
Ai&OS JOHN A. RAVNE

general, however, the agreement between the present areas along certain symmetry directions are in reason-
data and major features of the Lomer model is quite able accord with those found from high-field de Haas-
satisfying. van Alphen data.

V. CONCLUSIONS

High-frequency magnetoacoustic data have been
obtained for very pure tungsten. From the observed
oscillatory behavior, the extremal dimensions of the
Fermi surface have been obtained. The resulting shape
of the Fermi surface is in qualitative agreement with the
theoretical model of Lomer. Estimates of the extremal
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A magnetic double resonance technique is described which allows the strong resonance of one nuclear
species to be used to detect the much weaker resonance of a second species. Based on the proposal
of Hartmann and Hahn, the new technique is experimentally simpler, and involves no critical adjustments
of experimental parameters. It involves the method of adiabatic demagnetization in the rotating reference
frame. The theoretical interpretation is an adaptation of Red6eld s thermodynamic approach, performed
in a specially chosen reference system. The technique and theory are verified quantitatively in lithium
metal using the strong resonance of the 92.6% abundant Li~ at j.5 Mc/sec to detect the much weaker
resonance of the 7.4% abundant Li' at 5.679 Mc/sec.

I. INTRODUCTION

S EVERAL years ago, Hartmann and Hahn' made a
brilliant suggestion for a new type of double

resonance which promised to provide greatly increased
sensitivity in the detection of otherwise weak reso-
nances. The technique enables one to use the strong
resonance of one spin system to detect the weak
resonance of a second one. If two nuclear species of
spin I and S and gyromagnetic ratios pz and p8 were
simultaneously present, acted on by rotating fields

(HI)I and (HI) s tuned to the respective resonances,
Hartmann and Hahn's double resonance occurred when

V i (HI) I Vs (HI) s ~

They showed that when this condition was satisfied, the
two spin systems were strongly coupled even though
the precession frequencies in the static Geld IIO were
at widely diferent frequencies. The coupling occurs
via the dipolar interaction between the I and S spins.
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Crudely speaking, we may say the precession of the S
spins about their H1 causes the component of the dipolar
field along the direction of the static field Bp to oscillate
at an angular frequency ys(HI)s. When the Hahn
condition is satisfied, the frequency of alternation is
just such as to induce transitions of the I spins relative
to their rotating field (HI)I. Hahn showed that fairly
rapid phase changes of the alternating field (HI)s
would, through this coupling, produce a saturation of
the I spins. In this way, even though the S resonance
might be hard to observe directly, it could be seen
indirectly by its e6ect on the I spins. Exactly how the
method works has been explained in full detail by
Hartmann and Hahn. ' However, the analysis is
necessarily rather formidable and cannot, in fact, be
carried through completely since an inherent feature
of their theory is a calculation of a cross-relaxation time
between the two species. In their paper, they also
describe the exact sequence of pulses necessary to
bring about the double resonance, and they demon-
strate the effect.

In our paper, we describe a modification of Hartmann
and Hahn's experiment. ' Our modifications bring about
important simplifications in the experimental technique

~ S. R. Hartmann and E.L. Hahn, Phys. Rev. 128, 2042 (1962).
3 F. M. Lurie and C. P. Slichter, Phys. Rev. Letters 10, 403

(&963).
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and make the theoretical analysis not only simpler but,
in fact, capable of exact solution.

As will become apparent, the tvro different techniques
have simple analogies in thermodynamics. Consider
two bodies connected by a rod to provide thermal
contact. One body, of small heat capacity, represents
the lovr abundance S spins, the other of large heat
capacity, represents the I spins. Hartmann and Hahn's
experiments are analogous to heating the large object
by holding the small one at constant elevated tempera-
ture. The rate of heating depends on the thermal
conductivity of the rod, and the heat capacity of the
large object (the I-spin system), but is independent of
the heat capacity of the small object (the S-spin
system) since we never let its temperature change. A
theoretical prediction of the rate of heating of the large
object would require knowledge of its heat capacity
and of the thermal conductivity of the rod. In reso-
nance language, that means we must calculate a cross-
relaxation time. This cannot be done exactly.

Our experiment is analogous to breaking the thermal
contact between the rod and the small object, heating
the small object to a known temperature, disconnecting
the heater, and reconnecting the rod. After a sufE-
ciently long time, the entire system of large object,
small object, and rod, come to a common temperature.
Since the S system has a relatively small heat capacity,
the final temperature is not much different from the
initial temperature of the large object. Hovrever, we
can repeat the cycle. In fact, if we do the thermal
mixing Ã times, the heating of the I system is as great
as it would be for a single mixing vrith an S system
whose heat capacity is S times larger than it actually
is. Since E may be made very large, a signihcant effect
can be achieved even when the S spins have a very
small relative heat capacity.

Calculation of the temperature rise requires knowl-
edge only of the heat capacities of the parts. It is not
even necessary for the heat capacity of the rod to be
small since vre can easily include its effect. Calculation
of the heat capacities of the spin systems is simple and
can be done exactly. We therefore have a simple, exact
theory to compare with experiment.

As we shall see (and as Hahn and Hartmann's
analysis shows), the effective thermal conductivity of
the rod depends on the size of the tvro rotating 6elds.
The Hahn condition provides the fastest mixing or
largest thermal conductivity. The heat capacity of the
two systems is determined in large measure by the
strength of the H~'s. We can therefore vary the heat
capacities experimentally although vre must remember
that when the H& ratio does not satisfy the Hahn
condition, it may take a longer time for a uniform
temperature to be reached. The dipolar coupling
between the two different species provides the thermal
contact or "rod."As we have remarked, we can easily
calculate its. heat capacity. Likevrise, there is a contri-

bution to the heat capacity from the dipolar coupling
of the I spins among themselves and the S spins among
themselves. All these effects can be rigorously and
simply included. In the process, we shall demonstrate
that it is not necessary for the B&'s to be large compared
to the local fields and we even demonstrate the coupling
in cases where (Hr)r has been turned. to zero.

It will come as no surprise to. the reader that the
analysis we have just given is based on Redfield's4

concept of a spin temperature in the rotating reference
frame. In our experiments, the concept is applied to
tvro rotating frames simultaneously. Although such a
procedure may sound formidable, the formal mathe-
matics is quite simple.

Our experiments vrere performed on lithium metal.
The I system was the 92.6% abundant isotope Lir
whose strong resonance we observed directly. The S
spins were the 7.4% abundant isotope Li'. Since both
resonances have been thoroughly studied in metallic
lithium by Holcomb and Norberg, s vre learn nothing
nevr about either the nuclei or the metal. However, such
a well-understood system is ideal for a test of the double
resonance theory. We performed some measurements
at liquid nitrogen temperature, but the bulk of the
data was obtained at 1.5'K where the long nuclear
relaxation times (30 sec for Li' and longer for Li') make
it simple to obtain isolation from the inhuence of the
lattice for the duration of the experiment. A magnetic
field of 9062 G was used for all experiments.

