm2/sec

0.742
—0.265

0.269
8.48
4.2

2.36

Diffusion of
gold

Z= —1

1.3
1.026—0.329
7.726—0.184

0.97 cm2/sec
0.13 cm2/sec

0.742—0.265
0.266
8.48
7.9

6.82

The following expression can be obtained by manipu-
lating the expressions for D, and D„Lsee Eqs. (29)
and (4)]:

where
F=A expL —(EB+HB)/RTj,

I'= (1/fB, x)P4 019(fA,s/fA, b)DII7

(31)

and
A= (u'/8) vB exp(oSB/R) = const.

In order to calculate fg, , and fA, b, it is necessary to
solve the following simultaneous equations for S&,,
and Sg b.

2gofA, —
l go

Dg — D(( —— =—VB exp(bSB/R)
3 c' fA, b fB

Xexp) —(EB+HB)/RT]. (30)
For zinc,

oo~/co= 0.19.
Then

Mb Mg

SB,, 2+ +7F +2 —=VBSA—, b
———XB,

Mg Mg Mg

(32)

Mb M, &c ~B
SA, b 2+3 +7F +2 —2+3 —+7F —+ —=%3S—B,,

~

——
~7Ab,

/ I I
M~ Mg Ma Ma Ma xM~ i

(33)

These simultaneous equations are obtained by ma-
nipulating Eqs. (14), (15), and (16). To solve Eqs.
(32) and (33), &ob/oo„&o,/a ', etc. have been evaluated at
three temperatures corresponding to ET=0.9, 1.1, and
1.3 heal/mole.
Typically,

Mg M~ Mggp M@p

Ma MBp Mgp Me

ooB/47BQ (vB/vBo) exp (—AHB/RT),
ooBo/ooAo ——17 exp/ —(3.83X10o)/RTj,"

and

coo/Ao (v /vAo) exP( —hH, /RT).

We note that v~ and v~p correspond to the atomic fre-
quencies of the impurity and solvent ions. We will

assume that
VB/VBO= VA/VAO= 0.065

(see Table II).
Since v, and v&p correspond to the atomic frequencies

of zinc atoms, following Manning, bo we set v /vAo
——1.
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TABLE QI. Changes in the activation energies required to cal-
culate fA, b and fg, ~ for the diffusion of indium tracer: 2=+1;
n =0.83. (All energies expressed in units of keel/mole. )

aE& aH& SH. SHb SH, SH.' SHb' SH, '

—1.166 —7.387 0.722 0.556 0.103 0.210 0.291 0.050

lo

It is possible to calculate hII~ and d B by consider-
ing the disposition of the moving atom and the vacancy
in the equilibrium and saddle-point configurations with
ref erence to the impurity. Table III summarizes the
values of AB„AHb, hH~', etc. The simultaneous equa-
tions are then solved for S~,~ and S~,„and these in
turn are substituted in Eqs. (17) and (18) to obtain
the values of fA, O and fB,, at three different tempera-
tures. Table IV summarizes the values of the correla-

IO

IO

TABLE IV. Correlation factors pertaining to the
diffusion of indium tracer. IO

C

lc4

I

Ic6

I

I.B
I

2.0
IOOO/T 'K

2.2
I

2.4

RTX10-8 ~ {C)

0.9 180
1.1 280.7
1 3 381

fA, z

0.171
0.363
0.535

fA, b

0.124
0.287
0.455

0.045
0.095
0.156

TABLE V. Diffusion coeflicients all and D~, and Y {in units of
cm'/sec) as a function of temperature for indium tracer.

&TX10

tion factors. Table V summarizes the values of I' Lthat
have been calculated by using the experimental values4
of D» and D, (see Table I)) at these three temperatures
and the estimated values of the correlation factors.
Figure 4 shows a plot of I' versus 1000/2' on a semilog

FIG. 4. A plot of I versus 1000/T to determine Eg+Hg.

temperatures. The bracketed values in the table are the
correlation factors interpolated from the table of cor-
relation factors given by Mullen. "As Table VI shows,
the correlation factors evaluated by using Eqs. (13),
(17), and (18) check fairly well with the values obtained
by Mullen'3 using a diferent technique. After the
analysis is carried through, we obtain

EAo+ OAo 21.53 kcal/m'o——le,
EBo+HBo= 26.16 kcal/mole,

(EB+HB) (EBo+HBo)=15.98—26.16
= —10.18 kcal/mole.

From Table II we have AEB+hHB= —8.55 kcal/mole.
0.9
1.1
1.3

3.764X 1p
1.784X 10~
2.58PX 1P s

4.878X10
2.558X10~
3.966X10 8

9.687X 10-1o
2.411X10 8

2.275X 10 7 TABLE VI. Correlation factors pertaining to self-diffusion.

scale. These three points lie fairly well on a straight
line. From the slope of this straight line, EB+HB has
been determined and this turns out to be 15.98 kcal/
mole.