The basic experiments on vrhich this work is based are
those in which Redfield discovered the need for the
concept of spin temperature in the rotating reference
frame. Shortly thereafter, Sloembergen and Sorokin'
performed double resonance experiments, demon-
strating what they called the transverse Overhauser
effect in which the resonance of one nuclear species
polarized the nuclei of a second species. They also
showed hovr the spin-lattice relaxation of one species
affected the transverse relaxation time T2 of a second
species. Goldman and Landesman~ demonstrated spin
mixing between tvro species under the inQuence of an
alternating field vrhen one species had a large quad-
rupole splitting. Hahn' proposed his double resonance
technique, which he and Hartmann have subsequently
verided in detail. Further single resonance experiments
by Goldburg, ' Slichter and Holton, ' and more recently
Hartmann and Anderson; Holcomb, Pedersen, and
Sliker; and Solomon and Kzratty" have studied further

4 A. G. Red6eld, Phys. Rev. 98, 1787 (1955).
~D. F. Holcomb and R. E. Norberg, Phys. Rev. 98, 1074

(1955).
6

¹ BIoembergen and P. Sorokin, Phys. Rev. 110, 865 (1958).
~M. Goldman and M. Landesman, Compt. Rend. 252, 263

(1961).
S. R. Hartmann and E.L. Hahn, Phys. Rev. 128, 2042 (1962).' Walter I. Goldburg, Phys. Rev, 122, 831 (1961); also 128,

1554 (1962).
'0 C. P. Slichter and W. C. Holton, Phys. Rev. 122, 1701 (1961)."A. G. Anderson and S. R. Hartmann, Phys. Rev. 128, 2023

{1962);I. Solomon and J. Ezratty, ibid. 127, 78 (1962); D. P.
Ho)comb, B.Pedersen, and T. Sliket, sbid 128, 1951 (1961). .
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aspects of the spin temperature concept. Redfield and
Provotorov'2 have made further theoretical studies.

Recently, Redfield" has successfully applied the Hahn
double resonance method to study quadrupole splittings,
using a Geld cycling technique. It was interest in
Redfield's experiments that stimulated us to undertake
the work described in this paper.

In Sec. II, we outline our basic experimental pro-
cedure. In Sec. III, we develop the theoretical analysis.
We give the details of the apparatus in Sec. IV, and the
experimental results in Sec. V. We present an approxi-
mate calculation of the cross-relaxation time in the
Appendix.

(H.rs) r = i(Hi) z+khp, (3)

where i and 1 are unit vectors along the directions of
(Hi)z and Hs, respectively. Since ho&)(Hi)r, Mr is
essentially parallel to (H.rr)z.

hp is now slowly decreased to zero. By slowly, we
mean taking a time of about 30 msec, which is quite

'2 B. ¹ Provotorov, Zh. Eksperim. i Teor. Fix. 41, 1582 E'1961)
I translation: Soviet Phys. —JETP 14, 1126 (1962)j; and A. G.
Red6eld, Phys. Rev. 128, 2251 {1962).

"A. G. Redfield, Phys. Rev. 130, 589 (1963).' See, for example, C. P. Slichter, in Princip/es of Magnetic
Iresersgrsee (Harper and Row, Publishers, New York, 1963).

II. EXPERIMENTAL PROCEDURE

The theoretical analysis of our experiment is simplest
if we have before us an outline of the various steps in
the experiment. In this section, we give such an outline.

We start with the static field IIp at a value Hpp. The
two rotating fields, when turned on, are adjusted to
rotate at frequencies coz and ~z given, respectively, by

piH pp= z
&

7SHpp=a,

that is, the two nuclear species are simultaneously at
resonance when Hp=Hpp.

We start at )=0, with the two nuclear spin systems
magnetized to thermal equilibrium at the lattice
temperature, their magnetization vectors pointing along
Hp and with the two H~'s zero. Our first step involves
turning on (Hi)z in such a manner that Mz is brought
to point along (Hi)z in the I system rotating reference
frame. This frame, of course, is the one which, relative
to the laboratory, rotates about the Hp axis at fre-
quency coz in the same sense as the nuclear precession
of the I spins. If we simply turned on (Hi)z, we would
fail in our objective since, as shown in Ref. 10, Mz would
precess around it in the rotating frame, always remain-
ing perpendicular and decaying in amplitude in a few
hundred microseconds t (Ts)z, the Ts of the I spinsj. In
order to get Mz parallel to (Hi)z, we therefore first
displace Hs from Hpp by an amount hp)&(Hi)r. Then
(Hi)z is turned on. The effective field of the I spins
(H,ir)z is then"

long compared to the precession period of the I spins
in the field (Hi)z. During such a slow variation Mz
remains parallel to (H,rs) z, so that when hs has returned
to zero Mz is parallel to (Hi) z. If (Hi) z is large compared
to a magnetic field Hl. which we call the "local field"
and shall de6ne in Sec. III, we shall see that Mz will be
equal to the thermal equilibrium value (Mz) p given by
the relation

3kHz

= CrHs/Or. ,

where Ãz is the number of I spins per unit volume, 8L, is
the lattice temperature, k is Boltzmann's constant, and
Cz is the Curie constant of the I spins.

If (Hi)z is comparable to or less than Hr. , Mz is less
than (Mz)s, as shown in Ref. 10. However, the decrease
below (Mz)s is a reversible one. Moreover, no further
decrease will take place except via the slow spin-lattice
coupling. This relaxation time, Redfield's T2„ is much
longer than (Ts)r, being in fact 30 sec for Lir at 1.5'K.

As has been emphasized in Ref. 10, the technique
of bringing Mz parallel to (Hi) z may be thought of as an
adiabatic demagnetization in the I spin rotating
reference frame.

We are now ready to turn on the second rotating
field (Hi)s. This we do, holding it on for a time t„„.
Since (Hi)s is turned on quickly compared to the
precession period of Ms about (Hi) s, and since Hs ——HM,
Ms is perpendicular to (Hi) s. It remains so, precessing
about (Hi) s in the rotating frame, and decaying to zero
in a time (Ts)s, typically a few hundred microseconds. "
The S spins are now at an infinite spin temperature in
their rotating reference frame. By means of the dipolar
coupling between the I and S spins, the entire system
of I and S spins now comes to a common spin tempera-
ture. This involves a decrease in Mz since the I spins
have been heated by their contact with the S spins. By
the same token, the S spins have been cooled. They,
therefore, acquire magnetization parallel to their eGec-
tive field, hence, along (Hi) s. After the time t,„, (Hi) s
is turned abruptly to zero. In the absence of (Hi) s, Ms
decays to zero in the time (Ts)s." As we shall see,
nothing happens to the I magnetization during this
decay. After a time t.«, (Hi) s is once again turned on,
the whole cycle being repeated until it has been per-
formed E times.

Following the Eth cycle, we wish to observe the
extent that Mz has been diminished. Accordingly,
(Hi)r is switched abruptly to zero, and the free induc-
tion decay of the I spins is observed photographically
on an oscilloscope. The amplitude of the induction decay
immediately after the turn-off of (Hi)z is a measure
of Mz.

The experimental technique described above differs
in two ways from that of Hahn and Hartmann. The
erst difference is the manner in which Mz is brought
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parallel to (Hi)r. Hahn and Hartmann apply a 90'
pulse. This puts Mr perpendicular to both (Hi)r and
Hp. In order to get Mr along (Hi)r, they then shift the
phase of (Hi)r by 90'.

Thc second difference in their technique 1Dvolvcs the
other alternating field (Hi)s. Instead of pulsing it ofl
and on, they turn it on at 6xed amplitude, but periodic-
ally shift its phase by 180'. They do this at a rate
sufhciently fast compared to the cross-relaxation time
bctwccD thc 5 Rnd J splQs so that thc 5 splQs Rlc UDRblc
to achieve magnetization parallel to (Hl)s. In this
manner they 1MM thc 5 splDs at, RD c&cctivcly in6nitc
temperature. This technique, though experimentally
somewhat more involved than simply turning (Hi)s
oD RQd 08~ has thc RdvRQtagc of giving thc maxQTlum
rate of heating. As we have remarked, their theoretical
analysis is analogous to that of the Qow of hea, t to an
object via a rod connected to R reservoir of 6xed tem-
perature. (Of course, holding the 5 spins at a fixed spin
temperature is not a,n esses'/ feature of Hahn and
Hartmann's method. However, the bulk of their
theoretical RQRlysls using thc density matrix ls bRscd on
this assumption. )

III. THEORETICAL ANALYSIS

A. Basic Equations

In this section, we derive the basic theoretical
expressions needed to analyze our experiment. We
start by writing thc Hamiltonian of the system in the
laboratory frame.

x.=~sr {&)+~zs(&)+(~d)rr+ (3'-d) as+ (&d)rs, (~)

where Xzr(t) is the Zeeman energy of the I spins. It
includes both a static interaction with 6eld B'0k and a
time-dependent interaction to the two alternating 6elds.
It ls most coQvcDlcDt to coDsldel that rotating fields
have been applied, instead of linearly polarized alter-
nating 6elds. We ha,ve, then

Kzr(t) = —yr&I LltHp+l(H1)r cosQrl+j(H1)r sinQrt

+1(Hi)s cosQS/+ 3 {Hi)s slnQsf 1, (6)

where Oq and 08 may be positive or negative, to repre-
sent either sense of rotation, and where

I=+ I;

is the total spin vector of the 1 spins.
The terms (BCd) rs, etc., represent the magnetic

dipolar coupling of the J spins with the 5 spins, and so
forth.

We now wish to tra, nsform to a rotating reference
system. In so dolngq wc Rlc followlQg Reweld. How-
ever, our problem is somewhat diR'crent from his since
we have two rotating fields. We therefore wish to
transform 1Q SUch R way that wc view thc J splns Rnd
5 spins in their respective reference frames. This is

I,=Q I„

RI'e the totRl 8 componcDts of RngUlar momentum of
the two spin spcclcs.

We define a Qew wave function 4" by the equation

O' =Pk. (9a)

Then substituting TV' for O', Schrodinger's equation
becomes

where X' is R transformed Hamiltonian.
Explicit evaluation of x' using standard techniques'

glVCS

X'= —yrhL(Hp+Qr/yr)Is+ (Hi) rI,i
—vs&PHp+Qa/v8)&s+ (Hi) s&.$
++dlr +adrs +XdSS

+time-dependent terms we ignore. (10)

The terms Xqgqo, etc., represent that part of the dipolar
coupling K~Iq that commutes with the Zeeman inter-
action between the spins and the static laboratory field,
Ho. These terms are usually called the "secular part" of
the dipolar interaction. We write thein out explicitly
below.

The time-dependent terms are of two sorts. One
variety arises from the nonsecular parts of the dipolar
coupling. They oscillate at frequencies Qg, Q8, or
(Qr&QS). The second sort arises from couplings of
the I spins to (Hi)s and the S spins to (Hi)r. These
oscillate at a frequency (Qr —Qs). Since Qr, Qs, and
(Qr&QS) are all far from any of the energy level
spa, cings in the rotating frame, they can be neglected.
One must remember, however, that it is conceivable
that should there be a quadrupolar interaction added,
and should the two nuclei have similar y's (as do, for
example, Cu" and Cu"), the frequency (Qr —Qs) might,
in fact, be close to a possible transition.

If one chooses

the two nuclei are exactly at resonance. Note that the
two 0's are negative if the y's are positive, representing
the fact that nuclei of positive y rotate in the "negative"
sellse abollt Hp. Mailing llse of Eq. (11), 1'ecalllllg that
H —H h, a d egl ti gtheti -dp d tt

rcRdlly accomplished by Introducing thc unltRl y
operator T defined as

T=exp (iQrI.1) exp (iQBS,t),



A1112 F. M. LURI E AN D C. P. SLI CHTER

of X', we have

X'= —yzhLhoI +(Hi)zI ]—yskrhoS+(Hi)sS ] .

+~dr z+'~dzs +~dss ~ (12)

It is convenient to define the Zeeman energies Xzz and
Xzg by the equations

where BC' is given by Eq. (12). In terms of p we can
calculate the average energy E and the average magneti-
zation vector (Mz) in the high temperature ap-
proximation

E=Tr(pX')

Xzz= yzh[—hpI*+ (Hi)zI.], etc.

The dipolar terms are

(13) ~zDHi) z'+ ho'+Hz']+ &s[(Hi) s'+ho']
(16a)

~ 2/2

Xdzz
1—3 cos 0~Ic

P (3I„I,—I; I„)
~, u

(Mz) =Tr(pyzhI)

&z(KH) z
(16b)

(1—3 cos'Hi )
Xdzs Vz Ys@ 2 IziAy (14)

and similarly for Kzz&. To these may be added the
pseudodipolar and pseudoexchange couplings where
their size is large enough to be important.

It is the term X~za which gives rise to the eGects
observed by Bloembergen and Sorokin' in their studies
of CsBr. They found that the rapid bromine spin-lattice
relaxation could communicate itself to the Cs nuclei
through this term when the Cs nuclei were quantized
along their own H».

We can view the various terms of Eq. (12) as energy
reservoirs of Zeeman or dipolar energy. Since the various
terms do not commute, they can exchange energy.
Such processes may be termed cross relaxation in the
double-rotating reference frame. The rate of cross
relaxation will depend on how the energy levels of the
different terms match, on the heat capacities, and on the
strength of coupling as measured by the failure of terms
to commute with one another. Thus, we note that the
Zeeman term of the I spins Xzz commutes with the
Zeeman energy of the S spins, Xzz. However, as long as
(Hi)z/0, BCzz does not commute with either Xdzz' or
X&»'. We can, therefore, transfer energy between Xzz
and Xqzz or Xqza .Moreover, Xqzq provides a coupling
mechanism to transfer energy between Xzz and Xza
)provided (H'i) s/0].

All these remarks lead one, following Redfield, to
assume that if one waits long enough, the various parts
of Eq. (12) will come to an equilibrium in which the
system can be described by a common temperature 8.
For some purposes, it may also be possible and con-
venient to assume that various parts may come to
common temperatures faster than the whole system
achieves a single temperature. This is the viewpoint
we adopt in the Appendix to calculate some cross-
relaxation times.

We, therefore, make the assumption that when the
system has achieved a common temperature it is
described by a density matrix p given as

exp( —K'/he)
P=

Tr exp (—K'/he)

where Cz and Cg are the Curie constants given in terms
of the number of I or S spins per unit volume, Ãz or S8
and Boltzmann's constant k by

yz'O'I (I+1)Nz
Cz= , etc.,

3k

and where Hz, ' is defined by the equation

CzHz, '=Trp(&dzz +~dzs'+~dss ) . (18)

Evaluating the trace gives

Hz.'= 3(&'H)zz+(&'H)zs

1 ys'NsS(S+1)
+ QPH)ss, (19)

3 yz'NzI(I+1)

where (6'H) s is the contribution (in gauss) of the P
spins to the second moment of the a-spin resonance
line. (Incorrect expressions for Hz' have been given in
both Refs. 4 and 10.) Hz, has the dimensions of a
magnetic field. Although we call it the "local field, " it
should not be confused with the Lorentz local field.
Actually, Hz, is introduced simply to enable us to factor
Cz out of various equations. The fact that the dipolar
energy is $ CzHz, '/8] make—s it appear superficially
that we have taken into account only the I spins in
calculating the dipolar energy. However, that such is
not the case is seen by examining Eqs. (18) and (19)
which exhibit explicitly the dipolar contribution of the
S species to the expression for Hz, . CzHL, ' measures the
total dipolar contribution to the spin specific heat. Note
that although the term "local field" sounds vague, that
HL, can in fact be calculated exactly and is to be con-
sidered throughout as a precisely predicted quantity.
The only exception to this statement is found when
pseudodipolar coupling becomes prominent as in higher
atomic number elements.