A similar analysis has been carried out to evaluate
EBo+HBo for self-diffusion' (see Table I) We note .that

7(ac= 4coAo+3~Bo 7coc 3~Ao+4coBo p

~g= ~~ =. Q)~= GlgP '. Mg= My =Nb= GOOP.

We have evaluated fA, », fA, a, and fB,, at two tempera-
tures, corresponding to (1000/T)=2 and 1.5. This
choice of the temperatures was made because Mullen"
has used the experimental values of D&/D» at these
tWO temperatureS tO eValuate toBo/roAo frOm hiS analySiS.
Table VI shows the correlation factors at these two

1000!T ~&o/~»

2.0 0.360

0.944

fA, z

0.725)
(0.716)
0.777

(0.776)

fA, b

0.702
(0.716)
0.775

(0.778)

fB,x

0.851
(0.849)
0.784

(0.788)

Diffusion of Silver and Gold
Peryendicular to the c Axis

We shall assume that v~= v~= v and 8S~=SS~=SS
C

see Eq. (29)) and substitute the estimated values of
hEB, dHB, GAEA, and AHA (for Z= —1) to calculate
EB+HB and EA+HA. One can then express Dr in the
following manner:

D&= (os/24) exp (85/E) exp (—30.29X10s/ET)
XL1+3 exp( —9.27X 10s/E2')).
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The bracketed quantity is evaluated at three tem-
peratures corresponding to RT= 0.9, 1.1, and j..3
kcal/mole:

0.9X103
1.1)&10'
1.3&10'

L1+3 exp( —9.27X1P/1tT) j
~1.0002
~1.0006

1.0024

The bracketed quantity differs from i only by a frac-
tion of a percent. This indicates that the contribution
of the nonbasal jumps to the perpendicular diAusion is
predominant and that the activation energy for the
perpendicular dlGusion will be almost equal to that for
the parallel diffusion. Therefore

(Q,)g, ~ (Q„)g„„r=Eg+Hg=30.29 kcal/mole;

for silver4:

for gold':

(Q„),u ——26.0 kcal/mole,

(Q,)~,u ——27.6 kcal/mole;

(Q„),„su——29.7 kcal/mole,

(Q,)~vtt ——29.7 kcal/mole.

DISCUSSION

We have assumed that a solute atom differs from
atoms of solvent only in its possession of a different
ionic charge, and that the di6erence Ze is concentrated
as a point charge at the center of the solute atom. We
have calculated the potential around the impurity in
the Thomas —Fermi approximation. The inner cores of
the solutes (In, Ag, and Au)' ' studied so far are dif-

ferent from that of the zinc atom. The effect of the core
of the solute (different from that of the solvent atom)
in primary solid solutions has been studied by Friedel. 20

This eGect leads to a polarization of the electron density
in the neighborhood of the solute. This would contribute
further to the screening charge cloud and would aGect
the potential around the solute. We have neglected this
effect. Recent calculations of Kohn and Vosko, 2' of
I anger and Vosko," and of others indicate that the
potential around an impurity in, cubic metals shows an
oscillatory behavior instead of falling monotonically.
They have shown that the curvature of the potential
at the nearest-neighbor distance is di8erent from the
one obtained by using Thomas —Fermi potential. Prob-
ably the potentials around an impurity and a vacancy
in zinc also have such an oscillatory behavior. The
potentials may not be spherically sylnmetric in the
zinc matrix. A precise calculation of the potential
around an isolated impurity or an isolated vacancy is
complex. The magnitude of the complexity is increased
when the impurity and vacancy are adjacent to each

20 J. Friedel, Advsn. Phys. 3, 446 (1954).
21 %. Kohn and S. H. Vosko, Phys. Rev. 119, 912 (1961).
22 J. S, I,gnawer hand S. H. Vosko, J. &hem, Phvs, $o/jds 12, 196

I'1960),

other, because of the local charge redistribution and
relaxation of the lattice. Certainly the local charge re-
distribution and its interaction with the impurity in
the saddle-point con6guration cannot be calculated
without drastic assumptions. Correlation eKects would

certainly add their share of complexity to the problem
of evaluating the activation energy for diffusion. In the
absence of any detailed calculations for the potentials
of the impurity and vacancy (even the isolated ones) in
zinc, it is as good a starting point as any to use a
Thomas —Fermi approximation in an attempt to under-
stand impurity diffusion in a divalent metal zinc,
exploiting the information available on the impurity
diffusion in monovalent metals.

Di60810Q of IQ(BQI.

From Table II, we note that, for parallel diffusion,

(~Qii)a;= (~H~+~~) —~c~
= —5.59+2.98= —2.61 kcal/mole

(AQ„).„p,(= —2.7 kcal/mole.