It is (Mz) which we observe from our oscilloscope
photographs of the initial height of the free induction
decay following turn-off of (Hi)z.



Cr[(Hz) r'+ Hr. ']+Crr(Hi) s'

One further expression is needed. It is the expression 6nal energy Ey is then
obtained from Ref. 10, for the magnetization Mr found
after the demagnetization of I's. That is, suppose
(Hr)s= (Hz)r=o, and. that Mz=RMro where

is the thermal equilibrium magnetization of the I spins
at the lattice temperature tII,. With ho&&BI,, we switch
on (Hz)r, and slowly reduce ho to zero. We then end

up, according to Eq. (16), with

(26)E —Ef
This gives us that

But since the total system is isolated and its Hamil-
tonian independent of time, its energy cannot change.
Therefore,

( )
(Mz) =iMro

[(H ) 2+H R]1/2
(21)

Cr[(Hr) r'+Hz, ']
8r Cr[(H&)r'+Hr. ']+Cs(Hi) s'

(27)

Note that if we were to change (Hr)r slowly, (Mr)
~~uld folio~ (Hr)r m accord with Eq. (21).

B. Analysis of the Experimental Procedure

We now turn to an analysis of our experiment. We
shall assume throughout that spin-lattice relaxation
can be neglected during the times of the experiment.
Spin-lattice processes can be included readily, but one
must be careful in so doing to include the sort of
transverse Overhauser eRects described by Bloembergen
and Sorokin. '

We begin by the demagnetization process. This
brings {Mr) down along the z axis, its magnitude being
given by Eq. (21). Let us call this magnetization
(Mr); During this process, since (Hz)s is zero, Xzs
commutes exactly with the rest of the Hamiltonian. So,
likewise, does ysAS. . Therefore, {Ms) remains un-

aRected, and points along the static laboratory 6eld
Ho. The rest of BC' is at a common temperature 8; which
we can compute from Eqs. (16b) and (21).

8;=Cz (Hz) r/(Mr);. {22)

This temperature is, of course, very much lower than
the lattice temperature HJ..

We now turn on (H&)s suddenly. In such a rapid
process, the state of the system does not change. The
dipolar energy and the Zeeman energy of the I spins are
therefore unchanged. The 5-spin Zeeman energy E8

(Mr) /r(M )'r= 1/(1+~) (29)

We now suddenly turn off (Hz) s. Once again the system
immediately after the change has the same wave
function as it did just before. The expectation value
of Xgl and of the dipolar energies is thus unchanged,
but that of Rzs is zero since (H.ff)s —0. The total
energy Ey' is therefore

(30)

Immediately after the turn-off of (Hr)s, (Ms) is
nonzero. Therefore, we see that we do not have thermal
equilibrium. If we wait for a suKciently long time, the
entire system will come to a common temperature Hjy.
In the process, {Ms) decays to zero. This is an irre-
versible decay. We shall in fact calculate the entropy
increase below.

When the system has reached the final temperature
8rr, the energy is Err. Using Eq. (16a) we have

Cs(K) s'
C:

Cr[{Hz)r'+Hi']

In the process the magnitude of (Mr) drops from its
initial value (Mr); to a 6nal value (Mr)r wh1ch, in
view of Curie's law, is

Es —(Ms) ~ (H.gg) s,——
=0

(23) E = —C [(H )r'+H ']/8 (31)

But Eyy=Ey' since the spin system is isolated from the
outside world and has a Hamiltonian independent of
time. Therefore, using Eqs. (30) and (31)

Cr[(Hg)rm+Hzg ]
(24)

After a suKciently long time, the 5-spins Zeeman
energy comes into thermal equilibrium with the rest
of the system at a common Anal temperature HJ. The

since (Ms) and (H,qr)s are perpendicular. The total
energy of the system E; is therefore

Using Curie's law we see that following the turn-oR of
(Hz) s, {Mr) does not change.

For one complete on-oR cycle, therefore, we can argue
that (Mr) is reduced by the factor 1/(1+&).

We can repeat the argument for another on-oR cycle.
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The magnetization Mz($) after S cycles is thus given
in terms of its value Mz(0) prior to the first cycle by

~z(&)/~z(0) = (1/(1+e)j" (33)

When &&&i, as in our experiments, we can write this as

Mz($)/Mz(0) =e ~', (34)

where e is given by Eq. (28). Equation (34) is our
principal theoretical result and its verification, the
chief objective of our experiments, is discussed in
Sec. V.

As pointed out in Sec. I, double resonance is possible
even when (Hi) z«Hz, . Experimentally we accomphsh
this by performing adiabatic reduction of (Hi) after
Mz has been brought along (Hi) z in the rotating frame.
After (IIi)z~0, Mr~0 from Curie's law, however, we
have retained the order in the I-spin system, the order
now being with respect to the local field." (Hi) s is now
cycled on and oB E times. After the Ãth cycle, (Hi)z
is adiabatically returned to its original value. The
resulting Ml is then observed by rapidly turning off

(Hi)z and observing the free induction, decay.
The analysis for the case when (Hi)z&&Hz, is es-

sentially the same as given above; however, Dow, the
term Cz (Hi) z'/0 no longer appears in Eqs. (24) and (25),
and t. reduces to

e=Cs(Hi) s'/CzHz'.

C. Energy and Entropy

It is interesting to follow the changes in energy and
entropy of the spins that take place during the double
I'csoDRncc. Thc csscDcc of thc cxpcI'ln1cDt ls thc hcRtlDg
of the I spins brought about by the contact with the
hot S spins. There is R net Row of energy into the system
as a result of work done on the S spins. The destruction
of the I magnetization corresponds to an irreversible
loss of order, that is, an entropy increase. The energy
of the system is, of course, the expectation value of the
Hamiltonian of Eq. (12). Basic theorems of quantum
(and classical) mechanics tell us that the total energy
remains constant as long as 3'. does not explicitly
dcpcDd oQ tlQ1c. RcRrI'RQgcIDcQts of cQcI'gy wlthlD thc
total system even when X is independent of time we
identify as a heat Row within the system. Changes of
the total energy due to variation of an external pararo-
eter we call work on or by the spin system.

We can follow the cycle by considering work and heat
transfer in the rotating frame. Consider one complete
cycle of (Hi) s on and off. We start by turning on (Hi) s
suddenly. Bearing in mind that the S Zeeman energy is

(Xzs)= —(M,).(8,)„ (35)

and that during the sudden turn-on the dipolar energy
does not have time to change, we see that it takes no
work to turn on (Hi) s since (Ms) is initially zero. The
establishment of the 5 magnetization causes (Xzs) to

go from zero to a negative value. That is, there is a
heat flow from the 5-spin Zeeman resei.voir to the rest
of the spin system. That this is the direction of heat
flow is reasonable since the initial zero (Ms) in the
presence of a nonzero (Hi)s can be viewed as saying
that 3'.g8 has an indnite temperature. Associated with
this heat Row between systems at di6erent temperature
there must be an entropy increase.

Following establishment of (Ms), we turn off (Hi) s.
Using Eq. (35) we can see that we must do positive
work on Xzs in the process. LNote that during turn-on
or turn-o8, which takes place suddenly, there is no time
for heat Row, so that we can compute the work done
solely from the changes in (Xzs) given by Eq. (35).j
Following turn-off, (Ms) decays irreversibly to zero.
Again there must be an entropy increase associated
with the irreversibility. Ke are now ready to repeat
the cycle. Note that we have done a net amount of
work on the spin system, and that there has been an
irreversible loss in order.

Had we turned on (Hi)s in the next cycle before

(Ms) had been able to decay, the 5 spins would have
done positive work back on us. In fact, had (Ms) not
decayed at all, we would have gotten back as much work
as we put in when we turned off (Hi) s. We would not
then have done any net work in a cycle. Moreover,
apart from the CGects at the original turn-on, there
would have been no irreversible loss in magnetization
of either spin system. We must allow a suSciently
long time for the irreversible features to occur.

The entropy 0 of the system, can be calculated
starting from the basic equation"

(36)

where Z is the partition function. Making use of the
high-temperature approximation, wc can evaluate Kq.
(36) to get

1 Tr3C
o=k ln(Tr1)—

2k'O' Tri
(3&)

where Tr1 means the total number of states, and equals

Tr1= (2I+1)"z(25+1)"s. (38)

/Note that Eq. (21), describing the adiabatic de-
magnetization, follows from use of Eq. (16b), Curie's

"R.C. Tolman, in I'rilciples of Statjs&ca/ Mechmsks t',Oxford
University Press, Oxford, 1938).

Evaluating TrX', as in Eq. (16a), gives (with ho ——0)

o= klutz ln(2I+1)+&Vs ln(25+1)j
CzDHi)z'+H~']+Cs(Hi) s'

(39)
2g2
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FIG 1. Block diagram of the double resonance apparatus.

law, together with the requirement that the entropy
given by Eq. (39) remain constant. ] Since we have
worked out the temperature at each part of the cycle,
we can use Eq. (39), together with the approximation
that e is small, to find that in one complete cycle
starting at temperature 0 there is a total increase in
entiopy Of —0'; of

Cs(H )s'
0'f gg=

Half of the increase occurs following the turn-on, the
other half following the turn-off of (Hi) 8. We note that
the larger (H&)s, the larger the change of entropy per
cycle. Since the existence of MI is a sign of order, we see
that a large (Hi)s leads to a large destruction of Mr,
as was, in fact, already expressed by Eq. (34).

IV. EXPERIMENTAL DETAILS

A. Ayya. ratus

The experiment was performed using the pulsed
double resonance spectrometer shomn in block diagram
follIl lQ Fig. 1.The rf head was a miniature clossed-coll
configuration which fit inside a set of liquid helium
dewaI's. The coll coQ6guI'atloil is showQ iQ Fig. 2.
Most of the data taken in the experiment were at
1.5'K. The individual components of the spectrometer

are of standard design and are described in detail
elsewhere. '6 However, a few features of the apparatus
which were useful for the present experiment will be
described.

The two transmitter coils mere tuned to 15.00 and
5.679 Mc/sec, respectively, the resonant frequencies
of the I.i~ and I.is nuclei in a field of 9062 G. The
coupling between the final power ampli6ers and the
transmitter tank circuits was accomplished by a link,
the input end of which mas the "pi section" output
network of the power stage. The rf voltage, and thus
the Hl field, were varied in magnitude by changing the
loading capacitor which formed the Anal leg of the
"pi section. " This arrangement provided a simple
means of varying the H~ fields and had very little eRect
on the tuned circuits. The rf voltages were monitored on
an oscilloscope by means of capacitive dividers across
the transmitter tank circuits.

In experiments in the completely demagnetized
state, (Hi)i((Hr„ the (Hi)i field was reduced to a small
value by pulsing the grid bias of the preamplifier which
drives the final power stage. This reduced the (Hi)7
field to a few milligauss, and since II~= 1.2 0 in metallic
lithium, the criterion that (Hi) 7(&Hr, was well satisfied.

The receiver coil was tuned to 15.00 Mc/sec and
connected directly to the grid of the input stage of the

' F. M. Lurie, thesis, University of Illinois, 1963 (unpublished).
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Pro. 2. Schematic diagram of the coil geometry at the sample.

receiver. The receiver had a gain of 104 and was linear
over the range of signals encountered. Since signal to
noise was not a problem at 1.5'K, a box-car integrator
was not needed, so that phase incoherent detection was
used. The free induction decay of the Li~ nuclei was
observed photographically on an oscilloscope which
was dc coupled to the detector and triggered by the
turn-off of the (Hq)r pulse. In order to achieve a linear
detection, an rf reference of several volts amplitude but
differing slightly in frequency from the 15.00 Mc/sec
was fed to the detector. The oscilloscope photographs
therefore show the beat between the reference and the
signal. Use of a reference which is incoherent with the
signal makes the instrumental adjustments sub-
stantially simpler than they are when a phase coherent
reference is employed, yet preserves the enormous
advantage of linearity of the detection process which
is only possible when the signal voltage is small com-
pared to the reference.

B. Calibration of the H& Fields

In order to test the thermodynamic theory presented
in the previous section, the magnitudes of the B~ 6elds
must be accurately known. In particular, this required
field calibrations at room temperature, 78'K, and
1.5 K and at the frequencies used during the experi-
ment. At room temperature and 1.5'K, calibrations
were made by applying a 180' pulse, or ex pulse where
e is an integer, to a narrow resonance line and detecting
the null in the free induction decay. A narrow line, i.e.,

8B(&B~, is required for precision in the Bj calibration.
At room temperature the 15-Mc/sec 6eld was cali-
brated using the motionally narrowed' resonance of
Li~ nuclei in the metal particles and the protons in the
mineral oil surrounding the lithium particles. The
5.679-Mc/sec ffeld was calibrated on the protons in the
mineral oil. At 1.5'K the 180' pulse method was used
on both transmitter coils with a small quantity of
liquid He' which was introduced into the center of the
lithium sample. These calibrations showed that the
6eld calibrations were essentially independent of
temperature and all calibration runs gave the same
results to within 3%%u~. In addition, some of the cali-
brations were performed with the second Geld being
pulsed on. No detectable eftect due to the second rf
6eld was found.

The homogeneity of the B& fields is believed to be
fairly good. Inhomogeneity in the II&'s can arise from
two causes (a) effects due to the coil geometry and (b)
the existence of the skin effect in the metal particles. A
rough estimate of the geometrical eftect over the sample
volume could be made from the calibration data on
the liquid He'. This indicated that the B& field at one
end of the receiver coil was nine-tenths the value at the
center. Since the lithium sample length was less than
one-half the receiver coil length, the actual variation
of B~ over the Li samples was probably much smaller
than the above estimate. Further evidence for this is
that no indications of B~ inhomogeneities were observed
in the calibrations using Li~ and protons at room
temperature. Therefore, we conclude that spatial B~
variations were small and probably negligible compared
to skin depth effects which are discussed below. We
discuss the broadening of B~ due to the skin effect in
Sec. 8 below.