(EQ„)„h,r checks with the experimental value within

4/o. The calculations show that correlation correction
is of considerable importance. We note that the correla-
tion factor fg, ,(0 363) for d. iffusion of indium tracer is
smaller than fg, .:s(0.743), and that is what we expect.
This is consistent with the concept that the diffusion

jumps are highly correlated because of the strong
attraction between the impurity and a vacancy.

The ratio of the vibrational frequencies v&/v~s is less
than 1 (v~/v~s=0. 065). LeClaire' has shown that
vg/age should be fractional for Z positive and greater
than 1 for Z negative. This does not contradict the
experimental fact that indium diffuses faster than zinc.
The relative diAusion rates are determined by the ratios
co~/~~o and rue/a&ao. For example„

~g/&age= (v~/ups) exp( —AHg/RT)
=5.8 for ET= 1.1X10' cal/mole.

Similarly it can be shown that cos/o&se) 1.
The analysis of the diffusion perpendicular to the c

axis is rather involved because of the two types of
diffusion jumps. Before one can estimate the activation
energy (E~+Hs) for basal jumps from the data of
perpendicular and parallel diffusion, the knowledge of
the magnitudes of the correlation factors and also their
temperature variation is necessary. The correlation
factors evaluated at three de'erent temperatures are
listed in Table IV. In the calculation we have made
use of the ratio v~/v~e, obtained from the analysis of
the parallel diffusion. Another reasonable assumption
has been made, namely, v~/u~e= v~/use. It is interesting
to note that fz, , is very small and strongly supports the
viewpoint that motion of the indium in the basal plane
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is highly correlated as a result of the strong attraction
between the indium and a vacancy. In fact the position
of a vacancy in the same basal plane as that of the
indium atom and at an adjoining site is energetically a
favorable configuration. The small value of fa, may
be interpreted as suggesting that indium —vacancy pairs
stay together for a considerable length of time. Table IV
shows that correlation factors increase with the increase
in temperature. This is reasonable because the motions
of the atoms become more random with increase in
temperature and hence less correlated.

The activation energy for basal diffusion (only basal
jumps involved) is determined by using the experi-
mental data and the calculated values of the correla-
tion factors, and this turns out to be 15.98 kcal/mole.
We have determined Esp+Hsp by making use of the
self-diffusion data and the calculated correlation factors.
This turns out to be 26.16 kcal/mole.

(+Qbasal)exptl EB+HB (EBp+HB p)

= 15.98—26.16
= —10.18 kcal/mole,

(AQb...i),~„„,——&Es+~ii —8.55——kcal/mole.

The theoretical and experimental values differ by
16%.This difference is felt to be not too serious because
the evaluation of (DQb„,i), p&i involves the numerical
estimates of the correlation factors which in turn de-
pend on the ratios of the jump rates such as &p~/or, ',
etc. These ratios are calculated using the estimates of
AH~, ~ii, AH, ', etc. The ratio v~/ v~p determined from
the analysis of the parallel dift'usion has been used to
determine some of the ratios of the jump rates. It may
be noted that evaluation of v~/v~p involves the use of
experimental values of the frequency factors All and
A &i, o. With all these considerations taken into account,
it may be said that the theoretical estimate checks
fairly well with the experimental value.

Diffusion of Silver and Gold

As Table I shows, the correlation factors for parallel
diffusion in the two cases are almost equal to unity and
suggest that the diffusion jumps are uncorrelated. The
correlation correction AC~ is negligible.

The experimental values of (dQ~~) are as follows:

(AQ„).»ii=4.2 kcal/mole for silver'
= /. 9 kcal/mole for gold. '

Our calculations predict the same change in activation
energies for both these impurities, since each has an
excess charge Z= —1:

(AQ„)„i,.»~
——8.48 kcal/mole.

The predicted value of (BQ,)&h„,,, checks with (AQ~~),„ ii
for gold within 7%, whereas (BQ~~),xpii for silver is
nearly 50% smaller than the predicted value. This dis-
crepancy suggests that the effective excess charge Z of
silver is possibly greater than —1 (and less than zero).

Our calculations of AEJi+AHii and hence Eii+HB
suggest that a major contribution to the perpendicular
diffusion comes from the nonbasal jumps. If the per-
pendicular diffusion were to take place entirely due to
nonbasal jumps, then one would expect the anisotropy
(A~/Di) to be =5.2 for zinc. However, D~~/D& is
approximately 3.3 in the case of gold diffusion, and of
the order of 2 in the case of silver diffusion. This sug-
gests that both types of jumps are probably contribut-
ing to the perpendicular diffusion.

One may note that silver diffuses faster than gold,
even in gold —silver solid solutions, throughout the whole
range of composition. "A more precise analysis would
require a better potential around an impurity, which
would include the eGects of the core of the impurity
atom.
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