The 15-.Mc/sec ffeld was also calibrated using the Li'
nuclei at 78'K and 1.5'K by means of the adiabatic
demagnetization process described in the previous
section, The procedure was to pulse the static 6eld off
resonance, turn on the (H~)7 at the peak of the Geld

pulse, and then return the static 6eld adiabatically to
the resonance value. (Hq) q is then pulsed off and the free
induction decay photographed. This process is repeated
for successively smaller values of (H&) &. If the resulting
Li~ magnetization is plotted as a function of (H~) 7, the
experimental points should fall on a curve given by
Eq. (21),

M7 —Mo(H/)7//HER'+ (Hg)7 j".
Since BI, can be calculated theoretically, a curve given

by Eq. (21) is a calibration of (H&)& provided 3EO is
known. At the 3E7=0.707MO point, (Hq)7=Hz which
calibrates (Hq)y in terms of the voltage across the
transmitter tank circuit which corresponds to Bl,. A
typical result for this type of calibration at 78'K is
shown in Fig. 3. The solid curve is calculated from Eq.
(21). Its horizontal scale is given by the theoretical
Hr, (1.20 G) and the calibration of (H&)z by the 180'
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pulse. Its vertical scale is chosen to fit the data at the
point (Ht)r=Hz, . The agreement between the calcu-
lated curve and the experimental points indicates that
the two methods of calibration are consistent and
provides a graphic demonstration of the adiabatic
demagnetization process.

C. Samples

The lithium samples were composed of Gne metal
particles dispersed in mineral oil. The samples were
made from 99.5% pure lithium ingot obtained from the
Lithium Corporation of America. Pieces of the ingot
were heated in mineral oil to 200'C, about 20'C above
the melting point of lithium, and then agitated with a
high-speed stirrer. The temperature was then lowered
slowly with the stirrer running. All sample preparation
was done under a dry helium atmosphere to reduce
oxidation of the metal. Examination under a microscope
revealed the metal particles to be generally spherical
with an average radius of 3)&10 ' cm. For pure metal,
this radius is comparable to the classical skin depth at
78'K, and at 1.5'K the skin depth is undoubtedly much
smaller than the particle size. However, for pure
lithium at room temperature, the mean free path of
electrons is about 100 A. This is not greatly different
from the contribution of the nearly 1% impurity, so
that we do not expect the skin depth to vary greatly
with temperature. There is good evidence that the rf
6elds were penetrating well into the lithium particles
since the change in tuning of the receiver tank circuit
was very small between room temperature and 1.5'K.
We note, however, that the double resonance experiment
involves two rf 6elds at diferent frequencies and, since
the relative magnitudes of the field are important, our
results are probably fairly sensitive to skin-depth
eftects. The experimental results to be presented in

the next section do indicate that small skin-depth
effects are present in our data. Resonance data indi-
cating that these sects are indeed small will be
described in the following section.

A. Experiments with (Ht)r)Hz
The results described in this paragraph were all

obtained at 1.5'K with (Bt)r about twice Hr, . In Fig. 4
experimental values of Inly are plotted as a function
of (Ht)ss for %=22, t, =f,rr 1, 2, a——nd 10 msec and
(Pt)r=2.31 G. For this value of (Ht)r, (Zt)s ——6.1 G
satis6es the Hahn condition. The solid line is calculated
from Eqs. (28) and (34) and indicates the fmal value of
the Li magnetization corresponding to the establish-
ment of a common spin temperature between the Li'
and Li' spin systems. The results in Fig. 4 show that
the two spin systems do achieve a common spin
temperature over a range of values about the Hahn
condition. Note that as the time during which mixing
can occur is increased, the range of values of (Ht) s over
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Fro. 4. 1nM7 versus (P&)P at 1.5'I for lan=22, r„=t,n=1, 2,
and 10 msec, (H1)7=2.31 G. For this value of (HI)7, (H&)6 ——6.1 G
satis6es the Hahn condition. The solid line is calculated from
Eqs. (28) and (34)

' H. S. Gutowsky and B. R. McGarvey, J. Chem. Phys. 20,
1472 (1952).

V. EXPERIMENTAL RESULTS

In this section the experimental results will be
presented and compared with the thermodynamic
theory developed in Sec. III. The experimental results
will be compared with calculations using Eqs. (28) and
(34) and the calibrated values of the Ht fields. In the
computations the value of HI. used will be the contri-
bution from the interaction of Li~ spins between them-
selves. The contributions to Bl, from the terms in-
volving the Li' spins are negligible being only about 2%
of the total value of BL,. In this approximation we Gnd
the value of HL, to be 1.43 0 '
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which a common spin temperature is reached increases
as would be expected. Note also that there is a range of
(Hr)s about the minimum in the curves over which the
mixing is relatively insensitive to the value of (Hr) s.

In Fig. 5 experimental values of lnM7 are plotted as a
function of the number of mixing pulses E, with e
constant. These data were taken with (Hr)z=2. 14 G,
(Hr)s=5.4 G which approximately satisfy the Hahn
condition. The solid line is again calculated from Eqs.
(28) and (34) and agrees well with the data for the lower
range of X. The deviation of the experimental points
from a straight line for the large values of E is caused
by skin effects as discussed in Sec. IV. (Note added ifI
proof The c. urvature may also result from the fact that
HI. depends on the orientation of IID with respect to the
crystal axes. Since the sample is a powder, a distribution
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FIG. 5. lnM7 versus E at 1.5'K. (O'I)7=2. 14 G, (HI)6=5.4 G,
nearly satisfying the EIahn condition. t, =t,ff

——4 msec. The solid
line is calculated using Eqs. (28) and (34).

in s results. ) Experimental evidence for this is given in
Fig. 6 where the same kind of measurement was made,
but with the (Hr) s. (Hr) z ratio set to correspond to the
region of the minima in the curves shown in Fig. 4. In
this case the data should be less sensitive to small varia-
tions in the ratio of the H~ fields. This is indeed indicated
in Fig. 6 where only the last point deviates signihcantly
from a straight line. In both Figs. 5 and 6 the data were
taken with t, = t,ff —4 msec. Thus in these experiments
more than 97% of the Li' magnetization has been de-
stroyed in 1.25 sec in one case, and in 0.8 sec in the other.

Fig. 7 inMz is plotted as a function of (Hr)ss with
S=25, and t, =t,~g

——2, 5, and 8 msec. The solid line is
calculated from Eqs. (28) and (34). In this case the
data show that the rate of mixing decreases as (Hr) s is
increased. This is a result of the competition between
fast mixing at low (Hr)s and the increase in heat
capacity for the Li' spin system for larger (Hr)s.
Notice that the curves have a very broad minimum
which indicates that in the demagnetized state the
setting of (Hr)s is not critical over a wide range. This
fact could be of considerable importance in searching
for an unknown resonance.

The results of an experiment in which (Hr)s is kept
constant and Ã varied are shown in Fig. 8. In this case
the data were taken with (Hr) s ——6.4 G and t„=t,ff 6—
msec. This value of (Hr)s corresponds to a point in the
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B. Experiments with (Hr)z((Hz
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In this paragraph results of experiments in the
completely demagnetized state will be presented. All
the data to be presented were obtained at 1.5'K and
in this case Eqs. (28) and (34) apply with (Hr)z=o. In

1' IG. 7. in%7 versus (II&)s at 1.5'K for X=25, (III)7
——0,

=t ff =2, 5, and 8 msec. The solid line is calculated using Eqs.
(28) and (34). This 6gure demonstrates that double resonance
works in the completely demagnetized state. Note the broad
minima.
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FIG. 8. 1nMg versus E at
1.5'K in the completely de-
magnetized state [(Hq) 7 =Oj.
(Pz)6=6.4 G, t,~=3,g=6 msec.
The value of (III)6 corresponds
to the broad minimum in Fig. 7.
The solid line is drawn to indi-
cate the exponential depen. dence.
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broad minimum of thc curves ln Flg. 7. In this case thc
solid linc has bccn simply dl.awn through thc data to
indicate the exponential dependence. Ke do not have a
theoretical value for its slope since we know that for
this value of (IIt)s a common spin temperature is not
established.

C. Discussion

The results presented in the previous paragraphs
demonstrate the validity of the thermodynamic
approach to the double resonance process. However,
our data do not demonstrate fully the inherently
attractive feature of the technique, namely, the in-
creased sensitivity which is possible. We can obtain an
estimate of the possible sensitivity from our data in the
following way. In Figs. 5, 6, and 8 more than 95% of
the Li~ magnetization was destroyed in about one
second. Since the Li~ TI at I,S'K is 30 sec, it would have
been possible to take as long as 20 sec to destroy the
Li magnetization if this had been necessary. Roughly,
this means that approximately 20 times fewer dilute
spins couM have been observed with the same signal
to noise. Using the oscilloscope display, the signal to
noise was good enough to permit one to gain another
factor of 4 in the minimum detectable CGect. A further
increase in sensitivity could be achieved by employing
gated integrator techniques and presenting the data
on a chart recorder. On the other hand, as the number
of dilute spins is decreased, the time required for mixing
between the two spin systems may become limited by
spin diGusion as has been pointed out by Hartmann
and Hahn. Taking these factors into account, one
estimates that approximately 10 ' dilute spins per
abundant spin could be observed using the double
resonance method without too great difhculty.

The data in Fig. 5 indicate that the double resonance

technique can be used to determine the number of
dilute spins in the material being studied. If the Ha
fields are calibrated and the nuclear spins and gyro-
magnetic ratios are known, the slope of a plot of ln3f
as a function of E, thLc number of mixing pulses,
determines the ratio of the dilute to the abundant
splns.

The good quantitative agreement between the data
and theory not only demonstrates the validity of the
thermodynamic approach to the double resonance
process, but provides further justi6cation of Red6eld's
hypothesis of a spin temperature in the rotating refer-
ence frame. In addition, the theory extends Red6eld's
ideas to the case of a common spin temperature in two
reference frames simultaneously rotating at diBerent
frequencies, and rigorously includes the effect of the
local 6eld. By including the local 6eld, we have demon-
strated that double resonance can be performed with
alternating fields which are comparable in magnitude
with the local field and that the technique works equally
well when the abundant spin system is in the completely
demagnetized state.

APPENDIX

In this appendix we will present a calculation of the
cross-section time Tza. Cross relaxation between spin
systems has been discussed by several authors. "Our
discussion will closely follow Schumacher's treatment as
extended by Bloembergen et a/. In fact, we will take over
Schumacher's results, but neglect the spin-lattice re-
laxation terms which he included in his treatment.

The starting point for the development of a model is
the Hamiltonian of Kq. (12),

X'=X +X +X @+X '+X '. (A&)

Following Schumacher we make two assumptions:
(I) We assume the coupling between Xzr and Xgrrs

and between Xga and Xqgao is much stronger than the
interactions which proceed via Xqza'. Consequently the
I system, described by Xr=Xzr+X~rre, can be charac-
terized by a spin temperature t)Iz, and the S system,
described by Xs=Xza+X~as', can be characterized
by a spin temperature 88. (It is undoubtedly incorrect
that Xga and X~880 couple more strongly than Xqz80,
but the ez assumption may still hold. )

(2) We assume that the interaction between Xr and
X8 due to Xdz8' is a weak perturbation so that the
rate of change of level populations in each system can
be described by rate equations involving transition
probabilities.

Letting Eaz and Rza denote, respectively, the rate of
energy Row from the S to the I system, and from the I

'8 A. Abragam and %'. G. Proctor, Phys. Rev. 109, 1441 (1958);
R. T. Schumacher, i'. 112, 837 (1958); N. Moembergen, S.
Shapiro, P. S. Pershan, and J. O. Artman, ibid. 114, 445
(1959); P. S. Pershan, ibid. 117, 109 (1960); B. N. Provotorov,
Zh. Eksperim. i Teor. Fiz. 42, 882 (1962) Ltranslation: Soviet
Phys. —JETP 15, 611 (1962)j.
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Q W„.. .(E, E.—)'
Tr[xp] - nr ms

1+
Tzs Tr[3'.z']ps

(A10)
1 1

Rrs
dt Or- -Or Os-

2 Tr[3's']gz

The transition probability per unit time lV„„, .will
be calculated using first order, time-dependent pertur-
bation theory. In performing this calculation we assume
that the I-spin "absorption line" has a Gaussian shape
and the S-spin line shape is a delta function.

To calculate W„„, , for the case where (Hz&z) Hz we
start with the Hamiltonian

1 1 1
RSE

dt -Os- Os Or
(A2)

These coupled rate equations define the R's, and are a
special case of Schumacher's results. Using assumptions
(1) and (2) above, Eqs. (A2) can be rigorously derived.
The derivation will not be given here since it is discussed
in detail by Schumacher who shows that Rsr and Rrs are
given by

(A11)X=&z+&s+&ezs',
where

Xz= yz(Hr)—z P I,~Zn. r,ms Wnr, ms(Er Es)
Rsr=

2 Tr[Xs']qz
(A3)

+', Q A~,-[3I,~I„I„.I,],—(A12)

to the S system, we can write down rate equations for where
the cross-relaxation process in terms of the inverse spin
temperatures, 1

gnr, ms Wms, nr(En Em)
Rrs=

2 Tr[BCz']rjs
(A4) Xs= —7sA(Hr) s P S.;, (A13)

where 8' „,is the probability per unit time for a
transition between states

I
jrr) and

I
jz) of the I system

and states Is) and Ir) of the S system, E, E„,E„and
E, are, respectively, the energies of the states IN), I jm&,

I r&, and IE&, (xzlrrr&=E-I jrr&), and gz and qs are,
respectively, the total number of spin states of the I- and
5-spin systems. Using the principles of detailed balanc-
ing and energy conservation, we find

Rsz Tr[Xz ]vis
(AS)

Rzs Tr[Xs']qz

In terms of the above model, equilibrium is described
by 8z=4. Thus we can combine Eqs. (A2) to obtain a
single equation involving the difference in the inverse
spin temperatures,

&ezs'= Z BjsIsrS.r„

1—3 cos'O
Ayq gpz k

(A14)

(A15)

~jk= QIQS~'
1—3cosO y

(A16)

Note that the term 3'.&ss' has been dropped in Eq.
(A13) since we assume the S-spin line shape to be a
delta function. From first order, time-dependent
perturbation theory we have

2'
W....= I &.;I

~ezs—I ,jr)mls

Xb(En+Er Em Es) ~ (A17)
1 1 1

[Rsz+Rzs] ———
dt Or Os -Or Os-

(A6) The quantity to be calculated is P„„,W„.. .(E„E,)~. —
Expanding the matrix element in Eq, (A17) we find

A solution to this equation will be an exponential
function with a time constant given by

1/Tzs= Rsz+Rzs (A7)

Using Curie's Law we then find that after a single
mixing pulse, during which (Hr)s is turned on for a
time t,„, the magnetization M of the I spins is given by

M= [M, Mj]e '. Irrs+M j— (AS)

where 3f; is the initial magnetization and 3I~ is the
I magnetization at equilibrium. Equation (AS) can be
combined with the results of Sec. II of the text to give
the magnetization of the I spins after E mixing pulses
for e(&1 as

Q W„,,„,(E„E,)'—
nrme

2'
Vs fr (Hl)s Q BjlsBj'r'

jg jjkk

X&~II.~ I ~&&~II., IN)&r I S„jls&&s IS„j Ir&

X5(E„E+E, E,) . (A1—8)—
We now define a function g;; (ro) by the equation

g '(~)= 2 &~II"l~&&~I" l~&
nrakk'

XBrsBj'r, 'B(En Em Ace), (A19)— —

M/M, =exp( No[1 e' burrs—]), —(A9) where we shall soon set

laurel

=
I
E„E,

l
= lvs(Hr)sl ~—
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1 1 I(I+1) '
g;; (~)[~' &—z'5«= —— (2I+1)"'

A'4 3
g '((0) =C .Le

—(~—oz)'/~tm+e —(~+or) /~85 (A20)

Were the A„,'s zero, the only nonvanishing matrix straightforward and gives
elements of I,/, would join states ))/Qz=ph(II&)z apart
in energy. For nonzero A„, we assume, therefore,

where C;; reflects the strength of the line and ~~ its
width. This is a useful assumption since C;; and vol can
be calculated exactly by the method of moments.

To evaluate C;;, Eqs. (A19) and (A20) are inte-
grated over co and equated. This gives

1 1 I(I+1)
C.'=— (2I+1)&r P I3,.)13, /, (A21)

2 m'I'(o k 3 I('

To evaluate or~' we do a second moment calculation,
i.e., using Eqs. (A19) and (A20) we evaluate the
integral

X Q 5I3;~I3)'/A/„' (A24)

Equating Eqs. (A23) and (A24) we obtain

Ag„'
a&P=-', I(I+1)Q

n k
(A25)

where the summation goes over the I spins. From the
definition of A„, we have

Aly ' Xz= ~yz'O'
n A

where

~'g/ (~)«=(~') gz) (~)« t1—3 cos'8 /, 5'

~azz"= —
~ P Az„[3I,z,I„I~I,]. —(A22)

The integral using Eq. (A20) gives

and equate the two results.
Although X~~z' commutes with the Zeeman Hamil-

tonian in the laboratory frame, it does not commute
with the Zeeman Hamiltonian in the rotating frame.
In carrying out the second moment calculation in-
volving Eq. (A20) it is important to use only the
secular part of the truncated dipolar interaction X~~I .
The reason for keeping only the secular part of the
truncated dipolar interaction in the second moment
calculation is the same as in a moment calculation in
the laboratory frame. ' The nonsecular terms correspond
to weak absorption peaks at frequencies ~Qg from the
central absorption peak. If these satellite lines are
included in a determination of the moments they give a
contribution of the same magnitude as the contribution
from the central peak although they have only minor
inQuence on the cross-relaxation. Therefore, only the
secular part of K~lz' will be retained. In the present
case we want only that part of Xzzz which commutes
with Q), I,„.Denoting this by Kqzz~ we 6nd

~)2= (5/18)(6'~)zz.
Thus we obtain

Q W„.. .(E, E,)'—
fl rttke

(A26)

2'
mgp(II ) 2 p g./, Lz

—(co-Qz)&/e&2+e-(co+Qz) /~65
g$ 6're

x(.ls„;Iz)(zl s„ lr).

60

w SO
R

&. 40
CL

KI-
30

K

and Sp is the total number of spins per unit volume.
Since the expression for the contribution of like spins
to the second moment is'4

El
(&' )zz= ,'yz'I/'I(I-+1)

Sz
we obtain

g,z ( ) (0«(0= QP+ g;/ (M)«. (A23)
2

Evaluating the same quantity using Eq. (A19) gives

1
~'g) '(~)«= Z»~»'~—

gp aa&

K
O

20
N
I-
LLI
R
C9

0

IO /(023

on off= 2mSeC
f ff IO Alsec

4 S 6 7 8

Li HI (GAUSS)

IO

XTrPPXz', I./5[~z', I./ 55,

where Xzo=3'.zz+X~zz~ Evaluation of the trace is

FxG. 9. 1nM7 versus (H1)p at 1.5'K. The solid curves are calcu-
lated using Eqs. (A9) and (A29). The solid straight line and data
points are the same as in Fig. 4.
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Now (r~S»~s) joins states differing in energy by
5'ys (Hi) s AQs. Thus one or the other of the ex-
ponentials is picked out which gives

Q W .. .(E„—E,)s
horme

2'
sos(H ) ss—(Qs—Ql)&/ro»

A

XP Tr[C;;.S„;S„;.]. (A27)

Working out the trace and substituting into Eq. (A3)
we And

4ys' ~(A'o))zr "
~sz &-(ns—nr)'/~» (A2g)

3 yz'- 10

(Hi)r( Hz. is that the Hamiltonian for the I-spin
system is given by the dipolar term only. Thus

Kz=g Q A„,[3I„I„I„—I,]. (A30)

Note that Xs and 3C~zs' are unchanged and are still
given by Eqs. (A13) and (A14). Since the I-system
Hamiltonian is given by the dipolar Hamiltonian, the
I-spin "absorption line" is now assumed to be a single
Gaussian function centered at the origin. The calcu-
lation of the second moment of this line will involve the
full dipolar Hamiltonian of Eq. (A30). The calculation
proceeds in the same manner as outlined above. The
result for the case where (Hi)z((Hr, is found to be

where
o) is = (5/18) (r9o))zz,

f1s vs(HI) s

flr=Vr(Hi)r ~

1 Nsys'S(S+1) (Hi) s'
1+

Trs — NryzsI(I+1) s(6'H)rr

2S'
[(+so))zz](/ss ()s'/&» —

(A31)
312

Using the relationship in Eq. (AS) we obtain for the
cross-relaxation time

60
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~ so
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L~. r
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A
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LI H
l
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FIG. 10. 1nM7 versus (IZ&)6s at 1.5'K in the completely de-
magnetized state. The solid curves are calculated using Eqs.
(A9) and (A29). The solid straight line and data points are the
same as in Fig. 7.

NsS(S+1)vss(Hi) s'
1

Tzs NzI(I+1)yz'[(Hi)r'+s(&'H)zr]

2-&(+so))zz 1/2

X- e (()s nr)'—/~» —
(A29)

3 yz' 10

The calculation of the cross-relaxation time in the
completely demagnetized state is essentially the same
as that outlined above. The major change with

where now o)P = (4/9)(LPo))zr.
It is important to note that Eqs. (A30) and (A31) are

calculated assuming that the frequencies of the H&'s

are constant and equal to the resonant frequencies of
the I and S spins, and the ratio (Hi) s'. (Hi)r is varied.
A calculation of the mixing time for fixed magnitudes of
the Hi fields and variation of the frequency of (Hi)s
has been carried out by Hartmann and Hahn. These
authors perform the calculation using an expansion of
the density matrix but make essentially the same
assumptions (spin temperature and Gaussian line

shape) which we have used in setting up our model.
Equations (A30) and (A31) can be combined with

Eq. (A9) and compared with the experimental data
of Figs. 4 and 7. The results are shown in Figs. 9 and 10.
In both cases we see that the experimental mixing takes
place faster than the mixing calculated on the basis of
our simple model.

In particular, some preliminary results on the
measurement of the cross-relaxation time indicate that
more than one relaxation rate is involved in the mixing
whereas the simple model we have used to calculate the
cross-relaxation assumes a single relaxation rate
between the two spin systems. Thus, although the
calculated curves do tend to reRect the general form
of the experimental results, it is not surprising that
the agreement between theory and experiment is only
qualitative.


